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PATTERN SELECTION AND TRANSITION TO TURBULENCE IN PROPAGATING WAVES
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We present a study of oscillatory convection in two experimental systems: ethanol-water mixtures in a rectangular
container heated from below and a thin layer of nematic liquid crystals under low frequency ac voltage. In both systems the
first bifurcation is the transition to traveling waves (TW) with finite wave vector and frequency. We report experimental
observations of a sequence of spatial structures and dynamical behaviour of nonlinear TW in a regime of a weak nonlinearity,
Most of the rich variety of spatial and dynamical behaviour which we observe in one-dimensional finite geometries has been
reproduced by numerical simulations based on a simple model of coupled Ginzburg-Landau equations which considers only
the combination of translation and finite geometry. More complicated spatio-temporal behaviour of TW in cells with
two-dimensional geometry which initiated by defect nucleation is attributed to the mechanism of modulational instability

of TW,

1. Introduction

In recent years it has become clear that despite
the great success of dynamical system theory in
quantitatively describing the temporal behavior of
many nonequilibrium systems with suppressed
spatial modes, systems with many spatial degrees
of freedom, which are more common in the real
world, cannot be characterized using these ideas.
Early developments, as well as the following stud-
ies of large nonequilibrium systems, suggest that
there are no universal routes to spatio-temporal
chaotic behavior [1]. Several years ago a new ap-
proach to this problem was suggested, namely, to
Investigate a system which shows a transition to
oscillatory instability as a first bifurcation [2].
Close to the onset the nonlinear behavior of such
a system 1s described by a generalized Ginzburg-—
Landau equation with complex coefficients (GGL)
which exhibits in some range of parameters a
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direct transition from a quiescent state to one of
spatio-ternporal turbulence [3],

To(0, + 59, )4 =(1+icy)ed + (1 +ic,)£2324
—g(1 +1ic,)|A4)A. (1)

Here ¢ 1s the system’s control parameter (e.g.
e=R/R_—1, where R is the Rayleigh number
and R_ its threshold value), and 7,, £, are the
characteristic time and length respectively, s is the
group velocity and g, ¢;, ¢, and ¢, are real
parameters. The complex amplitude, A(x, r), de-
scribes the spatio-temporal modulation of the
marginal waves. Since any system which shows
oscillatory behavior falls in this class, and the
corresponding instability mechanism is universal,
we believe that universality in the transition to
spatio-temporal chaos in this class of systems can
be observed. This general idea has led to the
recent renewal of interest in theory [4-13] and
experiments [14-22] on Rayleigh—Bénard convec-
tion in a binary mixture since, as was shown
theoretically and confirmed experimentally, this
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system 1s a good candidate for the quantitative
study of spatio-temporal complex behavior. Simi-
lar behavior has also been studied in Taylor-
Couette flow [23], in oscillatory convection of a
low-Prandtl number pure fluid [24] and in electro-
convection of nematics [25].

There were several crucial experimental obser-
vations which attracted a great deal of attention
among theorists and experimentalists. First, the
observation of traveling waves (TW) in connecting
binary mixtures in a finite geometry container
[15, 16] made possible the study of properties that
characterize a wide class of open flow systems,
while using the well-controlled experiments
achievable in closed systems. There are numerous
examples of open flow systems which show the
transition to spatially developing traveling waves,
such as free shear flows (wakes, jets, mixing layers),
plane Poiseuille and pipe flows, drift waves in
plasma, etc. [26-32]. In most of these cases the
GGL equation can be derived as a simple model
to describe the nonlinear evolution of propagating
patterns [3].

There are several specific features which charac-
terize nonlinear behavior of propagating waves.
The most distinct of them 1s the presence of two
types of instability conditions: convective and ab-
solute [33]. Unlike, e.g., stationary bifurcations
where only an absolute instability exists, systems
with broken O(2) symmetry can exhibit both con-
vective and absolute instabilities. The difference
between the two cases is a relative one in the sense
that it depends on the choice of the reference
[rame in which the instability is considered. In the
case of an absolute instability the perturbation
grows 1n time at any fixed point in the system
despite the fact that the wavepacket is advected
downstream by the flow. In this case, any in-
finitesimal disturbance contaminates the entire
flow, and temporal stability analysis describes how
an imtial spatial perturbation evolves in time.
Then a solution of the corresponding dispersion
relation with real wavenumber, k, and complex
frequency, w, 1s physically relevant. On the other
hand, in convectively unstable systems, any initial

perturbation is carried away by the flow such that
at the initial site the medium is ultimately |
undisturbed although the perturbation grows in 4,
moving frame. In this case the spatial evolution of
the perturbation with « real and k complex, cor-
rectly describes the physical situation. Convectiye
or absolute instability conditions depend on the
relationship between the rate s/£; at which g
perturbation 1s swept a distance £, downstream
and a local growth rate 7, . The type of instabil-
ity will, in turn, determine the pattern and tempo-
ral behavior selected by the system. In the frame-
work of the GGL equation (1) it was shown [29]
that the solution 4 =0 becomes convectively un-
stable for 0 <¢ <e,, and absolutely unstable for
e > e, = (579/2£0)*(1 + ¢f)"'. Thus a single
nondimensional parameter s* = (57,/£,)e /2 de-
termines whether the system 1is convectively or
absolutely unstable, and the transition from con-
vectively to absolutely unstable conditions occurs
(3] at s* =2(1 + ¢)'/2. As a consequence of the
convectively unstable condition the selected wave-
number, k*, and frequency, «*, behind the front
are |3]

3 (1+ cf)tﬁi (1 + ::3)“1 el/?

k* = - 2
€ — ¢, o ( )

and

w* =15 ¢y — ¢y )¢, (3)

where k* and w* are the deviations from the
critical values k., and w, respectively. The selec-
tion mechanism behind the front is similar to one
suggested for the vortex front propagation in, e.g.,
stationary Rayleigh—Bénard convection.

Cross [34, 35] used this idea of pattern transla-
tion to explain the variety of one-dimensional TW
patterns observed in convecting binary mixtures 1n
a finite container. Cross showed by numerical
simulation of the coupled Ginzburg—Landau
equations for left- and right-propagating waves
with real coefficients that, similar to open flow
systems, the patterns and dynamical behavior
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which can be observed depend on the value of the

. pon-dimensional group velocity s*. It is astonish-

ing that the rich variety of TW patterns predicted
by the simulations have been independently ob-
served experimentally in convecting binary mix-

. tures: full-cell (saturated) nonlinear TW [15-17],

spatially modulated TW (confined TW) [17,
36-39], spatially and temporally modulated TW
(blinking TW) [40, 41] and nonlinear counter-
propagating TW (CPW) [36, 37, 40]. Recently, this
behavior has also been observed in different exper-
imental systems [23, 24].

Another specific feature of the convectively un-
stable system 1s extreme sensitivity to external
forcing. Moreover, the external noise modulation
is selectively amplified by the system and spatially
growing waves are generated at the frequency with
maximum growth rate [42]. In relation to this
feature noise-sustained structures and intermit-
tency due to modulational instability of the non-
linear wavetrain downstream were observed In
numerical simulations of the GGL equation at
convectively unstable conditions [42, 43]. These
specific features of spatio-temporal chaotic behav-
ior distinguish the convectively unstable system
from an absolutely unstable one.

Although we expected to find spatio-temporal
chaotic behavior in one-dimensional systems as
predicted for some range of parameters in numeri-
cal simulations of the GGL equation, we did not
observe it. However, complex temporal behavior
of wavenumber spectra and shock-like structures
corresponding to rapid changes in wavenumber
between two patterns with different & and w were
observed under convectively unstable conditions.
This may point towards a modulational mecha-
nism of secondary instability of TW which can
lead to spatio-temporal chaos.

