Formation of Patterns in Granular Materials

André Betat!, Christian M. Dury?, Ingo Rehberg!, Gerald H. Ristow?,
Michael A. Scherer', Matthias Schréter!, and Gunther Straiburger!

' Otto-von-Guericke-Universitit Magdeburg, Postfach 4120, D-39016 Magdeburg,
Germany

* Philipps—Universitit Marburg, Fachbereich Physik, Renthof 6, D-35032 Marburg,
Germany

Abstract. In order to study the behaviour of fluidized granular material exper-
imentally and numerically, we propose to investigate pattern—forming processes,
because they can be easily observed and quantitatively characterized. We report
measurements on five such systems, namely pattern formation of granular mate-
rial i) by segregation, under the influence of ii) linear horizontal and iii) circular
horizontal vibration, iv) water shear flow, and in v) a sedimenting suspension.

1 Introduction

Sand, when considered as a continuum, is an unusal one: Under some cir-
cumstances it behaves like a fluid, as is best demonstrated in a hour—glass.
A stable pile of sand, on the other hand, demonstrates the limitations of this
point of view: It does not flow apart. At present, a theoretical description
of these two aspects or related peculiar behaviour of granular matter can-
not be condensed into a coherent theoretical model (for a recent review see
Jaeger et al. (1996b)). In order to describe granular flow, several complemen-
tary methods are currently being used. For sufficiently low densities and a
sufficiently fast motion of the granulate, a hydrodynamic description is possi-
ble. Throughout the last few years, numerical methods have been successful
in modelling the collective behaviour on a limited number of particles. In
this chapter we will focus on those methods, and a number of experiments
suitable for testing the limitations of theoretical models.

All the theoretical models rely on simplifications of the interaction of the
grains. Thus, experimental tests are crucial. For some of the experiments
presented in this chapter, such a test is indeed the primary motivation. The
experimental difficulties of granular matter are due to the uncontrolled sur-
face of the granulate, the influence of humidity, and the uncontrolled charging
of the particles. Considering these difficulties it seems already a challenge in
its own to find paradigmatic experimental systems that are suitable for a
quantitative comparison with theoretical approaches describing granular ma-
terial. The present chapter describes two systems which have this property:
The problem of humidity and charging can either be overcome by using com-
paratively large particles, or by using a suspension of sand in water. Many of



496

the experiments described below were chosen because we feel that they have
a strong potential for clarifying fundamental questions concerning granular
matter. It is not the intention of this article to present an overview of solved
problems, we rather hope that our presentation helps to stimulate further
research.

The paper is organized in the following way: In section 2, we mention
briefly some of the most striking observations concerning the statics of gran-
ular matter. In section 3, some aspects of the dynamics are described. Special
emphasis is given to fluidization, the necessary precursor of dynamical be-
haviour. For fluidized granulate we concentrate on two aspects of the dynam-
ics, namely segregation and the formation of surface patterns. This allows an
elegant approach to measure the quantitites of interest, namely image pro-
cessing. A short overview on the numerical methods used to describe granular
matter 15 given in the appendix.

2 Statics of Granulate

The force distribution in a static arrangement of granular particles is of tech-
nical interest, for example in silos. Here, unlike in a fluid, the pressure at
the bottom of the container is not proportional to the height of the material
resting on top of it, instead it reaches a nearly constant value (Janssen 1895),
because the walls can support the extra weight. This effect also explains to
some extend why the flow rate in a hour—glass is almost constant. The force
distribution inside the granulate has an interesting structure, in particular, it
shows spatial fluctuations. The fact that a worm survives in sand even some
meters below the surface, where the pressure would be much too high for a
fluid-like behaviour, is a manifestation of those fluctuations. Another inter-
esting example is the pressure distribution at the bottom of a sand heap: The
maximum pressure does not seem to be in the middle of the heap, where the
sand is highest. There is no simple way to model this behaviour theoretically:
It is not possible to create a heap from monodisperse spheres, the existence
of the sand heap, and in consequence the complicated force distribution, is
due to the more complicated shape of the sand particles.

3 Dynamics of Granular Flow

The important difference between granular material and the more classical
many-body systems considered in statistical physics is dissipation - the col-
lisions between two sand particles are inelastic. Therefore granular matter is
normally at rest, energy must be supplied to observe dynamical behaviour.
Both in nature (avalanches) and in technical applications (silos) this is often
just gravitational energy. In such cases the flow is only of transient nature
and thus not very convenient for laboratory experiments. In spite of this
nuisance, the sedimentation experiment described below falls into this class.
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Rotation - as in the segregation experiment described below - or vibration
are the most often used methods to supply energy continuously. In particular,
vertical vibration seems to be a popular method (Bizon et al. 1998), while
we concentrate on horizontal vibrations in the experiments described below.
In the third class of experiments we provide the energy to the granulate by
means of rotational shear flow. In all experiments, the external driving has to
overcome a threshold for a transition from a solid-like to a fluid- or gas-like
behaviour of the granulate to occur. We have examined this transition in
detail only for the case of linear horizontal vibration, which will be described
in the following subsection.

3.1 Fluidization of Granular Matter

One of the most fascinating properties of granular matter is their transition
from a solid-like behaviour to a fluid-like behaviour (the so—called fluidiza-
tion, see e.g. Esipov and Pdschel (1997)), which appears when increasing
the strength of external shear or the acceleration of vibration (Clément and
Rajchenbach 1991, Gallas et al. 1992). In most experiments, this transition
seems easy to pinpoint by visual inspection of the granulate. However, a
precise determination is not possible: individual grains do move both below
and above the fluidization point. An objective order parameter suitable for
measuring this fascinating transition from solid-like to fluid-like behaviour is
Nnecessary.

We studied this transition experimentally and by computer simulations for
horizontal vibration of a granulate and proposed two such order parameters,
one based on the so-called granular temperature, the other extracted from the
pair distribution function (Ristow et al. 1997). By using these order parame-
ters, we have been able to determine the scaling of the fluidization point, and
find that it scales with the acceleration of the vibration. This behaviour was
also observed for the threshold of the free surface instability (Evesque and
Rajchenbach 1989) and the spontaneous heaping instability (Clément et al.
1992) in sand piles undergoing vertical vibrations. Interestingly enough, ac-
cording to our numerical simulations, the granular temperature scales with
the velocity of the vibration. We cannot explain this scaling, but note that it
is reminiscent of the scaling for the height of the center of mass of a granulate
under vertical vibration (Warr et al. 1995, Luding et al. 1994), or the scaling
of the granular temperature (Warr et al. 1995, Lee 1995).

The experimental apparatus used for the horizontal vibration of granulate
is described in Ristow et al. (1997). The available amplitude was in the range
of 0 mm — 50 mm, and the frequency was from 0.9 Hz — 4.3 Hz. We used
a channel of 100 mm length in the direction of the vibration, 0.6 mm width
and 20 mm height. The container was filled with granular material consisting
of commercially available glass beads. The particles were close to spherical.
We have developed a method to get rid of the grains which deviate consid-
erably from this shape, by making use of the different rolling behaviour of



498

spheres and non-spherical particles down an inclined plane. The diameter of
the spheres was between 0.52 mm and 0.6 mm. The lower was determined
by sieving, and the upper one by both a sieving procedure and the channel
width. The channel was filled with a monolayer of spheres, and the height of
the granulate was 3-5 particles, i.e. we use about 700 particles. No attempt,
was made to count this number exactly, because the solid-fluid transition
seems to be fairly independent of the exact number. We used two methods
to determine the particle motion.

