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Amplification of Thermal Noise via Convective Instability
in Binary-Fluid Mixtures.
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Abstract. — In the convectively unstable regime of a binary-fluid mixture in a quasi-one-
dimensional ramped convection channel an erratic spatio-temporal behaviour of very small
amplitudes is observed. These patterns are interpreted as the amplification of intrinsic noise.
Their measured temporal correlation functions are compared with the theoretical ones obtained
from a Ginzburg-Landau equation containing a noise term. The measured intensity confirms the
assumption that the fluctuations are due to thermal noise.

The influence of thermal noise on hydrodynamic instabilities, a problem of fundamental
interest, has already been considered theoretically about 20 years ago[1,2]. One of the
predictions, a critical divergence of the fluctuation intensity similar to phase transitions in
equilibrium thermodynamics, was considered as being too small to be observed directly (*).
Thus some kind of amplification is necessary for an experimental observation. One method
uses the exponential growth of fluctuations beyond threshold and has been applied in the
case of stationary thermal convection [4]. Here we present measurements for travelling
wave (TW) convection in a water-ethanol mixture [5-13], where the system offers an
imtrinsic amplification effect, namely the so-called convective instability [14].

The convective instability can be explained by using a linearized one-dimensional
Ginzburg-Landau equation [15]

To(0, + 83,) A = A + 55(1 + ic;) 92 A, (1)

which describes the slow modulations of a small-amplitude TW near threshold. x is the
horizontal dimension perpendicular to the rolls and ¢= (AT — AT.)/AT, measures the
distance from the critical temperature difference AT, where convection sets in. For the case
where side wall effects are negligible the coefficients have all been calculated from the
underlying fluid equations [12, 13]. A linear stability analysis of eq. (1) for an infinite system
shows that the trivial solution A =0 is stable for ¢ <0, convectively unstable for 0 <:<g¢,
and absolutely unstable for e>e¢ with & = (87/25)%(1+c?)[14]. In the convectively

(") In nematic liquid crystals a direct observation is possible, see ref. [3].
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unstable situation a small local disturbance will increase in time, but is carried away by the
group velocity s sufficiently fast to decay locally. Upon reaching the absolute instability
point any small disturbance will increase locally—convection necessarily starts in the whole
system.

In a finite system one usually cannot reach ¢, because the reflection of the TW from the
sidewalls leads to an instability at some ¢, <¢,. For not too small reflection coefficient r one
finds &, = — s7; In (r)/I (diffusion and dispersion effects, which will decrease ¢,, are neglected:;
[ 1s the length of the cell) [10]. For conventional experimental situations (I = 20, r = 0.4) and
the separation ratio ¥'= — 0.13 one finds ¢, = 0.01 (while ¢, =0.1) [12], and in an annulus [8]
¢, = 0. In our experiment we measure ¢, = (.06, which is obtained by a special shape of the
convection cell leading to a very small reflection coefficient. Thus we can work at relatively
large = without becoming absolutely unstable, and here the amplification of disturbances
enables us to observe very small convection amplitudes.

In order to prevent three-dimensional effects, we use a thin convection channel which is
cut out of a copper plate of thickness 1.5 mm [16, fig. 1]. Its homogeneous part has a height
of d =3 mm and is 18 mm long (x-direction). Adjacent to this central part parabolic ramps
decrease the height of the channel from 3mm to 1 mm over a length of 26 mm. These
suberitical ramps decrease the amplitude of the waves travelling into this ramp leading to
r=10.005. The bottom of the cell is heated electrically and the top is kept at a constant
temperature by a water circuit. The applied temperature difference AT is stable within
+0.001 K. Our working fluid is a mixture of 16.98 wt.% of ethanol in water at a mean
temperature of about 30°C (Lewis number L =0.009, Prandtl number P =10, ¥=
= —0.13) [17]. We measure the lateral temperature fluctuations using this shadowgraph
technique by illuminating the cell from the side and taking the average of the light intensity
over the vertical dimension. The light intensity modulation is then proportional to A |.