On the other hand, we discovered that slight
variations in the cell width completely change the
spatio-temporal behavior of TW: there is a direct
transition to spatio-temporal chaotic behavior just
near the convective onset in two-dimensional cells
in a wide range of the control parameters [37].
These dynamics are elaborate, are characterized

by the presence of different types of defects and
cannot be described by low-dimensional attrac-
tors. A possible explanation of this behavior is
related to modulational instability of TW; the
dispersion of TW in the direction perpendicular to
TW propagation dominates the pattern dynamics
of TW and in a two-dimensional container spa-
tially uniform envelopes are rarely stable [9, 10].
As mentioned 1n ref. [9] the cell does not have to
be very wide in order to trigger the spatial instabil-
ity along the TW crest. Thus modulational [44,
45], or Benjamin-Feir (BF) instability can pro-
duce the spatially and temporally incoherent flow
observed experimentally, and the cell width 1s a
crucial parameter which defines its onset. Recently
stmilar spatio-temporal dynamics were obtained in
numerical simulations based on the GGL equation
[46] which suggest that the BF instability mecha-
nism 1s very probable. One of the main issues is
how to characterize two-dimensiomal spatio-tem-
poral dynamics of TW and to compare them with
numerical results.

The transition to spatio-temporal turbulence in
convecting binary mixtures i1s complicated by a
degeneracy of the wave vector in a horizontal
plane. In electroconvection of nematic liquid crys-
tals the wave vector direction is fixed due to the
sample preparation procedure. Very large aspect
ratios (up to a thousand wavelengths) can be
reached 1n this system. This makes it very attrac-
tive for experimental studies of spatio-temporal
pattern behavior. Moreover, we recently discov-
ered that for some conditions the first bifurcation
can be to ordered TW [47]. The great advantage of
the TW state 1s that due to the raised degeneracy
of the wave vector in a horizontal plane the transi-
tion from uniform TW to spatio-temporal turbu-
lent state occurs through a simple scenario of
defect nucleation [47]. Thus, this transition can be
traced and studied quantitatively. Recent theoreti-
cal calculations and numerical simulations of the
GGL equation which show surprising similarity to
experimental observations of spatio-temporal pat-
tern dynamics, suggest that this defect-initiated
turbulent behavior (coined as topological turbu-
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lence) is a direct manifestation of BF instability of
TW 1n anisotropic systems [48-50]. It is the first
step towards a universal route to spatio-temporal
chaos.

In this paper we present recent experimental
results on two systems: convection in binary mix-
tures and electroconvection in nematic liquid
crystals (MBBA). Both systems show the first bi-
furcation from conductive state to a state with
finite wave number and frequency. However, due
to specific properties of these systems different
manifestations of the TW states and their pattern
dynamics were studied. The transition to the oscil-
latory instability in convecting binary mixtures
has been studied in great detail by numerous
theoretical groups during the last several years
whereas there 1s no theoretical explanation for the
transition to a TW state in nematics. The bifurca-
tion in nematics is forward unlike the backward
bifurcation in a convecting binary mixture. A sim-
ple estimate shows also that convectively unstable
conditions for TW state in a nematics may be
observed for € <0.001, i.e. much closer to the
convective onset than in binary mixtures and that
we can reach at the moment in this system. Thus,
pattern selection and spatio-temporal behavior
under convectively unstable conditions in one-
dimensional geometry cells were studied in binary
mixtures while the universal transition to spatio-
temporal disordered TW state was investigated in
nematics.

2. Experimental systems

The apparatus used in the experiments on con-
vection 1n binary mixtures was similar to that used
in our previous work [36, 37, 51, 52]. The convec-
tive fluid layer is sandwiched between a water-
cooled saphire window on the top and a hard
nickel-plated copper mirror on the bottom. The
lateral walls of the convection cell were con-
structed of wvarious plastics chosen for their
machinability as well as for their chemical resis-
tance and thermal properties. Most of the cells we

constructed from polypropelene which has |ow
thermal conductivity [A=1.2 mW /(cm K)] and
high density polyethylene with A =5 mW /(cm
K). The cell frames were machined and polisheq
to a uniformity in height of better than 5 um. The
top and bottom plates were checked interferomet-
rically to ensure that they were parallel to within
1-2 pm on the cell's length. The heights of the
cells were d=10.300 cm and 0.305 cm and the
lateral dimensions in units of d are 4 X I', where
the aspect ratio I" ranges from 12 to 12.7, as well
as 20 and 27. Long term temperature stability of
the bottom plate was about 0.03 mK RMS so that
we were able to get relative stability in the Rayleigh
numbers on the order of 10~ ° RMS.

The experiments were done on ethanol-water
mixtures with weight concentrations of ethanol in
the range between 25.5% and 28.5% at 31°C mean
temperature. For this range of ethanol concentra-
tion the separation ratio ¢ varied from —0.078 to
—0.005, the Prandtl number was a constant, P =
18, and the Lewis number was L = 0.012 [53]. We
also used a benzene—methanol solution of 95% by
welght concentration of benzene at 30.2°C (¢ =
—0.045, P=17.5, and L =0.025). The apparatus
described above enabled us to make simultane-
ously high resolution heat transport measurements
(Nusselt number, N, measurements) with resolu-
tion on the order of 0.01% and precision shad-
owgraph measurements. We use conventional
shadowgraph flow wvisualization with the i1mage
obtained directly by a video camera. Since we
worked in the linear region of the shadowgraph
close to the convective onset the optical signal
obtained at a given point was linearly propor-
tional to the amplitude of the velocity field (or
related to it the temperature and concentration
fields). A computer-based 1mage-processing Ssys-
tem provided a standard image enhancement, noise
filtering and reduction techniques for the study of
the evolution of spatio-temporal flow patterns.

The experimental setup for electroconvection in
nematics is the standard one [54, 56]: the nematic
MBBA 1s sandwiched between two transparent
glass electrodes a distance of 15 um apart and
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lateral dimensions of the cell L =2 cm (per-
pendicular to the rolls) and L, = 0.5 mm (aspect
ratio 1:33:1300). The cell is regulated at 25°C
with a stability of +0.005 K by circulating water
flow. With proper sample handling and prepara-
tion this temperature regulation turns out to be
the crucial factor in reaching reasonable short-term
stability and reproducibility within several hours
[47]. However, sample aging during several weeks
was still observed. The image of the patterns is
observed with a video camera mounted on a polar-
1zing microscope digitized with a resolution of
512 X 512 pixels of 256 grey scales and fed to a
computer.

3. Results

3.1. Oscillatory convection and TW in binary
mixtures

In a binary fluid the control parameters which
determine the convective flow are the Rayleigh
number, R, which is proportional to the tempera-
ture difference across the fluid layer, AT, and the
separation ratio, i, which 1s a measure of the
coupling between the temperature and concentra-
tion gradient, induced by the Soret effect. Other
relevant parameters are the Prandtl number, P =
v/k, and the Lewis number, L = D /k, where » is
the kinematic viscosity, and D and « are the mass
and thermal diffusivities, respectively [56, 57]. For
Y < —L* the concentration gradient stabilizes the
quiescent state and leads to an oscillatory instabil-
ity. The critical Rayleigh number for the onset of
the oscillatory instability R_, is defined approxi-
mately as [56, 57]

L

R,
RS- 1=bu/(14y+ ) 2)

C

and the neutral frequency of marginal waves is
given approximately by [56, 57]

wo=(3an?/2)[-y/(1+¢+P V)] (3)