By the first method the particle motion was measured in the co—moving
frame by a CCD-camera connected to a frame grabber. The camera recorded
the central 40 mm of the channel from the side, i.e. perpendicular to the
direction of the oscillation. 32 snapshots were digitized with a sampling rate
of 25 Hz. We obtained a binary image by giving pixels associated with the
background a value of zero, and pixels associated with a particle the value of
1. In order to characterize the fluidization we subtracted consecutive binary
images pixelwise, and took the mean square of the resulting difference. The
resulting number is called pizel change. In order to obtain a temporal mean
value over about one period of the driving, we took the mean value of about
7 (depending on the driving frequency) pixel changes. The resulting number
1s plotted in Fig. 1 as a function of the vibration frequency of the apparatus,
for a fixed amplitude of 20 mm.

25 ' , . , . : , .
f o o

A fluidized / ,* 7
' g

15 F 3

10 © 1ncreasing frequency A

® decreasing frequency

Ln
I L]

no some

Pixel change (%)

e
T

o 1 2 3 4
Driving frequency (Hz)

Fig. 1. Experimental system: relative pixel change as a function of the external
frequency for an amplitude of 2 em: increasin g frequency: o, decreasing frequency:
e; the solid line is a linear fit to determine the critical point f,.

For low frequencies, the pixel change is zero, indicating that the particles
do not move. Above 2.5 Hz the value increases slightly, which we attribute to



499

the motion of a small fraction of particles. The dramatic increase of the pixel
change around 3 Hz defines the transition to the fluidized phase. Open circles
are drawn when the frequency is increased between the measurements, and
solid circles represent data taken after a decrease of the driving frequency.
One can easily distinguish a hysteresis for this transition. We determine the
critical frequency f. for the onset of fluidization by fitting a straight line
to the supercritical values. Its intersection with the frequency axis yields
fe = 2.9 Hz. The onset of the motion of individual particles, denoted fy, is
clearly below this frequency (see Fig. 7 below).

In the second method a laser doppler velocimeter (Polytec LDV-380) was
used to measure the particle velocity and the velocity distribution parallel to
the direction of the vibration. These measurements served to verify the re-
sults obtained by image processing. The measurements were performed near
the moment of maximal acceleration of the channel. We compare then the re-
sults with those determined by measuring the velocity of a layer of granulate
glued in the channel (i. e.with the velocity distribution caused by finite mea-
suring time and errors in the system). In Fig. 2 the variance of the velocity
distribution is shown as a function of the driving frequency of the apparatus.
The increase of the variance around 3 Hz is caused by the fluidization of the
granulate. This frequency is in good agreement with the one determined by
image processing (Fig. 1). The velocity distribution function itself is asym-
metric. For frequencies above the transition point there are particles with
velocities directed opposite to the driving.
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Fig. 2. Experimental system: variance of the velocity distribution function as a
function of the frequency of vibration for an amplitude of 2 cm.

In order to study granular materials by computer simulations in two di-
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mensions, we represent each particle 1 by a sphere with diameter d;. Only
contact forces during collisions are considered and particles are allowed to
rotate. We use granular dynamics with a linear springdashpot model and
only dynamic friction. The details of the numerical schemes are given in the
appendix. In these simulations we have used a value of 4, = 1 N s/m, which
is sufficiently high so that the shear forces are dependent on u only, and
kn was set to 10° N/m. The rest of the parameters were chosen from the
detailed collision experiments using glass beads by Foerster et al. (1994) as
Yn = 5.75 N s/m which corresponds to a restitution coefficient of 0.75 in the
normal direction and values of u = 0.1 for particle-particle and p,, = 0.13 for
particle-wall contacts. In our model, we dissipate energy in the shear direc-
tion as well, characterized by a restitution coefficient of 0.75. The box length
is 10.08 cm with periodic boundary conditions in the direction of shaking
(x-direction) and contained 343 particles in two layers. We use a polydis-
perse diameter distribution ranging uniformly from 0.52 to 0.60 mm which
corresponds to the beads used in our experimental system.

It is easier to determine the fluidization point in the numerical simulations,
since the position and velocity information of all particles are given at any
time. Noting that the pixel changes in Fig. 1 correspond to particles that
have moved in the laboratory frame, we took as a quantitative measure for
the phase transition in the numerical system the granular temperature, which
is proportional to the velocity fluctuations, Ty = L N Mi(v;— < v >)?
where < v >= & Eil v;. It is averaged over an integer number of full
cycles of the external excitation frequency and shown in Fig.3 as function of
frequency for the same amplitude as used in Fig.1.
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Fig. 3. Granular temperature for the numerical system as function of the external
frequency for an amplitude of 2 cm.
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The error bars are less than the symbol size. T, is approximately zero for
low frequencies and increases monotonically after a transition point which
we estimate in a similar procedure as described above as f* = 1.7 + 0.3
Hz for Ag = 2 cm. The experimental and numerical system both show the
same qualitative behaviour with a well defined transition point. Changing the
restitution coefficient in normal direction in the numerical simulations did not
change this transition point. On the other hand, changing the Coulomb fric-
tion coefficient i has a dramatic effect. Setting it to zero lowers the transition
point by 0.5 Hz and increasing it to one roughly increases the transition point
by 1 Hz as well. We feel that the surface properties of our experimental sys-
tem does lead to a higher value of 4 than measured by Foerster et al. (1994)
which will explain the slight shift. Varying the length of the box size did not
change the transition point.

An alternative measure for the transition point can be obtained by looking
at the pair distribution function (PDF) defined as (Allen and Tildesley 1990)

Gl = % <Y 6 —ryl)> (1)

i JF

It measures the probability density to find a particle at a distance r from
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Fig. 4. Pair distribution function for the numerical system at a shaking amplitude
of 2 cm: (a) at low frequency of 1.25 Hz and (b) at high frequency of 4.25 Hz.
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another particle and is normalized to one for a completely random configu-
ration. Clear double peaks are seen around integer values of r/d (d = 0.56
mm denotes the average particle diameter) when the system is at rest or only
slightly excited, as shown in Fig. 4(a) for Ag = 2 em and f = 1.25 Hz, which
is due to the two-dimensional hexagonal packing. Since only two layers of
particles are present in our numerical system, we do not distinguish between
surface and bulk particles but include all particle pairs in the calculation of
the PDF. For the histogram we used a box width of dr. The height of the
peaks decreases with increasing r because we have a finite system and poly-
disperse particles. If the external excitation is increased, either by increasing
the amplitude or the frequency, the height and the number of clearly visible
peaks decreases drastically, as shown in Fig. 4(b) for f = 4.25 Hz. This tech-
nique was e.g. successfully used to study the melting transition in plasma
crystals (Melzer et al. 1996).
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Fig. 5. Ratio of the second and third peak of the pair distribution function for the
numerical system as function of the external frequency for an amplitude of 2 cm.

In order to quantify the decay of spatial order, we look at the height of the
PDF at r = v/3d and r = 2d, which corresponds to two peaks in the hexag-
onal packing. The latter corresponds to order within the same particle layer
whereas the first measures the order with respect to the neighbouring layer.
In an infinite solid phase, both peaks have the same height, whereas the peak
around r &~ v/3d decreases more rapidly when the excitation is increased and



503

fluidization sets in, see e.g. Fig. 4(a). We propose as second order parameter
the ratio of the heights, measured with respect to the constant background
value of one, of these peaks, denoted by P, /Ps. This is illustrated in Fig. 5 for
a shaking amplitude of 2 cm. A qualitative change of the curve is seen around
f = 1.6 Hz when the nearly constant ratio starts to decrease monotonically.
This change corresponds to the transition point and its value, given by the
intersection of the two straight lines in Fig. 5, is in perfect agreement with
the one obtained using the granular temperature.

