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NTRODUCTION

It has been shown theoretically (Riecke et al. 1988, Walgraef 1988),
at in a system exhibiting a supercritical Hopf bifurcation a temporal
wdulation of the driving force with a modulation frequency w, of about
fuble of the Hopf frequency can stabilize standing waves (SW). An
f#iperimental verification was presented (Rehberg et al. 1988) for the
tlectro-hydrodynamic convection of liquid crystals, where the driving
i voltage is modulated as V(t)= Veecos(wet)+[1+e+brcos(wy*t)], with b
®ing the modulation and & the reduced driving amplitude. The theoretical
wdel is very similar to the one describing parametrically excited waves
wich are known to exhibit Benjamin-Feir turbulence that is characterized
iy a transfer of energy from the fundamental Fourier mode to the side bands
lraik 1985). When increasing € for a constant modulation amplitude b the
sipplified theoretical model predicts a supercritical bifurcation from SW
wmodulated traveling waves (TW). In the experiment SW become unstable via
¢ different mechanism which we clarify here. The scenario includes the

ipearance of the sideband instability, defects and stable undulated rolls
of a very short wavelength.

RANSITION FROM STANDING TO TRAVELING WAVES

The solution describing a system of traveling waves can be written as
ux,t)= hl[K,T]-exp[i-[qb-x+wh-t}] + Aa (X, T)+exp(i+(g.*x-w.*t)) + c.c.

Mere u(x,t) describes one of the observable quantities and A, and A, are
the slowly varying amplitudes of the left and right TW, respectively. The
fast variable u(x,t) is translational invariant (x » x + d) and has
reflectional symmetry (x - -x). Using these symmetries the normal form

talld for small amplitudes near a supercritical Hopf-bifurcation is (loss
1987) :

OAy = [(u+iv)-(1+iB) A |2-(8+iy) |A|2]A; + O(A,S)
d¢hz = [(p-1v)-(1-iB) |A3|2-(8-iy) | Ay |2]1A; + O(A,S)

ll

s long as 8 > 0 left TW or right TW are stable with respect to SW.

when the driving frequency is time modulated with the frequency wy=
tu, the system acquires a new invariance under the transformation

t+t + 2n/w, and leads to a linear coupling between A; and A, proportional
0 the modulation amplitude b:
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GtAr = [(p+iv)-(1+iB) |A1|?-(8+17) |Az|2]1A; + AA, + O(A,5)
Az = [(p-iv)-(1-iB) |Az|2-(8-17) |A{|2]As + AA; + O(A,S) (1)

where the phases have been chosen adequately to make A « b real. For A #0
the simple solutions of this equation are SW or modulated TW instead the TW
solutions.

In large aspect ratio systems long wavelength perturbations can
destabilize the coherent pattern. Spatial derivatives have to be added to
(I) in order to describe this (Fauve 1987):

(By+s8,)A, = [(p+iv)+(@+in) 8y = (1+1B) | A 2= (8+iy) | Ap |21 A, +2AL+0(A,S)
(8e-58x)Ax = [(p-1v)+(@-1m) 8~ (1-1B) |Ax|2-(8-1%) | A, |2]As+AA,+O(A,S)  (II)

The linear stability analysis of (I) around the trivial state A=Ayl
shows a Hopf bifurcation at p=0, A2<p? leading to modulated TW:; and a
steady one at p2+v2=A2, A2>p2 that gives rise to SW. One can also see that
at an £>0 for A%>v? the SW become unstable against modulated TW along &
threshold line of cubic order in e. This transition could not be seen in
the experiment. This is understandable when a stability analysis based on
the more realistic model (II) is done for long wavelength perturbations. It
turns out that the SW become unstable against spatial modulations before
the transition to temporally modulated TW occurs. This kind of instability
is called sideband instability since it destabilizes the Fourier modes
close to the critical one. One example of sideband instability for a steady
bifurcation is the Eckhaus instability in a dissipative system like liquid
crystals (Lowe and Gollub 1985). Experimentally it was first described in
the case of an oscillatory bifurcation in a conservative system, namely
trains of water waves propagating downstream from a wavemaker (Benjamin and
Feir 1966), thus the name Benjamin-Feir instability (BF) is also used for
this instability.