Here R_ is the eigenvalue of the linear stability
problem for stationary convection, w, is consid-
ered in units of the vertical thermal diffusion time,
t,=d*/k, where d is the cell height. For free,
permeable boundary conditions the formulas (2)
and (3) are exact with a = b= 1. For rigid, imper-
meable boundaries, eqgs. (2) and (3) are a good
approximation with a=143 and b=1.05 (ref.
[56]). Exact numerical calculations for realistic
boundary conditions have been performed re-
cently by several groups and are in excellent
agreement with experiments [58-60]. Recent visu-
alization experiments revealed that linear oscilla-
tory convection predicted by linear stability
analysis can be observed in a transient regime
and, 1n fact, 1s only neutrally stable [61, 62]. This
state 1s observed experimentally in the form of
two counter-propagating waves (CPW) whose
amplitudes grow exponentially along their propa-
gation direction [61]. Combined effects of propa-
gation, refection and growth cause the onset shift
which depends on boundary conditions at lateral
walls and the cell length [34]. All these properties
of linear CPW were verified experimentally [6]1,
62]. The temporal behavior of the linear transient
state was first studied long ago and the results
were also found to be in reasonable agreement
with the theory [63). The unresolved problem of
an almost negligible change in the effective heat
transport in the linear growth-rate regime of CPW,
first mentioned 1n ref. [63] and confirmed by us,
was also resolved recently [64]. The solution is the
greater resolution of local optical as compared
with global heat transfer measurements; careful
data analysis show similar linear growth-rate be-
havior in both measurements in the transient
regime. Thus, the linear oscillatory state is now
well understood quantitatively. As mentioned
above the linear CPW are unstable; their ampli-
tudes grow exponentially until limited by nonlin-
ear saturation. The amplitude profiles flatten out
and become more like two distinct CPW emanat-
ing from the source [36]. This meeting point of
CPW 1is a topological defect which is one of two
possible singular solutions of GGL equations. This
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state with the source defect is unstable to small
perturbations (slight asymmetry of the cell imper-
fections, etc.), and the defect moves toward one of
the end walls. The migration of the topological
defect along the cell is not smooth and regular but
occurs by jumps of the order of half a wavelength.
The existence and stability of the source and sink
topological defects as singular solutions of the
GGL equation were considered theoretically [63,
66], and their stability and dynamics are similar to
experimental observations [36, 37]. Moreover, the
defect migration by jumps can be explained by
nonadiabatic effects of the sub-critical oscillatory
bifurcation which can result in the pinning of TW
[67].

Our experiments show that a large step in the
Rayleigh number above the onset leads via a sub-
critical bifurcation to nonlinear TW filling the cell
while smaller steps lead to weakly nonlinear states
which exhibit a large variety of flow patterns [36].
The appropriate question is how to characterize
these two different regimes particularly in the sim-
plest case of a one-dimensional geometry where
three-dimensional effects can be neglected. Since
we deal with a subcritical bifurcation it is difficult
to define a region of applicability of one mode
approximation based on the value of the order
parameter (or amplitude) or the control parameter
€. It 1s reasonable to assume however that the
frequency of the oscillation, which in the linear
state 1s directly related to the vertical linear con-
centration profile, can play the role of the parame-
ter which characterizes the degree of deviation
from linear behavior. Thus, weakly nonlinear states
have oscillation frequencies that are only slightly
different from the neutral frequency while for the
nonlinear TW this difference can be an order of
magnitude in the range of ¢ in which we worked
[16, 17, 36, 37]. This means that convective flow
perturbations of the linear vertical concentration
profile of the conduction state are small in a
weakly nonlinear regime. It was suggested in ref.
[41] that the small distortion of the concentration
profile 1s due to the fact that in the region where
e < L? the characteristic boundary layer is compa-

rable to the cell height. First, our measurements
show a reduction of 10 to 15% in the frequency for
e values up to € =5 X 107", much higher than the
value of L* (=10"7). Secondly, as we discovered,
mass transport onset coincides with the onset of
the weakly nonlinear state, i.e. mass transport dye
to nonlinear TW leads to the breaking of the
linear concentration profile [68-70]. Such an effect
will dominate over any boundary layer process
since the latter depends on changes in the velocity
amplitude of the roll which are small along a
weakly nonlinear branch [16, 17].

Thus, the weakly nonlinear states are close to
the linear ones due to relatively small amplitudes
and the small deviation of frequencies from the
neutral frequency, w, [40, 41]. This means that
standard perturbation analysis can be applied to
describe these states. Cross used this approach
taking into account only the effects of pattern
propagation [34, 35]. Using coupled GL equations
with real coefficients for left- and right-propagat-
ing waves he performed numerical calculations in
a finite geometry cell with realistic boundary con-
ditions on the lateral walls. The linear part of the
equations gives a complete quantitative descrip-
tion of the dynamical and spatial structure of the
linear oscillatory state in a finite geometry cell. As
a result of energy losses due to reflections the
theory predicts a shift in the convective onset €
which 1s inversely proportional to the cell length
and depends on the reflection coefficient [34]. De-
pending on the value of the nondimensional group
velocity s* Cross obtained a variety of static and
dynamic states which he classified [35]. The maxi-
mum value of the group velocity s* 1s obtained at
onset and depends on the lateral boundaries and
the length [35]:

=2 (4)

e ‘fﬂEs ‘

where e, = —(s1,/1)In|r| is the shift, / is the cell
length and r is the reflection coefficient. The high-
est value of s* observed in our experiments is 2.6
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Fig. 1. (a) Steady state Nusselt number, N, and scaled TW
frequency, w,/w, as a function of ¢. Vertical lines define
regions of different nonlinear TW patterns: I: stable nonlinear
CPW (squares); II: blinking states (circles); III: confined TW
(tnangles). Crosses show the conduction state. N and e« /w,
are shown by full and empty symbols respectively. (b) N for
the blinking states (region [) as a function of time and its
power spectrum at €= 00034 with ¢ = —-0014 in an
ethanol-water mixture.

at = —0.058 and I'=20. The sequence of pat-
terns observed as a function of decreasing values
of s* 15 as follows:

1) For the highest values of s* a symmetric
state of right and left TW was observed which
resembles the linear transient CPW but is actually
a stable nonlinear state of the system (fig. 1(a) of
ref. [71])

2) As s* decreases, the patterns consists of left
and right TW with amplitudes different from each
other. The symmetry is broken and one of the
waves dominates (fig. 1(b) of ref. [71]).

3) At smaller s* a transition to symmetric oscil-
lations of the two envelopes is observed with a
modulation period much longer than the internal
TW period (“blinking” state) (fig. 1(c,d) of ref.
[71]).

4) A further decrease in s* causes the state to
once again become asymmetric. The modulation
period decreases further with decreasing s* and is
incommensurate with the internal TW frequency
so that the overall state is quasiperiodic as in the
previous state. For smaller values of s* (higher
values of €) aperiodic (chaotic) states are also
observed (fig. 1(e, f) of ref. [71]).

5) Finally, in the region of s* > 2 the modula-
tion ceases, and either a left or right propagating
TW state remains. The envelope of the state is
spatially modulated so that this state resembles a
kink-like pattern (“confined” state) (fig. 1(g) of
ref. [71]). On the branch at s* <2 there is a
transition to a spatially homogeneous TW which
completely fills the cell (fig. 1(h) of ref. [71])
(filling, or saturated TW).

As mentioned in the introduction, the sequence
of TW states listed above corresponds to experi-
mentally observed states in the close vicinity of
the convective threshold. We will present next
experimental observations of the weakly-nonlinear
states 1n the same order of decreasing values s*
(or increasing values of €).

The regions of existence of the various nonlin-
ear states for the ethanol-water mixture at ¢ =
—0.014 is presented in the plot of the Nusselt
number (N) versus € for measurements in the
close vicinity of the convective threshold (fig. 1(a)).
In the same figure characteristic internal frequen-
cies w of the various TW states, normalized by the
neutral frequency w, are also presented (hg. 1(a)).
The data were taken for a polypropelene-walled
cell with aspect ratio 12. A small step from the
conduction state (e<2X10°%), a transition to
the nonlinear states occurs with a discontinuous
change in N on the order of 0.1%. The transition
appears by way of the transient linear CPW with
the observed frequency w, = 2uf,t, = 2.505 which
is close to the calculated value of w,=2.5 (¢, =
90.6 s).