The increase with frequency of the kinetic energy or of the granular tem-
perature varies much with the excitation amplitude. All curves collapse onto
one universal curve when they are plotted as function of the dimensionless
parameter I' = Ag(2w f)? /g, where g denotes the gravitational constant, and
the granular temperature is rescaled with the maximum excitation velocity to
the power of 1.66. This might be related to the 5/3 law discussed by Taguchi
(1993) and Ichiki and Hayakawa (1995). Here we use dimensionless quanti-
ties denoted by the superscript s using the average mass and diameter of a
particle and also g, which is shown in Fig. 6 for three different shaking am-
plitudes. It is reminiscent of the scaling of the center of mass of a granulate
under vertical vibration in two dimensional simulations where an exponent
of 1.5 has been found (Luding et al. 1994). The error in our exponent is 0.05.
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In order to find the correct scaling parameter for the horizontal shaking
experiment, we look at a two-dimensional cross section of the system simi-
lar to the one used in the numerical simulation. Since the particles vary in
diameter by only & 7 %, a nearly hexagonal packing is found when the vi-
brations are switched off, i.e. one cylinder in the upper layer rests on two
cylinders from the next layer below. For an estimate of the solid—fluid tran-
sition, one can then calculate the critical acceleration where a single cylinder
would begin to move within the valley formed by these two cylinders to be
a. = g tan 30°. This yields the following scaling of the critical frequency with

the amplitude: f. ~ \/g/Ap.
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Fig. 7. Phase diagram for the solid—fluid transition: experimental points % (fo) and
e (f.) with color scale image of the pixel change (see legend); data from numerical
simulations o with thick solid line as best fit. The thin solid line shows the theoretical
curve.

Fig. 7 summarizes the results of the experimental, theoretical and numer-
ical estimates for the solid-fluid transition. In order to avoid the ambiguity
caused by the rounded transition from a solid to a fluid like state, we present
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the amount of the pixel using a color scale. The transition from no movement
to a 1% change corresponds to the transition denoted fy above. It seems to
agree fairly well with the analytical argument and with the results of the
molecular dynamics simulation. The experimentally determined solid—fluid
transition, denoted f., is obtained at slightly larger values of the driving ac-
celeration. The difference between theory and experiment might be due to
the additional friction caused by the side walls in the experimental setup.

3.2 Segregation of Granular Materials

One of the most puzzling phenomena encountered in granular matter is segre-
gation of a polydisperse mixture of particles. In spite of much work, relatively
little is known about the basic physical processes involved in the dynamics of
the segregation of granular media and many puzzles remain to be solved in
this field. Apart from posing numerous fundamental and difficult questions
from a theoretical point of view, knowledge of segregation is needed for many
industrial applications. The segregation of particles with different properties
1S a ubiquitous process of major importance in areas as agriculture, geo-
physics, material science, and almost all areas of engineering, i.e. involving
preparation of food, drugs, detergents, cosmetics, and ceramics. Segregation
also appears during industrial processes such as drying and coating of gran-
ular material in rotating kilns.

A common feature of all these processes is the dynamical interplay of
polydisperse granular particles. Segregation can be brought about by many
processes including pouring, shaking, vibration, shear and fluidization. For
such systems the random mixed state is not stable and the different particle
types tend to separate. In most cases the particle size is by far the most impor-
tant property controlling segregation and size segregation is observed even in
processes designed for particle mixing (Donald and Roseman 1962, Williams
1976, Bridgewater 1976). However, all these articles describe mechanisms for
the phenomena rather than an explanation of the effects; i.e. they tell us how
the particles move and not why. Size segregation seems to contradict equilib-
rium statistical mechanics since the density of the overall packing decreases
with the amount of segregation, i.e. entropy is reduced by segregation. Segre-
gation can occur whenever a mixture of particles of different sizes is disturbed
in such a way that a rearrangement of the particles occurs; i.e. the mixture
gets fluidized or expanded. There gaps between particles will occur, allowing
a small particle to traverse through whereas for large particles the gaps are
too narrow.

Segregation Driven by Vertical Vibration. A common way to achieve
segregation is shaking in vertical direction, where one can observe the so
called “Muesli effect”. When a box of muesli is shaken, the large nuts and
raisins are moving to the top of the muesli and do not get mixed. In general,
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a large ball placed at the bottom of a vibrated bed will rise to the surface.
This effect occurs even if the large particle is denser than the fine particles.
Two main driving mechanisms have been proposed.

One, for low accelerations is that the granular material becomes dilated
with free volume introduced during each shaking cycle. The smaller parti-
cles fall relatively free; while the larger particle are prevented from doing so
by statistical unlikelihood of collective motion forming such voids. Therefore
the large particle rises and segregates. In this regime, segregation is inter-
preted as the result of competition between independent particle dynamics
and collective reorganizations (Williams 1976, Dippel and Luding 1995).

The other mechanism, preferably for high accelerations, is the formation
of bulk convective flow of the bed particles which, at the same time, carry
the intruder (Knight et al. 1993, Cooke et al., 1996). When the large particle
reaches the top, it is not able to penetrate the top layer to move downwards
with the flow and therefore stays at the top. Boundaries play a crucial role in
initiating and sustaining the convective flow. In this regard, these materials
behave very differently from ordinary fluids where buoyancy forces can drive
convection. Convection appears to be directly linked to the interaction of the
beads with the container wall, i.e. higher wall friction increases convection.

However, in both cases, the size ratio and the time dependence of the
phenomenon is not quite understood. In general, the speed of the segregation
is profoundly dependent upon the vibration frequency. For each system there
18 an optimum frequency for the segregation process, but this frequency varies
from system to system. This is still an unsolved problem and the dependence
of the segregation on the frequency is yet not fully understood (Vanel et al.
1997).

Segregation Driven by Horizontal Vibration. A relatively unexplored
question is the behaviour of particles that are subject to horizontal shaking.
During vibration in horizontal direction convective motion on the surface can
be observed. This can give rise to a “reverse Muesli effect”, where the large
particles, initially, move towards the bottom of the particle bed (Liffman
et al. 1997). In fact, horizontal shaking can produce two sets of convection
cells in a box of granular material. The upper set of convection cells arises
due to surface-wave effects, with material convecting up the side walls and
down at the center of the heap. The lower convection cells move in opposite
direction, i.e., down the side walls and up in the middle of the box. They
arise due to the, gravity induced, downward movement of particles in the
intermittent gaps that form between the heap and the side walls.

This convective behaviour give rise to a “reverse Muesli effect”, where a
large particle placed at the top-center of the pile will convect downwards until
it reaches the upwelling of the lower convection rolls. For “small” heaps, the
large particle will actually reach the bottom. In both cases, the surface-wave
convection may cause a “large” particle to return to the top of the pile.
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Stratification (Segregation by Pouring). Segregation also occurs when
a mixture of particles is poured onto a horizontal plate. A spontaneous strat-
ification appears, with alternating layers of small and large particles parallel
to the surface of the sand pile. Whether this stratification appears only in two
dimensions (Makse et al. 1997) or also in three dimension (Julien et al. 1997)
still needs to be clarified. This mechanism could play a paramount role in the
formation of thick stratified sediment deposits, which can be seen nowadays
in sand stone rocks. Additionally, there is an overall tendency for the large
and small particle to segregate spontaneously in different regions of the heap.