An example for this situation is shown in the phase diagram (Fig. 1,
from Rehberg et al. 1988). Here along the closed circles the SW become
unstable against a solution with alternating SW and TW even for &
(Fig. 2). This line can be explained by taking into account the effect of
spatial modulations. A good fit of equation (II) to this line was possible
with wvalues of the coefficients of the order of magnitude of the ones
measured by de la Torre Juarez and Rehberg (1989) and in addition the line
obtained for the saddle node bifurcation predicted for (I) fitted very well
with the threshold shift measured for £<0 and A2<y2,

EXPERIMENTAL SETUP

TIhe sample studied consisted of one cell of 15um thickness filled with
Merck Phase V. This is a nematic liquid crystal mixture whose parameter
values are mostly unknown. However most of the ones appearing in the
context of the simplified model (Riecke et al. 1988) could be estimated and
reported elsewhere (de la Torre Juarez and Rehberg 1989). The measurements
presented here were done in a different cell than those by Rehberg et
al. (1988) and de 1la Torre and Rehberg (1989), but all three cells were
filled with Phase V and had 15um thickness, so their behaviour is expected
to be very similar.

The cell has been treated to impose an initial homogeneously planar
orientation on the director field. It was kept inside a thermalized box to
achieve a temperature stabilization of about 0.005 K. It was also herme-
tically sealed in order to avoid impurities to come from outside into the
fluid. This stabilized the values of the bifurcation diagrams over month.
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The measurements were done using a shadowgraph technique (Rasenat et
al. 1989) by illuminating the sample along the direction of the electric
fleld. The data were taken with a CCD camera mounted on a microscope and
digitized by a computer to be stored and treated. The basic treatment
consisted in taking a whole image with a resolution of 512x512 pixels or
sasuring along a line parallel to the initial orientation of the director
of the sample (x-direction).
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EPERIMENTAL RESULTS

The SW state on the left of the instability line shows a well defined
vavelength stable in time as shown in Fig. 3. Here we have averaged the
fourier spectra of the structure along the x direction over 24 periods of
the modulation frequency after having waited for the transient response to
pass. The SW spectrum (down) was made for €=-0.005. The narrow wave number
kak indicates that the structure stays stable in time. At a higher value
of €=0.055 the peak becomes wider and shifted to another wave number. This
roadening appears because now there is no stable wave number and defects
ippear continuously in the structure.

To give proof that this instability is the predicted one, we imposed a
priodic state of the type u(t)+exp(iq.x) as shown in Fig. 3a for e£=-0.005
id jumped into the unstable region, where the spatial perturbations are
sipposed to grow. In Fig. 4 the temporal cvolution of the fundamental mode
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Fig. 3. Time average over 24 Fig. 4. Time evolution in the
modulation periods of stable state (e=-0.005)
the Fourier spectra of of the Fourler meodes:
the pattern in a) the al 2.28d7':; b) 2.37d%
stable SW state at (fundamental mode);
£=0.005; b) the un- c) 2.47d71.

stable state at e=0.055

is plotted in the middle and compared to two neighboring modes. The
resolution of our spectra is Agq=0.03d"!. We are showing as an example the
third next mode in our discrete serie. The time evolution of the same three
modes g, during the transient decay from the periodic structure is shown in
Fig. 5. One can see that while the fundamental mode decreases its
intensity, the modes on the right and on the left of it show a positive
growth factor. This experimental behaviour corresponds clearly to the
definition of a sideband instability.

We measured the structure function (Rehberg et al. 1989) of the final
state resulting after this transients to quantify the properties of the
unstable regime. We made a time average over 512 modulation periods for
constant modulation b=5% and slowly increasing values of €. It shows a
decay in both directions (Fig. 6) and a very interesting additional
property: In the x-direction (perpendicular to the roll axis) above £=0.20
a slight wavelength change. This wavelength shift in the x-direction is
correlated with the appearance of finite periodicity in the y-direction.
For £€=0.02 and 0.03 the wavelength parallel to the roll axis changes fron
about 36d to 30d, and above £=0.04 makes a big jump into values of the
order of magnitude of 8d. This corresponds to a spatial structure of
Zig-Zag rolls of a very short wavelength. The spatial structure of this
solution is shown in Fig. 7 where 7a corresponds to SW with normal straight
roells, 7b corresponds to the instability where the defects start to appear,
and a short wavelength sets in in the y-direction. In Fig. 7c¢ one can see
the stable structure corresponding to the high wave number Zig-Zags.
Further measurements demonstrating the relationship between these two
instabilities are in progress.
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