Fig. 2 shows the maximum amplitude of the
shadowgraph signal for all three weakly nonlinear
TW states as a function of € for the same set of
data as in fig. 1 (= —0.014 and I" = 12). There is



366 V. Steinberg et al. / Pattern selection and transition to turbulence in TW

)
A
]
- -
:

|

Maximum aomplitude [arb units)
RN
|

| PR L1 ! ' 1 I | | |

G 0005 0.0l
(=3

Fig. 2. The maximum amplitude of each state as a function of
e for y = —0.014 (circles), blinking and CPW states (squares)
confined states —(0.014.

a noticeable jump in the maximum amplitude at
the transition between the blinking and confined
TW states although no such jump is observed for
the transition between the nonlinear CPW and the
blinking state. The sharp rise in the maximum
amplitude of the blinking state and the jump at
the transition to the confined state were also ob-
served for ¢ = —0.058 although the size of the
jump was smaller. In the region marked I in fig.
1(a) the nonlinear CPW appears first, then the
blinking TW state occurs in region II, and the
confined TW 1s in region III. In terms of s* we
find that for the data in fig. 1(a), the nonlinear
CPW exist for 2.12 > s* > 1.94, the blinking states
for 1.94 > s* > 1.69, and the confined states for
1.69 > s* > 1.5. Thus, we observed nonlinear TW
states which strongly resemble those which have
been observed in numerical calculations but at
considerably higher values of s*.

Since the transition to nonlinear finite ampli-
tude TW states 1s of a subcritical nature one
would expect hysteretic behavior. Unfortunately,
the problem of hysteresis is a tricky one, and in
the case of the confined TW, was discussed by us
elsewhere [72] (see next sections also). The exis-
tence of the nonlinear CPW and blinking states
depend heavily on reflection effects at the lateral
boundaries of the cell [72]. The convective onset
AT.(exp) have been found to be in good agree-
ment with the calculated threshold in the finite

geometry container and depends on i, the cgqJ
length and lateral boundary conditions. The cop.
fined TW branch is unaffected by the location of
AT.(exp) and appears to be more hysteretic re]a-
tive to AT (exp) if the critical threshold is shifteq
toward higher temperature differences [72] due (g
the boundary conditions or to the cell length. [f
AT _(exp) 1s shifted to values lower than a saddle
node of the confined TW branch the lower lying
blinking TW and nonlinear CPW states will be
observed. Thus, these states, observed at higher
values of s*, are highly dependent on the location
of AT.(exp). We checked this statement experi-
mentally by varying the cell length and lateral
boundaries and were able to observe the lower
lying TW states at ¢ = —0.058 in a long cell
(I"= 20) with walls of poor thermal conductivity,
This explains why weakly nonlinear states have
not been seen until recently [40, 41]. Concerning
the hysteretic behavior of the lower lying TW
states, we recently found that the most hysteretic
states for the nonlinear CPW and blinking TW are
observed at e=—5x10% —-8x107% -1.3x
1077, and —2x 107 for values of ¢ = —0.014,
—0.015, —0.020 and —0.058, respectively. A con-
siderably larger hysteretic region, shown in fig.
3(a) of ref. [40] was incorrect: part of the hys-
teretic states on subsequent evaluation were found
to be unstable transients with long relaxation times
[73]. This lack of hysteresis, also observed in ref.
[41], definitely requires a theoretical explanation.

In the following sections we present a detailed
description of each of these three weakly nonhn-
ear branches.

3.1.1. Nonlinear CPW (symmetric nonlinear TW')

This lowest nonlinear TW state observed in
region I of fig. 1(a) consists of two symmetric left
and right TW whose envelopes are time indepen-
dent. The intensity of the shadowgraph signal
taken as a function of position along the convec-
tion cell at a sequence of time interval of 0.66¢, 1S
shown in fig. 3. The oscillation period of the
nonlinear CPW is 2.196¢,, at € = 0.001. This plot 1
very similar to one corresponding to the transient
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Fig. 3. The contour plot of a stable nonlincar CPW state. Thus
state was observed at = —0.014 for a PP cell with aspect
ration, I'=12, at e = 0.001.
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Fig. 4. The amplitude at one spatial point as a function of
time for the state shown in fig. 3.

linear TW. The intensity of the shadow-graph
signal taken at one point in the cell as a function
of time 1s shown in fig. 4 and demonstrates the
time independence of the nonlinear CPW envelope
function. Finally, in fig. 5 the power spectrum of
the data in fig. 4 shows a single peak with a
frequency of 0.897w,.

We would like to mention here that in spite of
the fact that no other peaks or harmonics are
evident in the CPW frequency spectrum, a time-
dependent wavenumber spectrum of this state at
an average wavenumber k = k_ (k_ is the critical
wavenumber for linear TW) was observed. Both
the temporally modulated wavenumber spectrum
and a range of vanation of k can be described
well by a simple linear superposition model
suggested by Kolodner [74]. The physics of the
time dependence on the fast time scale on the
order of a half cycle of the oscillations 1s probably

REDUCED FREQUENCY /Wy

Fig. 5. The power spectrum of the data presented in fig. 4,
only one peak is observed.

related to pinning of the spatial phase of the wave
in the cell center and to periodically stretching it
toward the ends of each half cycle. It 1s not clear,
however, why this temporal modulation was not
observed in the transient linear CPW 1n the same
experiment.

3.1.2. Spatially and temporally modulated TW
(blinking state)

The next lower lying weakly nonlinear TW state
is a spatially and temporally modulated TW state
which persists along the nonhinear branch for a
range of about Ae=0.006 (region II) until a
continuous, non-hysteretic transition to the con-
fined TW state occurs (region III) (fig. 1(a)) as
measured 1n both heat transport and oscillation
frequency. Time dependence in heat transport due
to the amplitude modulation in region II of fig.
1(a) was reduced by averaging for several hours;
nevertheless the scatter remains relatively large.
The time dependence of the Nusselt number for
¢ = 0.0054 1s tllustrated in fig. 1(b) where N — 1 as
a function of time (inset) and its power spectrum
are shown. The slow time scale charactenizing the
“blinking” period of the state’s envelope 1s seen
by the location of the peak at w,=0.02w,. As
shown by the data at the top of fig. 1(a), the basic
TW frequency w,, of the blinking state 1s within
10-15% of the neutral frequency, w,. In addition
w, closely follows the changes in N over the entire
branch.
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In fig. 6, shadowgraph pictures of the blinking
state at a constant value of e=5.6x10"* for
Y = —0.020, are shown at intervals of At = 6.6¢;
approximately half of a blinking cycle is shown.
The patterns are seen 1in the figure to be truly one
dimensional. Details of the dynamics of the state
are presented, for ¢ = —0.014 and ¢ = 0.0048, by
light intensities measured along the cell length and
plotted on top of each other with time intervals of
0.661, (fig. 7). At the beginning of the modulation
period this TW state 1s confined to one side of the
cell, propagating in the direction of a lateral wall
(fig. 7(a)). It then starts to fade as another TW
propagating in the opposite direction appears (fig.
1(b)), and finally the amplitude of the TW
propagating in the other direction grows while the
TW amplitude on the other side decays completely
(fig. 7(c)). This cycle then repeats itself. This
behavior corresponds exactly to Cross’s observa-
tions based on his numerical simulations [35].

The time-dependent behavior of the blinking
state 1s illustrated in fig. 8 by plotting the meg-
sured shadowgraph intensity at one point as 4
function of time. As e increases above the convec.
tive threshold, the oscillation amplitude grows ex.
ponentially. This transient CPW state reaches
saturation as the state’s amplitude becomes tem-
porally modulated (fig. 8(a)). Fig. 8(b,c) shows
several modulation cycles of the blinking state for
low values of € in a steady state region (after the
transient decays) for the ethanol-water mixture.
The frequency of the slow modulation is nearly
constant and much slower than the internal TW
frequency. Shown are data taken at both the left
and right ends of the cell, and, as can be seen
from the figures, the modulations at each end of
the cell are clearly not in phase, although they
reach the same value of the peak amplitude, i.e.
both waves are modulated symmetrically, but at
large € asymmetric modulations are also observed.

Fig. 6. A series of shadowgraph pictures showing a blinking state at = —0.020, a constant ¢ = 5.6 X 10, The pictures starting
from (a) are taken consecutively with a time interval between pictures of 6.61,. Approximately half a cycle is shown.
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Fig. 7. A contour plot of shadowgraph signals for the blinking
state taken at = —0.014 in an ethanol-water mixture as a
function of position along the cell. Each line is a profile of the
state, taken along a line extending the length of the cell at
sequential time intervals of 0.66r,. Time increases upwards.
The plots are taken at times: bottom 01, center 66¢, and top
106¢.,.