Hopper. In conical hoppers, most of the segregation occurs during the
filling process through flow at the free surface when particles are poured into
the hopper from the top. Small particles will accumulate in the central region
whereas larger particles can mostly be found close to the side walls due to
their higher mobility (Brown 1939, Standish 1985).

Two basic types of motion can be distinguished in hopper: (i) funnel-flow
behaviour where the flow mostly occurs in a central region which might lead
to the formation of rat holes (Johanson 1978) and (ii) mass-flow behaviour
where flow occurs everywhere in the bin which can lead to first-in-first-out
characteristics (Jenike 1964). The latter operational mode can also lead to a
re-mixing of particles and thus reduce segregation.

Radial Segregation in a Horizontal Rotating Drum. Radial segre-
gation in rotating drums takes place on very short time scales (Donald and
Roseman 1962). Usually the drum is roughly about half-filled and rotated
along the cylinder axis about the horizontal (see Fig.8). When the drum ro-
tates, most particles can be viewed as being part of a solid block rotating
upwards. On top of it, a fluidized layer is formed with downward flowing par-
ticles. For a small angular velocity, w, there are distinct avalanches which are
well separated. For increasing angular velocity, the avalanches follow each
other more rapidly and finally exhibit a continuous downwards flow for a
particular range of the angular velocity w. For even higher speeds, the parti-
cles are centrifuged to the drum wall, but no segregation is observed in this
regime. The kinematics of the segregation happens only in the shear flow
along the surface, in that the small particles percolate between the larger
ones in the flow and get trapped by the solid block before they can reach
the cylinder wall. Due to the continuous solid block rotation, a core of small
particles at the center of the drum below the surface flow is formed. This
is commonly referred to as radial segregation. In two-dimensional systems,
this was well observed experimentally (Clément et al. 1995, Cantelaube and
Bideau 1995). Using discrete element simulation one can define an order pa-
rameter, ¢, that allows to quantify the amount of segregation. It can be used
to compare the segregation speed and the final amount of segregation, g, for
different systems and materials directly (Dury and Ristow 1997). The width
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of the fluidized layer plays an important role and it is found that with in-
creasing width, ¢, will decrease since more and more portions of the already
segregated regions will be destroyed again. The segregation speed also in-
creases with the rotation speed of the drum which corresponds to an increase
in width of the fluidized layer as well.

Fig. 8. Picture of the drum looking from the side. The particle velocities are color
coded.

However in three spatial dimensions, radial segregation is more easily to
achieve, since the voids between the particles are connected by a network and
small particles can traverse more easily through it than the large particles,
which will lead to a better segregation. Also in three dimensions, small parti-
cles colliding with larger ones can be deflected parallel to the direction of the
rotational axis and therefore the velocity in direction of the downwards flow
is reduced. Hence the particles have more time to segregate until they hit the
wall (Dury and Ristow 1997). To verify this, an extended three-dimensional
drum was simulated, containing a binary mixture of a total of more then
280 000 of small and large particles having a size ratio of 1.65:1, and a num-
ber ratio of 1:1, see Fig. 8. In Fig. 9, the segregation parameter is shown
as a function of the drum rotations for two different widths of the fluidized
layer. The upper curve corresponds to a narrow layer and shows a very fast
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segregation whereas the lower curve corresponds to a much wider layer and
shows a significantly reduced segregation speed. A clear saturation is not yet
visible but by inspecting a cross-section for the fast segregating system after
two drum rotations, shown in Fig. 10, a nearly complete radial segregation of
the smaller dark particles to the center is clearly visible. These preliminary
results indicate that our hypothesis about the influence of the dimensionality
on the segregation speed seems justified but for a more conclusive judgment,
we have to rotate longer and wait for a saturation of the order parameter q.
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Fig. 9. Time evolution of the segregation order parameter for two different widths
of the fluidized layer; narrow: upper curve, wide: lower curve.

Another point which has been observed is, that depending on the filling
fraction there is also geometrical mixing (Metcalfe et al. 1995) which com-
petes with the radial segregation. For a half-filled drum, mixing is minimal
and segregation should therefore be maximal, whereas for a roughly quarter-
filled drum, mixing is maximal and therefore segregation should be less pro-
nounced than in the half-filled case. This interplay of mixing and segregation
was recently studied numerically (Dury and Ristow 1998). It was found that
the fastest and most complete segregation is achieved for a filling fraction of
about 60% rather than the predicted 50%. This difference can be explained
by the width of the fluidized layer since the numerical work was done in the
continous flow regime.
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Fig. 10. Snapshot after two rotations for the faster segregating system leading to
a concentration of small particles in the central region.

Axial Segregation in a Horizontal Rotating Drum. On the other hand,
axial segregation happens on a much longer time scale than radial segregation.
Axial bands are typically formed within minutes to hours. Also in contrast to
the radial segregation, not all polydisperse systems show axial segregation:
it is still an unsolved question whether a polydisperse mixture of particles
will eventually segregate or not. The phenomenon of axial segregation has
been long known (Donald and Roseman 1962) and an example is shown in
Fig. 11. But the origin of the bands (Nakagawa 1994, Zik et al. 1994, Hill and
Kakalios 1995) and whether they are stable or not (Choo et al. 1997) is still
debated.

Fig. 11. Photo of a 50:50 volume mixture of poppy and mustard seeds after rotating
for 1 hour at 30 rpm. A nearly perfect axial pattern is clearly visible.
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One suggested mechanism builds on the observation that axial segregation
occurs when the smaller particles have a higher angle of repose (the angle
of repose is the angle between the horizontal and the surface of the granu-
lar mixture, Das Gupta et al. 1991). Due to local concentration fluctuations
there will be regions with less small particles and therefore with a lower angle
of repose. Now the larger particles from the neighboring sides with the higher
angle of repose will go into this region and therefore enlarge the fluctuation.
This systematic self-concentrating effect leads to zones with no large particles
and zones with a very high percentage, eventually 100%, of large particles.
Another possible mechanism is due to the percolation of small particles in the
solid block. This might become the dominating mechanism when the radial
segregation has set in. In that case, only few small particles will be present
in the fluidized surface layer and the particle transport of the smaller species
has to go through the radially segregated core. But more work needs to be
done to fully understand the interplay of these mechanisms.

In order to investigate the band formation, we prepared different binary
mixtures, 50:50 by volume, of various round particles, e.g. glass beads, phar-
maceutical pills, mustard and poppy seeds. No band formation could be ob-
served using the pharmaceutical pills and the most stable configuration was
obtained by using small mustard seeds with a diameter of 1.7 mm and pPOppY
seeds with a diameter of 1 mm. The drum was 26 cm long, 7 cm in diameter
and half-filled with the initially well mixed particles. In Fig. 12, we show the
concentration of poppy seeds along the rotation axis in weight percentage.

100

+——# small mustard
- - 2 large mustard

80 |

60 |

40 | ©

bl L
T

20

Weight Percentage [%]

10 15 20 25

Position along Rotation Axis [cm]

Fig. 12. Weight percentage of poppy seeds in a 50:50 mixture by volume with
mustard seeds of different sizes. Axial bands are much more pronounced for small
mustard seeds.
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Two curves are shown: Filled diamonds correspond to the small mustard
seeds and give an average value of 49.7%, whereas the open circles correspond
to the of slightly heavier larger mustard seeds with a diameter of 2.5 mm and
an corresponding average value of 45.7%. For this experiment the drum was
rotated for one hour at 30 rpm and the mixture of small mustard seeds with
poppy seeds shows a very sharp and pure stable 4 band pattern. The mixture
of large mustard seeds with poppy seeds did not show very pure bands, i.e.
the concentration is not close to 0 or 100%, the number of bands is between
o and 6, and was not as stable as the previous combination of the mixture.