In binary-fluid mixtures, one usually deals with a backward Hopf bifurcation [5, 11, 13].
This leads to the hysteresis shown in fig. 1. Here the amplitude of the convection is plotted
as a function of AT. With increasing AT, stability is lost with respect to overturning
convection at AT = 10.61 K (¢ = 0.058), and by cooling down the convection vanishes at the
saddle node at AT=9.61K (¢=—0.042). The important feature is the fact that this
convection onset is well above the convective instability point AT =10.03 K (¢ =0, small
arrow in fig. 1), which has been measured by determining the growth rate of a small heat
pulse [18, 19]. (The branch inside the bifurcation diagram refers to stable confined states,
which will be discussed in a further publication [19].)

To demonstrate the nature of the convective instability, fig. 2 shows a time series of the
convection amplitude after a heat pulse has been applied to the system at ¢ = 0.028. To this
purpose we put an electrical resistance on the outer glass of the cell at x = 6.5d, well inside
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Fig. 1. - Bifurcation diagram. Squares correspond to increasing AT, triangles to decreasing AT and
crosses to stable confined states. The convective instability point ¢ = 0 (AT = 10.03 K) is indicated by
the small arrow.
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Fig. 2. — Spatio-temporal response to a heat pulse (¢ =0.028). x=0 is the middle of the cell. The
homogeneous region extends for |x| < 3d.

one of the ramps. The increase of the amplitude due to the unstable situation and the
broadening of the pulse due to dispersion can be seen clearly. The spatial decrease of the
amplitude due to the ramp at x< —3d and the small reflection coefficient r are also
demonstrated. With similar pulse techniques we measured r = 0.005 and the position where
the TW are reflected [19].

The new feature presented here occurs in the range between the convective and the
absolute instability point where we observe irregular spatio-temporal behaviour in the form
of TW. They are of extremely small amplitude (between 0.01% and 1% of the fully developed
convection on the upper branch of fig. 1) and consist of waves which increase in amplitude
due to the convective instability while travelling through the cell [16, fig. 3]. Thus the
amplitude of leftward TW is larger in the left part of the cell, but hardly detectable in the
right part, where the rightward TW dominates. While the amplitude and the spatio-
temporal coherence of those structures increase with increasing ¢, the frequency of the TW
stays nearly constant at the Hopf frequency (28.5 s/period). This state is not a transient, in
our longest run it persisted without qualitative changes for about ten days. Figure 3 shows
the envelope of the appropriately filtered light intensity signal of such a state for ¢ = 0.051 at
r=+3d where the amplitude is amplified the most by the convective nature of the
instability. The upper (lower) curve has been measured in the left (right) part of the cell,
where the intensity is basically determined by the leftward (rightward) TW, while the
rightward (leftward) TW has a hardly measurable, but finite amplitude. We found no hint of
a regularity for the occurrence of the bursts, although they seem to have some typical
lifetime. Also there is no correlation between the bursts on the left- and right-hand side,
which indicates that this state is different from the «blinking state» observed in former
experiments [7]. Moreover, this lack of correlation indicates that these structures are not
driven by external fluctuations. The possibility that this state is due to a chaotic attractor
seems unlikely since we are talking about very small amplitudes, where only linear
interactions are important. The behaviour illustrated in fig. 3 is qualitatively the same in the
whole convectively unstable regime.
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Fig. 3. — Light intensity measured at r = — 3d (left) and z = + 3d (right) for ¢ =0.051 (AT = 10.54 K).

Fig. 4. — Temporal correlation function of the small amplitude convection for three different . The
squares represent the experimental data and the lines are fits according to eq. (3).