This steady state scenario is typically reached after
relaxation times on the order of several horizontal
diffusion times which, for the longer I' = 20 cell,
can reach 30-40 hours. This regular modulation
cycle for the small € state is not the case for higher
values of €. In fig. 9 we present the time depen-
dence of the shadowgraph intensity taken at one
point for these more complicated states. The be-
havior of these states is seen to be very irregular in
contrast to the clocklike behavior shown in fig.
8(b, c).

In fig. 10 we present power spectra of the
shadowgraph signal intensity taken at points
situated at opposite sides of the cell during the
blinking cycle as a function of € for ¢ = —0.020.
The spectra low on the branch are quasiperiodic
indicating a two-frequency state. (This should be
compared to the spectrum shown in fig. 5 for the
CPW state which consists of only one peak). The
peak separation is discrete and corresponds to the
blinking frequency, w,, of the state. In general, as
¢ Increases we find that the blinking frequency,
w,, decreases. All peaks in the spectrum can be
given as an integer combination of two neighboring
peaks. Very low on the branch (fig. 10(a, b)), the
main peak at w, is identical on both sides of the
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Fig. 8. Bottom: the intensity of the shadowgraph signal at one
point as a function of time as ¢ increases from conduction to a
value of 0.0009 at ¢ = —0.014. Top: several cycles of the
blinking state for = —0.020 and e=2x 10"* for points
taken concurrently at the left (lower) and right (upper) sides of
the cell.
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Fig. 9. The shadowgraph amplitude at one point for an aperi-
odic blinking state. The state shown was observed for =
—0.058 at ¢ =0.0031.

cell. Higher up on the branch (fig. 10(c)) the main
peaks at the cell's end separate. Each spectrum is
in turn quasiperiodic. This separation of the
spectra at the two ends of the cell is the first
indication of the breaking of the left-right
symmetry of the system observed in numerical
simulations [71). This is the beginning of the
dominance of one direction over the other and is
in competition with the role of reflection at the
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Fig. 10. Power spectra of the shadowgraph signal for the
blinking TW state taken at points situated at each end of the
cell. Dotted line: spectra taken at a point on the right of
the cell. Dashed line: spectra taken at a point on the left of the
cell. All spectra shown were taken for = —0.020. (a) €=
—0.0013; (b) e= —5.0x107% (c) 2.6 x 1074; (d) 7.8 x 1074,

boundaries which in effect tries to restore this
symmetry. This domination eventually culminates
in the strongly nonlinear states where one direction
completely dominates the dynamics. Still higher
on the branch (fig. 10(d,e)) the spectra become
more complicated but are still discrete as the
simple two-frequency quasiperiodic state evolves
Into a more complex one.

The blinking state branch ends at a continuous
transition to the confined state branch. At this
point the power spectrum narrows to a single
sharp peak. The lower and higher parts of the
spectra 1n fig. 10 are not shown since their
amplitudes are several orders of magnitude smaller
than the spectra in the figure. For completeness,
we present in fig. 11 the entire spectrum corres-
ponding to a simple, 2-frequency blinking state.
As can be seen from the figure, the entire spectrum
consists of a small number of discrete peaks whose
frequencies are very close. Peaks of much lower
amplitude corresponding either to harmonics of
the main peaks or to their sums and differences in
frequency.
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Fig. 11. The power spectrum of the time dependence of one
spatial point for a blinking state observed for ¢ = —0.058 at
e = ().002.

Higher on the branch the complicated modulat-
ed TW states may correspond to either the three-
period quasiperiodic states or the chaotic states
observed numerically by Bestehorn et al. [46]. We
performed dimensional analysis on the data whose
spectra are presented in fig. 10, using the
Grassberger—Procaccia algorithm [75] to determine
the correlation dimension, D, of their associated
attractor. We do not expect that the results of this
analysis are in any way rigorous due to the
relatively small (typically 2000-4500 points) size
of the data sets, but we are able to gain some
qualitative intuition about the underlying behavior
of the attractors. We found that D jumps from a
dimension of D = 2 which we would expect for a
simple, two-frequency, quasiperiodic attractor, to
D < 3 for the more complicated behavior exhibited
at higher values of €. This suggests that these
states, although aperiodic, with complex, but still
discrete spectra indeed correspond to a low-
dimensional attractor. Results of this analysis are
presented 1n fig. 12 for the data set presented in
fig. 9 for various imbedding dimensions. The solid
line 1n the figure 1s a line of slope 3 and is shown
for comparison with the data. The scaling region
of the plot is consistent with an attractor of this
dimension.

Two other striking features of the blinking state
are a jump In the average wavenumber about
0.07k, at the transition from the nonlinear CPW
and the variation of the wavenumber as a function
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Fig. 12. Dimensional analysis of the aperiodic blinking state
shown in fig. 9. Shown are the results for imbedding dimen-
sions 7 {empty circles), 9 (full circles), 11 (empty squares) and
13 (full squares). The slope of the lines shown gives the
correlation dimension of the attractor. The solid line for refer-
ence has a slope of 3.

of time. Two time-dependent wavenumber spectra
are presented in fig. 13 together with the
corresponding temporal power spectra of the
intensity of each state taken at one point in
the cell. Each line on the plots (fig. 13(a, b))
represents the power spectrum in k-space of the
optical signal at one moment. The time interval
between lines is 0.32¢,. Both wavenumber spectra
presented are from data measured at ¢ = —(0.058
with I' = 20. The data used in fig. 13(a) were taken
at € = 0.0015 where the state observed was a simple
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Fig. 13. Wavenumber spectra of blinking TW states at consec-
utive time intervals of 0.32¢,, at e=1.5x%x10"3 (a), and €=
3X1077 (b) for ¢ = —0.058. (c) and (d) are the temporal
power spectra of a spatial point corresponding to (a) and (b)
respectively.

2-frequency quasiperiodic state, as seen by 1ts
power spectrum 1n time (fig. 13(c)). The data used
for fig. 13(b) were taken at €= 0.003 where the
observed state corresponds to the more
complicated blinking states which may be the
predicted 3-frequency quasiperiodic or chaotic
state described previously. The power spectrum in
time of this state is presented in fig. 13(d). It is
clearly seen that the wavenumber of the blinking
state never settles down to a steady state value. At
smaller values of ¢ the temporal modulation of the
k-spectrum of the blinking state with a half period
of TW is similar to the time-dependent k-spectra
of the nonlinear CPW mentioned above, and can
probably be partially ascribed to a linear
mechanism. A possible explanation for the time
dependence on the fast time scale is that these
states correspond to a two-wavenumber state (two
separate values of k). The simple spectra are
similar to those obtained in simulations of a linear
superposition of two CPW states with two
wavenumbers differing by a value, Ak, obtained
from the experimental spectrum. The results of
this simulation using the function

A(x, 1) =e"cos (kx — wt) cos (Akx — Awt)

+e” " cos (kx + wt ) sin (Akx + Awt)

(5)

are presented in fig. 14(a) where the spatio-
temporal behavior of these states is shown. The
corresponding wavenumber spectrum in time of
this state is presented in fig. 14(b). The parameters,
w, k, Aw, and Ak used in eq. (5) are the same as
for the experimental data presented in fig. 13(a, c).
Although the linear model correctly describes
temporal modulation on the fast time scale, it
cannot explain the more complicated k-spectra of
the blinking TW higher on the branch (fig. 13(b)).
In order to emphasize this point we present’
additional data of the time-dependent k-spectra at
Y= —0.058 and €= 3.4 X 107 (fig. 15). Temporal
modulation on the fast time scale is still evident
here, but time dependence of k-spectra on the
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Fig. 14. (a) A contour plot of the simulated 2% state described
by eq. (5). The parameters used were: v = 0.082, k==, Ak =
0.035k, w=2n/4.15 and Aw = w/k Ak. (b) The spatial power
spectrum in time of the simulated 2k state presented in (a).

long time scale cannot be explained by the model.
The instability in the average wavenumber, the
band of stable wavenumbers observed in the
blinking TW which is wider than theoretically
predicted stable, and complicated time dependence
of k-spectra at higher e suggest that the entire

POWER (arb. units)

k/Kc

Fig. 15. Spatial power spectrum as a function of time ol a
blinking state observed for = —0.058, I'=20, at e=34 X
1077 taken at 0.32¢, intervals in time.