Ripple Formation Induced by Water Shear Flow

One of the most obvious examples of pattern—forming systems in nature
are the ripples and dunes formed in sand, either by the wind, by steady
(i. e. rivers) or oscillatory flow (i. e. surface waves). Apart from the basic
instability triggering the ripple formation the dynamic behaviour such as the
travel velocity of the established ripples is not understood.

In order to investigate this transition we have designed an annular shaped
channel which is sketched in Fig. 13. The annular channel has an inner di-
ameter of 292 mm and a channel width of 46 mm. The thickness of the inner
and outer cylinder made of Perspex (R6hm) forming the annular channel is 4
mm. The channel is 60 mm high and is filled with glass beads of 150 — 250um
diameter. The distance between the sand surface and the rotor disk, later
referred to as h, is 18 — 21 mm. The channel walls are made of Perspex and
fixed on a plate of aluminium. This arrangement is placed in an aquarium
filled with water up to 10 cm above the upper edge of the channel. The ex-
periment were performed at room temperature. Above the channel there is a
rotor dish of D, = 290mm diameter made of Perspex which is connected to a
motor and gear unit (Mattke Antriebstechnik). The rotor disk reaches 4 mm
into the channel. The reducing gear (Stéber) with a reduction of 10.3 is used
to have the motor run in the area of smallest wow and flutter. The frequency
of rotation of the motor is set by a controlling unit which is driven via the
serial interface by a PC (90 MHz Pentium). The variations of the frequency
of rotation is less than 0.1% according to the manufacturer. A CCD—-camera
(Sony) fixed in the laboratory frame and controlled by a frame grabber card
(Leutronvision) is observing a window of 100 mm in width and a height ca-
pable of covering the interface curve between the sand and the water flowing
above it. With a constant sampling rate f; = #, the boundary between sand
and water is detected with the help of the gradient in contrast between the
bright sand and the darker water. The parametrized boundary is stored for
the purpose of further evaluation.

In Fig. 14 the dependence of the amplitude, the velocity and the total
number of the ripples on the Reynolds number is given. In order to obtain
these data all measurements were performed with a flat sand surface and
zero rotation of the rotor disk as starting conditions. The rotor is speeded up
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Fig. 13. Experimental setup for water shear flow.

within a few seconds to a certain frequency. This frequency corresponds to
the Reynolds number on the abscissa of Fig. 14 via Re = "T‘—"" Here, u denotes
the maximal azimuthal velocity u = wfD, of the rotor disk of diameter D,
rotating at the frequency f and h is the distance between the flat sand surface
and the rotor disk. The values for the density p and the viscosity p of water
are taken at room temperature. For each Reynolds number we wait for a
time t,, of half a day before starting the data acquisition. The amplitude,
which is plotted in the lower part, is determined by the difference between
the maximal and the minimal amplitude of a ripple (Ap4z — Amin)/2. For
each Reynolds number this procedure is repeated at least 100 times. The error
bars are given by the standard deviation o = + Zil(lﬂli — A)2. The solid
line is a fit of a square root function (expected for a supercritical bifurcation)
to the lower eight data points. The travel velocity of the ripples shown in the
middle part of Fig. 14 was determined from the shift L of two consecutive
boundary curves via a correlation function. As the sample time between two
consecutive data sets is T, one can calculate the travel velocity v = % Again
the error bars give the standard deviation. In the upper part of Fig. 14 the
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Fig. 14. The dependence of the amplitude (lower part), the velocity (in the middle)
and the number of ripples (upper part) on the Reynolds number.

number of ripples along the circumference of the channel after running the
experiment with a fixed frequency of rotation for time ¢, is shown. This
quantity was determined by visual inspection.

On the basis of Fig. 14 we interpret the transition from the initially flat
to the rippled sand surface as a supercritical bifurcation taking place at a
Reynolds number of 6860. We have not been able so far to measure the de-
tails of the transition because the time necessary to establish ripples all over
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the circumference increases rapidly as the critical Reynolds number is ap-
proached. In this regime no velocity data are available because the possibly
very small movement is beyond our experimental resolution. A clearly mea-
surable velocity sets in at a Reynols number of about 9500. This increase
of the speed is accompanied by a dramatic change in the slope in the up-
per curve. We cannot offer an explanation for this observation. The second
transition takes place at a Reynolds number of about 14000, where again a
qualitative change in the velocity occurs and the amplitude saturates.

All three observations need to be investigated in more detail. Qur current
work focusses on the transition from a flat sand surface to a ripple pattern,
however.

Pattern Formation under the Influence of Horizontal Vibration

Fig. 15. Patterns generated during horizontal vibration. Dumping height between
one and three layers of granulate, 25 cm of a channel with a total length of 35
cm are visible, driving amplitude: 2 cm, driving frequency: 4 Hz, material: glass
spheres with different diameters: a) 150um<D<160um, b) 210pm<D<250um, c)
430pm<D<600um.

The behaviour of granular matter under the influence of periodic forces
has so far mostly been studied on systems which are vibrating parallel to
the gravitation field (Melo et al. 1994, Jaeger et al. 1994, Luding et al. 1994).
Only a few works focus on horizontal driven systems. Evesque (1992) and
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Rosenkranz and Poschel (1997) reported about an experiment with horizontal
vibrated granular matter and large dumping heights. Above a given threshold
of vibrating amplitude they observed a small convexity of the free surface of
the pile and a convection flow.

We are dealing with the behaviour of only a few layers of granulate after
fluidization. For a pattern formation under horizontal vibration, which is
stable in space and time, one can use vibrating plates or channels. In Fig. 15
some images of patterns are shown. There are many parameters which may
influence the pattern, e.g. the properties of the granulate, the roughness of the
container surface, the driving amplitude and frequency. The influence of some
ot these parameters on the pattern formation have been studied qualitatively.
We find that already a monolayer or even less than a monolayer of granulate
is sufficient for cluster formation. For a characterisation of the density of the
granulate in such a system we use the “solid fraction” (McNamara and Young
1996). Because of the relatively small number of particles that exist in such a
system it could be simulated numerically by means of molecular dynamics. A
theoretical description with similar approaches as used by Sela et al. (1996),
McNamara and Young (1996), Spahn et al. (1997), and Grossmann et al.
(1997) seems to be possible.

For generating the vibration and capturing the pictures we used the setup
described in section 3.1. As container for the granulate we used boxes at 4 cm
width and with a length between 35 and 47 cm in the direction of vibration.
The container was made of aluminium and had a plastic foil with a rough-
ness of 7 um glued on its bottom. A CCD-camera observed the container
from above, i.e. perpendicular to the direction of vibration. We used grazing
incidence of parallel light along the direction of the oscillatory motion to vi-
sualise the modulation of the surface. When using less than one monolayer
of granulate we illuminate with divergent licht from a point source, which is
perpendicular to the channel, to visualize the fluctuation of the grain density.
For the determination of space-time-diagrams we measure the intensity along
one or more lines of a frame. The measurement can be taken at any stage of
the motion. For time-resolved measurements of cluster formation and cluster
interaction a high-speed—camera (1000 frame/s, 5400 frames) was used. The
material used in preliminary measurements was the same as in section 3.1.
Later we used real granulate (grains of seed) and monodisperse steel spheres
with polished surface.