For a quantitative analysis of these structures we measure the time correlation function
C(Af) at x = 3d. To get a theoretical expression for C(At), we consider a linearized equation
(we are looking at very small amplitudes) with a noise term:

(8 +83.)A=—2A+ FB32A+VQF(x, 1), (2)

where \/ QF (x, t) represents external or internal noise and its space-time correlation is given by
(F*(z, ) F(x + Ax, t + At)) = 3(Ax) 2(At) [2]. For simplicity all coefficients in eq. (2) are taken
real. Using Fourier transform techniques one obtains for the temporal correlation [3, 19]

C(At):= (A*(t) At + Ab)) cos (wAl) = Q/(87, %, a') cos (wAt) -

[ ] | J.- .
[EKP F’ ]Erfc (\/ 2 V At E“) + exp \‘— “'?—1 Erfc( ?: -% Ji_z tﬂ)} . (3)
1 1 ]

We introduced the times f, = =,/x and t, = 5,/(sz'?), which measure the decay of a spatially
uniform and a spatially modulated state, respectively. The term cos (w At) must be included
to represent the rapid oscillation due to the Hopf frequency.

Equation (2) deseribes a transition, where the intensity Q/(87,% «'?) and the times t; and
t, diverge at x=0. In our measurements this is the case at AT,, so we have to set
x = (AT, — AT)/AT, in order to model our experimental situation. This is necessary to deal
with the absolute instability, which forces the nonlinear convection to occur at = =0 rather
than at = =0. The numerical values of the coefficients =,, s and %, are expected to be only
slightly shifted compared to the ones in eq. (1). One sees that by including spatial degrees of
freedom one gets a nonexponential decay of the correlation function, even in the case of a
stationary bifurcation (s = 0) ().

(>) By mistake, in[2, eq. (5.46)] an exponential decay was presented (R. Graham, private com-
munication).
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Figure 4 shows the measured correlation function scaled to 1 at At = 0 for three different
¢, together with a fit according to eq. (3). For large =(0.055) this yields a nearly perfect
cosine with the underlying Hopf frequency, while for decreasing ¢ this function becomes
more noisy and decays faster in time. Figure 5 shows the results of the fits as a function of
AT. The values obtained for ¢, and ¢, are plotted together with a fit to the expected power
laws, namely 2™ and «!?. This yields r,=~24s and %,/s=~11s, which are in reasonable
agreement with the theoretical values for an infinite system when times are rescaled with
the measured thermal diffusion time of our system [12]. For small ¢ the uncertainties for ¢,
and ¢, become large. This is illustrated in the lower part of fig. 4, where nevertheless the
frequency and the amplitude can be extracted with good accuracy. The frequency « above
the convective instability point ¢ = 0 (indicated by the arrows in fig. 5) stays nearly constant
except for a slight increase with ¢. Below this point the experimental data are harder to
analyse, leading to a larger scatter in w.
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IFig. 5. - Parameters extracted from fits like those in fig. 4 for increasing AT (squares) and for
decreasing AT (circles). The lines are fits to the expected s-laws.

In the lower part of fig. 5, we fit

R=V({A*A)) =\ Q/a"? exp {—Iﬂ EJ

ToS

(solid line) to the measured amplitude, thus taking into account the amplification via the
convective instability by a factor of exp [(x,/7os)z]. This has to be done because eq. (3)
describes the answer of the system to the fluctuations present at the chosen x = 3d, which
are already amplifications of the underlying noise. x, characterizes the mean distance
between the origin of the disturbances (which of course are not expected to have a well-
defined source) and the measurement point. The measured r.m.s.-amplitude R is propor-
tional to the lateral temperature variation in the liquid. Our smallest signal corresponds to
less than 107 K (at ¢ = —0.03). For Q'* we get from this procedure about 2-107° K, while
the thermodynamic fluctuations for a stationary bifurcation in an infinite system with free
boundary conditions should lead to @'2=5-107° K [2]. These values agree reasonably well
taking into account an experimental error of a factor of two and the fact that not all of the
fluid parameters are known accurately. Analog to ref. [2] we have calculated the fluctuations
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for the Hopf bifurcation (still in an infinite system with free boundaries). The results does
not change drastically and we get Q'*=3-10"*K[19].

In summary the amplification via the convective instability is a good instrument to
measure very small temperature fluctuations. The resulting spatio-temporal behaviour is
adequately described by the above-given ansatz leading to two different correlation times
with different critical exponents. The measured fluctuation intensity seems to be driven by
thermal fluctuations.

* ¥ ¥
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