Fig. 16. Shadowgraph picture of a confined state for =
—().058, I'=12 and € = 0.0035.

phenomena cannot be attributed to a linear
mechanism. It is possible that the linear mechan-
ism can drive TW toward instability. Then at
higher ¢ the interplay between two nonlinear
mechanisms may be responsible for more
complicated behavior particularly on long time
scales [40, 76]. One of them is the wavenumber
selection behind a front at convectively unstable
conditions (eq. (2)) [3]. This selected wavenumber
k* may become unstable to a modulational
instability if k* is selected outside of the stable
wavenumber band [78]. As theoretical calculations
show this may lead to time-dependent behavior in
the k-spectrum [77].

3.1.3. Confined TW state

The confined branch can be reached by either a
continuous transition from the blinking state or
directly from the conduction state via the linear
CPW. The nature of the confined state is illustrated
in fig. 16 by a shadowgraph picture for € = 0.0035
and I'=12 at ¢ = —0.058, and in fig. 17 we show
the intensity of another confined TW state for a
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Fig. 17. Contour plot of a confined state observed for ¥ =
—0.058, I' =20, at e=0.017.
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Fig. 18. The temporal power spectrum of a confined state
observed for 4 = —0.058, I'=12, at ¢ = 0.0069.

cell of aspect ratio 20 at € = 0.017 and ¥ = —0.058
as a function of position in the cell. The TW are
always observed to propagate in the direction of
tre cell walls while the state’s envelope remains
constant in time. A power spectrum of the
shadowgraph signal taken at one point is presented
in fig. 18. This consists of a single peak together
with its 2nd harmonic. From this graph it is
already clear that the frequency of the confined
state differs considerably from the neutral
frequency, i.e. the linear concentration profile
should be distorted considerably. Fig. 19(b)
presents the detailed studies of the frequency of
the confined TW state at different lateral boundary
conditions at ¢= —0.058 as a function of AT.
The first conclusion is that the frequency of
confined TW decreases linearly with ¢. The second
conclusion is that the frequencies along the
confined branch for three sets of data are identical.
(Data are presented for the cell with the low
thermal conductivity polypropelene (PP) walls,
medium thermal conductivity high density poly-
ethylene (HDPE) walls and metal walls.)
Moreover, we also checked that both heat
transport and the region of existence of the
confined branch were unaffected by variations of
lateral boundary conditions or by changes in
aspect ratio (fig. 19(a)). Since, as we already
pointed out, the convective onset depends crucially
on the aspect ratio, on boundary conditions and
on the value of ¢, the confined TW branch only
dppears Lo be increasingly hysteretic if, the critical
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Fig. 19. (a) N—1 measurements as a function of AT for
y = —0.058 for cells with different lateral walls (squares— PP,
diamonds - HDPE, circles -~ metal walls, open symbols— con-
fined TW, solid symbols - stationary convection, triangles — full
TW for PP walls, crosses—full TW for HDPE walls. (b)
Frequency ratio w/w; as a function of ¢ for confined TW at
¢ = —0.058. wy=4.9 is the neutral frequency.

threshold, AT (exp), is shifted toward higher and
higher temperature differences (see fig. 19(a)) due
to the boundary conditions or aspect ratio
variations. Thus the nonlinear behavior of the
confined TW is independent of the location of the
experimentally measured onset, AT.(exp). Third
conclusion is that the transition from the confined
TW branch to saturated TW which corresponds to
the transition from convectively to absolutely
unstable conditions, occurs at the same value of e
independent of the boundary conditions and of
the cell length in agreement with the theoretical
prediction [34, 35]. Quantitative verification of this
important result of the theory was performed over
a wide range of ¢ between —0.005 and —0.078
and for various cell lengths and lateral boundary
conditions [72]. The results are presented in fig.
20. The experimental value for s* at which the
transition occurs is independent of ¢ as predicted
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Fig. 20. Non-dimensional group velocity of TW at the transi-
tion from the confined branch to full TW, s*, as a function of
Y. A typical error bar is shown,

and 1s equal to 1.57 + 0.07. Since the observed
bifurcation to oscillatory convection is subcritical
unlike the supercritical one considered by the
theory [34], one cannot expect exact quantitative
agreement with the predicted value or s* but the
existence of a sharp selection criterion 1s indeed
apparent.

Another possible consequence of the convective
instability condition is the experimentally observed
wavenumber selection on the confined TW branch.
Since the confined state 1s considered as a front-
type solution of the amplitude equation, one could
expect to see evidence of wavenumber selection as
a function of e along the branch [51, 79-84]. It is
known that this is one of the characteristic features
of the front-like solution. Theoretical calculations
for GGL equation gives the selected wavenumber
determined by eq. (2).

First we note that the observed wavenumber, k,
for a particular value of € 1s not constant along
the length of the cell. This is illustrated in fig. 21
where we show the wavelength, A, as a function of
the position along the cell. The dependence of A
on the cell position presented in the figure is fairly
typical for any confined state we observed, and is
independent of the exact value of ¢ or €. This
behavior 1s also seen for cells of aspect ratios
I'=12 and I'=20. In general we find that k
becomes larger as one moves away from the end
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Fig. 21. The wavelength, A, of a confined state as a function
of the position along the cell. The data shown were taken for
y=—0.058, I'=20, and ¢ = 0.015.

of the cell. There 1s a fairly continuous change in
the wavenumber, as observed in the figure, and the
total change in the wavenumber throughout the
cell 1s on the order of 10%. This situation is similar
lo results of numerical sitmulations performed by
Dee and Langer [79] with the Swift-Hohenberg
equation for the case of a moving vortex front
propagating into an unstable conduction state.
The authors observed a jump to a value of k that
was about 10% higher than the value selected in
the bulk after the front was past. Similar
observations were made experimentally in the
vortex-front propagation experiment [51], but in
both cases the wavenumber of the state
immediately behind the front was fairly constant.
It is conceivable that the increase of the wavelength
near the wall i1s an effect due to the boundaries.
In order to verify wavenumber selection we
used an average wavelength calculated by
averaging over the rolls in the central region of the
confined state. The validity of this procedure was
checked by comparing plots such as those shown
in fig. 21 for different values of €. It was found
that the entire plot was, in general, shifted as a
function of € so that the “stretching” or
“compression” of the wavenumbers observed at
the state’s ends apparently depends only on the
average wavenumber of the state and 1s not €
dependent. The results of this analysis for a cell of
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Fig. 22. Dependence of average k/k. as a function of ¢ at
= —0.058, I'= 120, and ¢ = 0.015.

aspect ratio I'=20 at ¢ = —0.058 are shown in
fig. 22. The solid line in the figure is the fit of the
data to k/k.—1=(0.405+0.03)e!/%;' (k. =
2.98 + 0.04 1s the critical value of the wavenumber
obtained from the fit). The fit should be compared
with an expression k/k,— 1 = 0.28¢'/°¢,"!
obtained from eq. (2) using ¢, = —5.6 (from ref,
[83]) and ¢, = —0.049 (from ref. [60]). We do not
find quantitative agreement between the observed
wavenumbers selection and the theoretical
prediction, although eq. (2) predicts the observed e
dependence.

An interesting pofnt concerns the value of the
critical wavenumber obtained from the fit. Linear
stability analysis predicts at = —0.058, k_ = 3.11
(ref. [60]) which is in good agreement with the
experimental value of k_ for the linear and the
nonhnear CPW (k_=3.09). The average wave-
number obtained in the blinking state of =
—0.058 lies 1in the range between 2.90 and 2.98
which 1s consistent with the result for the critical
wavenumber obtained from the fit for the confined
TW branch which follows the blinking states. Thus
changes in TW patterns are accompanied by
changes in the average wavenumber, first by a
decrease of about 0.07k, (from CPW to blinking
TW), and then by an increase of about 0.05k,
(from blinking to confined TW), and finally by
continuous growth with ¢ (about 10%) along the
confined branch. We also find that the average
wavenumber of the confined state transcends the

. SE i 1'1

Fig. 23, Senies of shadowgraph pictures depicting the two-
frequency 2 — k state observed for large I' and relatively high
€. Here '=20, {= —0.058, and ¢ =10.028. Lines are drawn
along TW crests to demonstrate the two different TW velocities

In evidence.

modulationally unstable band of states [78] for
relatively large values of e that might lead to
instability of the state. For a large aspect ratio cell
we find that the simple confined state described
above becomes unstable at ¢ on the order of
0.01-0.04 depending on 4.