Influence of the Channel Walls on the Patterns. The influence of the
channel walls can be seen in Fig. 16. The wavelength seems to rise with the
channel width. The channel with the largest width has a wavelength close to
the one formed in a layer that has no contact with the boundaries at all. This
channel width was used in the following experiments, i.e. the influence of the
channel walls parallel to the direction of vibration has only little influence in
our experiments.
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Fig. 16. Influence of the channel-width on the pattern. Driving amplitude: 1.8 cm,
driving frequency: 3.3 Hz. Material: Monolayer of glass spheres, 0.6 mm diameter.

Influence of the Roughness of the Channel. The influence of the surface
roughness was studied by preparing the bottom of the channels with glass
spheres of different radii (Fig. 17). With rising roughness of the surface a
pattern formation was prevented. If the ratio of the radius of the moving
spheres to the radius of the ones glued on the bottom of the surface is around
10, pattern formation occurs. This indicates that the possibility for rolling or
sliding motion of the spheres is a prerequisite for pattern formation. For great
dumping heights only the upper layers of the granulate are fluidized. The
lower layers act as a solid-like surface with the roughness of the granulate
and thereby prevent a pattern formation. The influence of the roughness
on the motion may be demonstrated by “cooling” a fluidized granulate by
decreasing the driving frequency. Fig. 17 shows the patterns consisting of
clusters of a real granulate (grains of seed) in three synchronously vibrated
channels of different roughness after such a “cooling”. A large roughness
hinders the motion in the co-moving system, and decreases the distance of
the clusters observed after the “cooling” process.

Influence of the Driving Amplitude. The influence of the driving am-
plitude on the pattern may be demonstrated by the “cooling” process and is
shown in Fig. 18. The distance of the cluster after “solidification” increases
with the driving amplitude, i.e. with the amplitude of the motion of grains
in the co-moving system. The significant difference in the graphs of the seed
grains and the glass spheres is not surprising because of the difference in all
relevant properties of the two materials. Nevertheless, the behaviour of a real
granulate is not totally different from the behaviour of the glass spheres in
this experiment.
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Fig.17. Influence of the roughness of the channel on pattern. Material: Mustard
seeds (1-2 mm diameter), driving amplitude: 2 cm, solid fraction: 0.44
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Fig. 18. Influence of the amplitude on clustering observed by “cooling”. The images
in the figure are taken from mustard seeds.
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Fig. 19. Influence of the solid fraction on pattern formation. Material: Glass spheres
of 1 mm diameter. Frequency: 4.5 Hz, amplitude: 1.2 cm.
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Fig. 20. High speed images below and above the transition point to clustering.
Material: Glass spheres 1 mm diameter. Frequency: 3.5 Hz, amplitude: 1.2 c¢m.
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Mechanism of Pattern Formation. In searching for a mechanism for the
pattern formation we focus on a 2-dimensional system similar to those in
Fig. 17 and Fig. 18. This means that we use a system with less than one
monolayer. Depending on the solid fraction we have recorded space time
diagrams from the intensity of one line from the images (Fig. 19). We used
gracing incidence for the light. Above a critical value of the “solid fraction”
we observe patterns, which are nearly stable in space and time.

By using an illumination similar to the one in Fig. 17 one can capture
a representative number of single grains. We demonstrate, that the patterns
are periodical changes in the granulate density (Fig. 20). By starting the
vibration with grains distributed uniformly in the channel one can identify the
clustering by comparing consecutive images. Pattern formation (clustering)
starts above a critical value for the solid fraction. Near the critical value the
interaction of clusters is observable. The exact determination of the transition
point from a statistical independent motion to clustering will require the
determination of the local position of the spheres by image processing.

Pattern Formation under the Influence of Circular Vibration

In this section we now extend the above-mentioned linear horizontal vibra-
tion, where stripe-like patterns were found, to an orbital vibration. It is the
typical motion which can be found in the late stages of never—ending boring
dinner conversations. Under such circumstances people often start swirling
their glasses in which some table water, wine, beer or even cognac might be
left. In most cases the performed motion ends up to be an almost perfect or-
bital vibration which is horizontally aligned by the table. For a physicist this
situation yields the advantage that he or she can focus on phenomena that
arise in this kind of driven system. In a cognac glass i. g. gravity driven finger
patterns appear in the region where the evaporated alcohol again condenses.
In the context of this presentation we study a system which is unlikely to
be present after dinner: a granular material. For a thin layer of sand it is
found that it behaves like a solid at low rotation frequencies f;. As f; ex-
ceeds a critical value the granular material fluidizes, which may lead to spiral
patterns as shown in Fig. 21.

To uncover the underlying physics of this system we restrict our exami-
nations to a monolayer of spheres and small numbers of particles N with a
rather large diameter D. Here, we review measurements that were performed
in two different configurations: a circular dish and an annular channel. A tran-
sition where the sense of rotation of the cluster changes due to the number of
particles is found in both: For small N the particles follow the direction of the
swirling motion (rotation) whereas the sense of rotation inverses (reptation)
when N exceeds a critical number. The experimental results are compared
with a two—dimensional molecular dynamics simulation in the case of the cir-
cular container, and with a one-dimensional model for the annular channel.
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Fig. 21. Inverse image of a sand spiral obtained by swirling a thin layer of sand (size
of circular container: 90 mm, frequency of driving: 3.63 Hz, amplitude of driving:
12.70 mm, diameter of sand beads: 50-150 gm, mass of sand: 13.2 g).

Experimental Setup. To investigate the behaviour of spheres under hor-
izontal orbital vibration we used an adjustable reciprocating orbital shaker
(Thermolyne AROS 160). In this apparatus every point (z,y) on the swirling
table moves counterclockwise on a circle in the laboratory frame:

r = Agcos(2m fqt) and y = Ay sin(27 f4t), where Ay is the driving amplitude
of the shaker, fy the driving frequency and t the time. In the following ex-
periments A; is set to two different values: 9.53 mm and 12.70 mm. f, is in
the range from 0 to 4.5 Hz. This kind of orbital vibration yields no center of
rotation and every point feels the same centrifugal acceleration. As can be
seen in Fig. 22, the setup is fixed on a heavy marble table to avoid internal
vibrations. As containers we used a Petri dish and an annular channel. The
Petr1 dish has an inner radius of 45 mm. The annular channel is milled out
of Perspex. The outer radius of the channel is 50 mm and the width 10.5
mm, respectively. A CCD-camera (Sony XC-77RR-CE) on top of the setup
allows visualization of the particle dynamics in the co-moving frame. A ring—
shaped lamp (Schott KL 1500 electronic) and an annular neon light (Philips
TLE Cool White) illuminates the scene. For the investigations in the circular
container we use ceramic spheres of diameter d = 12 mm. The experiments
in the annular channel are performed with precision spheres of different ma-
terials: bronze (10.00 £ 0.11 mm), brass (10.00 + 0.11 mm), Polyurethane



322

CCD-Camera \ /Ring lamp

Spheres =

Neon light
Container

-

/ e
Marble table Orbital shaker

Fig. 22. Experimental setup for circular vibration.

(PUR, (9.85-10.10 mm)) and two types of Soda lime glass (glass): polished
(10.00 £ 0.02 mm) and deadened (10.00 £ 0.02 mm).

Experimental Results for the Circular Dish. We now present results
on the dynamics of the ceramic spheres in the circular dish. A; was set to0 9.53
mm and fq to 2.5 Hz. Fig. 23(a) — Fig. 23(f) show the temporal evolution of
26 spheres in the co-moving frame. The momentary acceleration is indicated
by the white arrow in each image. The arrow is obtained by drawing a line
from a marker (small white cross) through the center of the Petri dish. The
marker is fixed on a glass plate which is stationary in the laboratory frame
and in between the dish and the camera. The position of the glass plate
is adjusted in such a way that the marker circles around the center of the
container when visualized in the co-moving frame. The snapshots were taken
every 80 ms which corresponds to a time interval of (5f4) ™. Thus, Fig. 23(a)
and Fig. 23(f) belong to the same phase of the swirling cycle. By tracing the
position of a single sphere in the cluster one finds that the sphere moves in
the direction of the orbital shaking.



Fig. 23. Temporal behaviour of 26 spheres during one cycle of the orbital vibration
(Scherer et al. 1996). The arrow indicates the direction of the momentary accel-
eration in the experimental snapshots ((a) ~ (f)). The lower six figures ((g) - (1))
correspond to the molecular dynamics simulation. Frequency of driving: 2.5 Hz,

diameter of spheres: 12 mm.



Fig. 24. Temporal behaviour of 37 spheres (Scherer et al. 1996). (a) - (f): experi-
ment, (g) — (1): molecular dynamics simulation.
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This behaviour is observed for all spheres and results in a global rota-
tion of the cluster in the same sense as the external driving. This state we
call rotation-mode. The experimental system has been compared to a two—
dimensional molecular dynamics simulation. For details on the numerical
procedure see the paper Scherer et al. (1996). Fig. 23(g)-Fig. 23(1) shows the
same qualitative behaviour as the experiment.

For a higher number of spheres we observe a change in the dynamics of the
cluster. Fig. 24(a)-Fig. 24(1) show the behaviour of 37 spheres for both the
experiment and the numerical simulation. Here, the spheres move clockwise
despite the counterclockwise motion of the shaking. We call this different
state reptation-mode.

To quantify the dynamics of the cluster we measured the time needed by
a single sphere close to the boundary of the Petri dish to circumnavigate the
container. This gives a frequency of rotation f, as a function of the number of
particles IV. The open circles in Fig. 25 represent these measurements. It can
be seen that when IV exceeds 24 f; decreases. At a critical particle number of
32 we observe a change in the sense of rotation of the cluster. Increasing the
number of particles gives a higher frequency of rotation whereas the motion
again slows down at very high particle numbers. We compare this findings
with measurements obtained by the molecular dynamics simulation. Here,
all positions and velocities of the spheres were taken into account and the
frequency of rotation of all particles with respect to the center of mass of
the cluster was calculated. The measurements are indicated by solid squares
in Fig. 25. For sufficiently small N it shows a good quantitative agreement
with the experimental findings. For small particle numbers the experimental
method for measuring the rotation frequency of the cluster breaks down be-
cause a single particle does not stay close to the boundary of the Petri dish.
It has the tendency to migrate inwards.

Experimental Results for the Annular Channel. In a swirled annular
channel it is found that there exists the same transition from rotation to
reptation as seen in the circular dish (Scherer et al. 1997). Here we present
measurements on the influence of the sphere material and the driving fre-
quency for both modes, rotation and reptation. Figure 26 shows the response
of the frequency of rotation on increasing the driving frequency for a particle
number of 10. At this stage the one-dimensional array of particles is in the
rotation mode. There is no significant influence of the material of the spheres:
fs increases linearly as f4 is set to higher values. In contrast, a cluster of 25
spheres shows a different behaviour (Fig. 27). The array is now in the rep-
tation mode. While increasing the driving frequency the spheres revolve the
channel with a higher frequency. This behaviour does not seem to depend
on the material at low frequencies. But it breaks down when f; exceeds a
critical value of 2.5 Hz. At this stage deadened glass slows down while the
frequency of rotation of PUR still increases.



526

0.8} *= A

06l - = Simulation R
o  Experiment

E{§E§EE§§E§ |

Frequency of rotation (Hz)
-
Mo

*z
0.0 Cea 4
o
En;:*ﬁi#** !
0.2 hd -
1 1 L 1 I
15 20 25 30 35 40 45

Number of spheres

Fig. 25. Frequency of rotation of the cluster (Scherer et. al 1996). The solid squares
show the results of the molecular dynamics simulation, while the open circles rep-
resent the experimental measurements. For a critical number of 32 spheres there is
a reversal in the sense of rotation of the cluster.

To get a closer picture of the dynamics of the spheres we visualize the
trace of the center of each sphere. Fig. 28 shows space—time evolutions for
four different particle numbers. As particles bronze spheres were used. The
amplitude of driving is set to 9.53 mm; the frequency of driving is 2.5 Hz.
The horizontal axes of each image belongs to the space coordinate and the
vertical axes represent time, respectively. Time evolves from bottom to top.
The centers of mass of the spheres appear black. At low particle numbers
(N = 10) we notice that there are almost no collisions. Each particle has a
slow translatory motion which is superimposed by a fast back and forth mo-
tion of the sphere. Near the critical point where the transition from rotation
to reptation (IN = 25) occurs we observe strong fluctuations in the motion of
the spheres. At higher solid fractions the spatial-temporal behavior becomes
more ordered. Fig. 28 gives an example for N = 24. The highest possible
number of particles in this experimental case is N = 28. Here, the frequency
of rotation is very slow; for a limited part of the period of the external driving
the particles even move backwards. The dynamics of a single sphere can be



227

0.08 T T - | - T - ;

o

=)

o
|

¥

0.04

Frequenzy of rotation (Hz)

®  Bronze
; * 0  Brass
0.02 | £ = A Glass, polished  _
v PUR
¢+ (Glass, deadened
0.00 . ' . ' : 1 : 1 L
0 1 z 3 4 2

Frequency of driving (Hz)

Fig. 26. Dependence of the frequency of rotation of the spheres on the driving
frequency for different materials (Scherer et al. 1997). The number of spheres in
the annular channel is 10. The line serves as a guide to the eye.

described by a one dimensional model,
¢+ 1+ esin(¢p — 1) =0, (2)

where ¢ is the position of the sphere in the channel, n an idealized viscous
friction, and e the ratio between the driving amplitude and the distance from
the center to the middle of the annular channel. The time t has been made
dimensionless by multiplication with the angular frequency of the driving.

It can be shown (Scherer et al. 1997, Scherer 1998) that for n/e < 1,
which is the regime of the experimental setup, there exists a solution where
the sphere has a slow drift superimposed by a fast oscillatory part,

2

€ € .
P(t) = 0T '-'?E)t + g sin(¢ — { + arctanmn). (3)

This is in good agreement with the experimental findings. Measuring the drift
velocity of the slow translatory motion and the amplitude of the fast oscil-
lation give two independent methods to determine the coefficient of viscous
friction 7. For bronze spheres, which are swirled with a driving amplitude of
9.53 mm and a driving frequency of 2.5 Hz (see Fig. 28), we have obtained
n = 0.7 for both cases.
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Fig. 27. Dependence of the frequency of rotation on the driving frequency for 25
spheres (Scherer et al. 1997). All curves have parabolic shape except for polished
glass where a cubic fit is more reasonable.