A sequence of shadowgraph pictures of the new
state with a time interval of 0.64:, between
pictures is presented in fig. 23. (This state is at
Y= —0.58 for a cell with I'=20 and ¢ =0.028.)
One can see that this new state consists of two
separate confined states. Each of these confined
states 1S made up of TW traveling in the same
direction but with separate frequencies. The TW
nearest the wall appears to be a direct continuation
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Fig. 24. A contour plot of two-frequency 2 — k state for Y=
—0.038, I'= 120, and ¢ =0.032. Defect formation at the meet-
ing place of the two confined states is seen.

of the original, simple TW branch seen for lower
values of e. The frequency of this slower state
evolves continuously from that of the simple
confined states lower on the branch. On the other
hand, the TW frequency of the faster moving state
appears unconnected to that of the other slower
moving part and is moving approximately at the
neutral frequency. In fact, at some moments
(transient) CPW can be seen that have formed in
the part of the cell not occupied by the slower
TW. The two separate TW frequencies are
highlighted on the figure by two lines that follow
the propagating crest of a roll on the left of the
cell as well as a roll on the right of the cell. The
difference in the TW velocity of the two sides can
be seen by the difference in the slopes of the two
lines. A more detailed view of the dynamics of this
state can be seen in fig. 24 which shows a contour
plot of a two-frequency state when the time
between lines in the figure is 0.32¢,. (This plot was
taken at the same values of ¢ and I as in fig. 23
for € = 0.032.) The two separate frequencies in the
state can be seen clearly as can the creation of a
defect at the meeting place of the two states. This
defect is formed as a result of the faster state to
the left of the figure, ‘outrunning’ the slower TW
state to the right. The defect is formed when the
roll, caught between the two states, is squeezed
until it becomes unstable. At this stage, the roll
simply disappears in a discontinuous way and a
new, longer wavelength roll is formed at the
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Fig. 25. Contour plot of a 2-frequency state for w = —0.058,
I'=120, and €= 0.027. 70 lines are shown with an interval of
0.32r, between lines. The defect between states of different
frequency can be seen to be migrating to the right of the cell,

intersection. This process then repeats itself. The
formation and annihilation of such a defect can be
seen in the picture sequence in fig. 23. The faster
moving component of the state is not generally
stable and, for a fixed value of heat flux to the cell
will, appear and disappear in time. The slower
moving TW state always remains in the cell.
Another view of this behavior is presented in fig.
25 for € = 0.027. In this figure we present a contour
plot of 70 consecutive lines taken at time intervals
of 0.32¢,. We see the long time dynamics of the
defect that separates the fast and slow TW that
comprise the state. At the bottom of the figure on
the far side of the cell, we see the formation of the
higher frequency state where evidence of the
formation of a CPW state can be seen. The
interface between this and the slower state
eventually forms a defect which then is seen to
propagate through the slower state to the right,
finally leaving the cell. Approximately at that point
the higher frequency state disappears. The state
formed at the top of the picture is not stable and
will eventually evolve to a confined state which
takes up only about half of the cell. At this point
the scenario described in the figure will repeat
itself.

Some knowledge of the dynamics of the two
states shown in fig. 25 is gained by looking at the
corresponding spatial spectrum as it evolves in
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Fig. 26. Spatial power spectra of the data shown in fig. 25.
The wavenumber is seen to increase until the formation of a
defect. At that point the wavenumber is decreased discontinu-

ously.

time. This 1s presented in fig. 26. In the figure, one
can observe a continuously increasing of the
average wavenumber of the state as a function of
time corresponding to a compression of the entire
state. This compression continues until a defect 1s
formed (a roll pair i1s lost) at which point the
entire spectrum discontinuously jumps back to a
lower value of k. At the top of the figure, the
spectrum 1s seen to settle down as the faster state
disappears from the system.

States very similar to those described above
have been observed in numerical simulations of a
single complex Ginzburg-Landau equation by
Nozaki and Bekki in ref. [3]. They explained their
observations as resulting from the competition
between the selection of an initial wavenumber by
way of a front propagation mechanism which 1s in
evidence at the border between the faster pro-
pagating state and the quiescent (conduction) state.
This selected wavenumber, although linearly
stable, can be outside of the band of modula-
tionally stable wavenumbers [78]. In this case, a
different wavelength is chosen by the higher
amplitude state found downstream from the
original front. In their simulations, these authors
found that instead of the entire state choosing one
single wavenumber, a front separating two states

having different wavenumbers and frequencies 1s
formed. This new state can be stable or lead to
chaotic behavior. This depends on both k and the
coefficients of the amplitude equation. This
scenario may indeed be relevant to our exper-
imental observations since a clear difference in
wavenumber 1s also experimentally observed
between the higher and lower frequency states.
The difference in the wavenumbers between the
higher and lower frequency TW is on the order of
5-10%. (The higher wavenumber corresponds to
the state with the higher frequency.) These states
very much resemble similar states observed in
recent experiments conducted in an annular cell
[86].

Recently, the motion and stability of slowly
varying wavetrains described by GGL equation
were investigated theoretically [87]. It was shown
that their dynamics should be governed by a simple
nonlinear wave (Burgers’) equation which can
develop shocks corresponding to rapid changes in
wavenumber. The Burgers’ equation 1s mn fact a
nonlinear phase diffusion equation. This equation
allows the development of strong shocks 1n a
diffusively unstable case in regions where there is
a rapid transition between two wavenumbers
differing by an order of unity. The equation also
allows the development of weak shocks in the
diffusively stable case. This shock has a width on
the order of 1/Ak, where Ak is a difference
between wavenumbers on both sides of the front,
and it moves with a speed ¢ = Aw /A k. The defects,
observed between fast and slow confined TW
states, are probably related to the weak shock. In
other words, basically 1t 1s a rigorous way to
describe dynamics of the modulational instability
of the nonlinear TW. In the next section we will
consider an analogous approach to describe the
transition to spatio-temporal complex behavior in
anisotropic systems.

Finally, we would like to emphasize once more
the importance of preserving the one-dimensional
geometry of the cell in order to observe the simple
scenario and patterns presented above. The only
three-dimensional effects observed were a shight
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curvature of the convection rolls that was
symmetric about an axis along the propagation
direction. The scenario described here for one-
dimensional systems changes drastically, both
quantitatively and qualitatively, when the aspect
ratio along the width of the cell is increased. Even
a variation in the width from 44 to 54 leads to
three-dimensional effects which manifest them-
selves 1n a vast variety of three-dimensional pat-
terns observed (part of them even classified in ref.
[88]). As we studied and reported earlier [37], even
highly nonlinear states remain two-dimensional if
the cell width is kept small in contrast to the
conclusion reached in ref, [88]. It is feasible that
more complicated spatio-temporal behavior re-
ported in ref. [88] is the result of deviations from
the one-dimensional geometry of the cell. Particu-
larly, as suggested in ref. [88], aspect ratio depen-
dence of s* (which was checked only for one
value of ) accompanies the appearance of vari-
ous TW patterns before the transition. Moreover,
the transition occurs to the state which consists of
steady rolls [88] and is not the saturated TW as
considered by the theory [34, 35]. Therefore, rele-
vance of this observation [88] to the theoretical
predictions [34, 35] is not clear.

3.2. Defect-initiated turbulence in electroconvecting
nematics

Despite several experimental observations in
convecting binary mixtures which indicate that
instability may be responsible for complex dynam-
ical behavior, we do not presently have convincing
evidence of it. At the same time a uniform TW
state discovered recently [47] in a very thin layer
(about 15 um thick) of electroconvecting nematics
exhibits a simple scenario for the transition to
spatio-temporal incoherent behavior through the
nucleation of topological defects (dislocations)
while the control parameter ¢ increases (here € =
V/V.—1, and V, is the critical voltage of the
electroconvective onset). We would like to empha-
size that we have not yet obtained quantitative

verification of the BF instability theory (which, ip
fact, still does not exist in a complete form). The
specific features of the transition, of the chaotig
state 1tself and spatial and temporal dynamicg of
the scenario are, however, qualitatively describeq
remarkably well by the theory [50]. This defect.
initiated turbulent regime called “topological tyr.
bulence” was studied numerically by the GGL
equation for an anisotropic flow [48-50).

According to the theory [49] there is a funda-
mental difference between one-dimensional ang
two-dimensional systems in their transition to tur-
bulence. In one-dimensional systems in case of BF
instability conditions (or diffusively unstable con-
ditions) the number of unstable amplitude modes
progressively increases. This means that the dy-
namics can be described just by the full GGL
equation, and cannot be reduced to a phase equa-
tion. In two dimensions, the existence of localized
amplitude modes (stable topological defects) al-
lows for a nucleation transition [48—50]. Then
chaotic dynamics of the phase field in a phase
unstable region (at small value of the criterion
which characterizes BF instability) [89] acts as a
noise generator which initiates the creation of
topological defects. Such a spatio-temporal state is
called topological turbulence [49].

We studied the onset of spatio-temporal chaos
which occurs in a uniform TW state. In the middle
of the TW regime the waves are stable up to
€ =0.078 (fig. 27). The regularity of the motion
ceases above this value as indicated by the decay
of the structure functions [47]. This destruction of
spatio-temporal order stems from the creation of
pairs of topological defects. Increasing the voltage
increases the nucleation rate of defects and their
total number. Once created the defects move
through the system before annihilating in pairs.
The disordered TW pattern is characterized by the
presence and interaction of a large number of the
moving dislocations. The scenario is illustrated in
fig. 27. Three sets of pictures from a fixed square
window containing about 20 rolls (i.e. a small
fraction of the cell containing about 2000 rolls)
are shown for 3 values of e. At ¢=0.05 (two
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Fig. 27. Two images of the convection structure obtained at different times at ¢ =
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Fig. 28. Number of defects as a function of time for e = 0.085
(lower) and ¢ = 0.19 (upper curve).

We have counted the number of defects as a
function of time for different values of e¢. Two
examples are shown in fig. 28. The lower curve,
measured at € = 0.085, if very close to the onset of
defects, 1s reminiscent of the intermittent data
presented 1n fig. 4 of ref. [48]. The upper curve
(e =0.19), similar to fig. 1 of ref. [90], justifies the
idea of a statistical description. A theory about the
statistics of defects was presented recently [90]
based on the idea that the probability to create a
defect pair 1s given by €, while the probability to
annihilate a pair is proportional to the density of
the defects squared. These mechanisms lead to a
squared poisson distribution [90].

The histograms (diamonds) based on counting
defects in about 400 pictures for different values
of € are shown in fig. 29. Eight hundred pictures
were analysed for € = 0.19 to reduce the statistical
errors. The agreement with the theoretical curve
(solid line) is very good.

4. Discussions

We presented in this paper experimental results
which basically can be understood qualitative and,
In some aspects quantitatively, by using GGL
equations which take into account effects of pat-
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Fig. 29. Histogram of the defect statistics for different values
of the driving voltages €. The solid line 1s the corresponding
squared poisson distribution. The poisson distribution (dashed
line) 15 shown for comparison. The inset shows the mean
number of defects as a function of €.

tern translation and modulational instability of
TW.

We reported on a sequence of TW patterns and
their spatio-temporal behavior, observed as € in-
creases, In convecting binary mixtures in one-
dimensional cells. Although the theory describes a
supercritical bifurcation [34, 35] unlike the subcrit-
ical one studied experimentally [36—41], the theory
gives a remarkably precise and qualitative picture
of spatio-temporal behavior of TW. Besides asym-
metric CPW which we did not observe, probably
due to lack of resolution, all other independently
predicted TW patterns were reproduced experi-
mentally. Moreover, we verified experimentally the
criterion of the transition from convectively to
absolutely unstable conditions that shows up as
transitions in observed TW patterns. This transi-
tion which does not depend on the value of ¢,
lateral boundary conditions, and the length of the
cell, occurs at a smaller value of s* than expected
by the theory [34], probably owing to the subcritl-
cal nature of the experimental bifurcation. Two
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basic nonlinear TW states which we studied (CPW
and blinking) exhibit frequencies which are close
to the neutral frequency of the linear TW. Since it
was suggested that perturbation of the linear con-
centration profile is directly related to this devia-
tion, one expects that these states can be described
by a perturbative theory. The third nonlinear state,
confined TW, shows a frequency 2-3 times less
than the neutral one. The theory however ade-
quately describes its dynamics, including the tran-
sition from this state to strongly nonlinear
saturated TW. We therefore concluded that the
confined TW is a weakly nonlinear state. We
found that the confined TW is independent of
lateral boundary conditions unlike two other pre-
ceding weakly nonlinear states. This effect pro-
duces the unusual situation that the hysteretic
region of confined TW depends on geometry and
boundary conditions and may be extremely large
(almost on the order of the existence of the state)
while the hystereticregions of the nonlinear CPW
and the blinking TW are unusually small. Further
theoretical description of these aspects is desir-
able. In fig. 30 we present a summary of regions of
weakly nonlinear TW states observed as a func-
tion of ¢. One can see from the data that, as
already shown, only s * appears to be independent
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Fig. 30. The region of s* observed experimentally. (circles) s*
where the confined TW loses stability (s*) to the full TW
branch; (squares) values of s* where the confined branch loses
stability to either conduction or to the blinking state; (crosses)
values of s* corresponding to AT (exp)- Weakly nonlinear states
were observed when these points went above the points repre-
sented by the squares.

of . The region of existence of the confined TW
increases for decreasing value of . There is no
further selection mechanism in s* from the con-
fined state to the blinking TW or CPW states. As
we emphasized the region of existence of the
blinking TW and nonlinear CPW depends on ¥,
on the cell length, and on the boundary condi-
tions. Since we present data for different cells all
these factors were changed. The same is true for
the convective onset. The largest experimental val-
ues of s* were attained for values of  where
blinking TW and CPW states were observed.

Thus we confirm experimentally that in a finite
one-dimensional geometry cell the convective na-
ture of TW instability leads to very elaborate
spatio-temporal pattern behavior. We also present,
however, several observations which cannot be
explained by the simple effect of pattern transla-
tion. We suggested that the long term temporal
modulation of wavenumber spectra of blinking
TW and shock-like patterns in the confined TW
can be related to the modulational instability
of TW.

Much stronger evidence for the manifestation of
the BF instability has been presented in the case
of TW 1n nematics. Numerical simulations of the
GGL equation for an anisotropic flow [50] show
spatio-temporal pattern behavior strikingly similar
to the experimental results presented here. Further
studies are necessary to make this comparison
quantitative.

3. Summary

We have presented experimental results on spa-
tio-temporal pattern behavior of nonlinear TW in
two experimental systems. Experiments on con-
vecting binary mixtures in one-dimensional geom-
etry cells were devoted to the study of the
influence of the convective unstable nature of the
propagating waves on spatio-temporal pattern be-
havior. Most of the experimental observations are
remarkably well reproduced by recent calculations
based on coupled Ginzburg—Landau equations
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with real coefficients and with the translational
term.

Experiments on TW in electroconvecting nemat-
ics exhibit a simple scenario of defect nucleation
at the transition to complex spatio-temporal be-
havior. The surprising similarity of spatio-tem-
poral behavior shown by numerical simulations of
GGL equation to the experimental observations,
suggests that this defect-initiated turbulence is a
direct manifestation of BF instability. Thus, it is
probably a first step towards universality in spa-
tio-temporal turbulence.
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