We use Eq. (2) with € = 0.21 and = 0.7 to simulate the behaviour of
many particles' (Scherer et al. 1997). When there is a collision between two
neighbouring particles 1 and 2, we calculate their new velocities v| and vl

from ;
(o) = (5 0) (5): g

where v; and v, are the velocities of both particles before the collision, and v
is the coefficient of restitution. Fig. 29 shows f, normalized by f; as a func-
tion of the number of spheres. The solid squares are the experimental values
obtained for bronze spheres. The simulation starts with elastic collisions,
which means v = 1 (solid circles). In disagreement with the experimental
values, the frequency of rotation does not decrease when approaching the
critical point where we observe experimentally a transition from rotation to
reptation. Only for N = 28 we find a reversal in the sense of rotation. This
behaviour changes dramatically when we set the coefficient of restitution to

! An interactive Java simulation of the numerical system can be found at URL
http://comserv.urz.uni-magdeburg.de/~anp/safe/swirlsim /swirlsim.htm]. Vari-
ous parameters like the coefficient of restitution or the number of spheres can
be varied.
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the case of completely inelastic

Even in

We have tested a collision model where energy d
reducing the relative velocity of both particles and an additional conservation

Spatial-temporal evolution of the centers of the spheres (Scherer et al.
of momentum (Scherer et al. 1997).

1997). The horizontal axes in each image is the space coordinate (0 to 27) while
the vertical axes shows the time (0 to 10.24 s). The number in the upper left corner
denotes the number of spheres in the annular channel. In the upper right corner a
magnified section is given. Material of the spheres: bronze, driving amplitude: 9.53
0.99 (open triangles). Here, we already get the correct qualitative behaviour.
Varying v we find that there is a good agreement for 0.7 (open circles).

collisions we were not able to reproduce the experimental results. This is due
to the fact that not only normal collisions are important for this process. The

mm and driving frequency: 2.5 Hz.

Fig. 28.
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Fig. 29. Comparison of experimental results with numerical simulations of many
particles in dependence of the coefficient of restitution (Scherer et al. 1997). The

experimental conditions are the following: As sphere material we use bronze,
Ag = 9.53 mm, and f; = 2.5 Hz.

tangential shear at the contact points of the colliding spheres has to be taken
into account as well. Thus, the dissipation of energy also depends on the spin
of the particles and the collision process is governed by the absolute velocity
of the spheres as modeled by Eq. (4).

In summary, we have presented measurements on the transition from ro-
tation to reptation in granular material under horizontal orbital shaking. The
experimental findings in the case of the circular dish are in good agreement
with a two dimensional molecular dynamics simulation. This is of importance
for processes in vibrational mills where the same effects occur (Yokoyama et
al. 1996). To understand the underlying physics of this phenomena we have
reduced our system to an annular channel. It was shown that material prop-
erties do not influence the dynamics in the rotation mode. In contrast we
see a strong dependence on the sphere material in the reptation mode. This
suggests that the granular dynamics is governed by binary collisions. We
have confirmed this idea numerically. We first studied the dynamics of a sin-
gle sphere. The results found by analysing a one-dimensional model were in
good agreement with the experiment. A single sphere shows a slow trans-
latory motion on which a fast back and forth motion of small amplitude is
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superimposed. We have used these results to simulate a many—particle situa-
tion. It was found that elastic collisions do not give a transition from rotation
to reptation whereas inelastic collisions confirm the experimental values ac-
curately. The degree of accuracy depends on the coefficient of restitution.

We plan to study pattern forming processes like the spiral seen in Fig. 21.
The experimental results should give a hint on how to model the basic dy-
namics of granular materials.

Pattern Formation at the Interface of a Sedimenting Suspension

In many cases the air between granular particles can be neglected, and the
granulate behaves in the same manner as it would under vacuum conditions.
For reasons of convenience, most experiments are not performed in vacuum,
however, and it is well known that the air might give rise to forces between the
particles. These forces are much stronger if the air is replaced by water. If the
resulting suspension is a dilute one, the characteristics of the granulate might
become totally unimportant. The suspension behaves like a Newtonian fluid
with a slightly increased viscosity, namely the viscosity coefficient increases
by a fraction which equals 2.5 times the volume fraction @ of the suspended
spheres (Einstein 1906, Einstein 1911).

This is no longer true for more concentrated suspensions. Expanding the
viscosity i in terms of @ one finds the coefficient of $* to be dependent on
the geometry of the flow (Batchelor and Green 1972, Batchelor 1977). This
fact also explains why the result of viscosity measurements depend on the
geometry of the apparatus (Patzold 1980). If the volume fraction exceeds
a certain threshold there occurs shear thickening i.e. the apparent viscosity
Increases with the shear rate. In this region, which was first described by Bag-
nold (1954), the suspension is clearly non-Newtonian. All these complications
should be born in mind when interpreting the experimental results described
below, namely the formation of patterns in a sedimenting suspension.

Measurements. The main problem for an experimental setup is how to
prepare the initial situation with the denser material on top of the lighter one,
and with a sufficiently flat interface between both phases. In our experiment
we try to reach this situation by turning a closed Hele-Shaw-like cell around
a horizontal axis (see Fig. 30).

The cell, a CCD-camera and a neon tube are fixed to a frame whose
bottom bar is the rotation axis. This allows image analysis in the co-moving
frame and ensures a homogeneous illumination at every stage of the pattern
forming process. The length of the cell is 160 mm, the height 80 mm and
the width 4 mm, respectively. The cell is filled with 2 g sand (which is a
layer of about 2.5 mm height) and distilled water. As sand we used sieved
spherical glass particles (Wiirth Ballotini MGL) with a diameter range of 71—
80 pm. Its material density is given by 2.45 g/cm?. The cell was rotated by
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fluorescent tube

sand-water—cell

camera

Fig. 30. Experimental setup for measuring sedimentation.

hand. To obtain reproducible results the vertical and horizontal acceleration is
measured by acceleration sensors (ADXL05). When the cell passes a rotation
angle of 170 degree, a light-gate triggers a number of snapshots. This moment
defines the starting time for taking images every 20 ms for later analysis. The
images have a dimension of 256 x 300 pixel. To achieve a reasonable resolution
we focus only on a horizontal length of 61 mm at the middle of the cell. This
gives a resolution of 4.9 pixel/mm. Fig. 31 shows five images of the sand-
water cell sampled in time intervals of 60 ms. The first snapshot shows that
the initial flat sand layer is modulated at small scales (Fig. 31(a)). These
disturbances are enhanced and give rise to sand fingers as seen in Fig. 31(c).
At later stages the fingers evolve to a mushroom-like pattern (Fig. 31(d) and
Fig. 31(e)).

We have applied a threshold algorithm to obtain the water—sand interface.
Starting at the bottom (water) and continuing to the top (sand) we look at
every column of our digitized image to determine the point where the grey
level exceeds a certain value. In this way we track down the interface of the
pattern.



Fig. 31. Sand-water interfaces at a) 20 ms, b) 80 ms, c¢) 140 ms, d) 200 ms, and e)
260 ms after start of the experiment. The diameter range of the sand particles was
71-80 pm, and the total sand mass in the cell is 2 g. The frames show the middle
part of the cell with a horizontal extension of 68 mm.
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Fig. 32. Temporal evolution of the water—sand interfaces. The patterns are detected
every 20 ms and plotted with a constant vertical offset of 1 mm. The experimental
conditions are the same as in Fig. 31

Fig. 32 shows the temporal evolution of the front for the experiment in
Fig. 31. Here the interfaces of all patterns are shown. While our detection
method works well for the patterns during the first stages, namely small scale
modulations and sand fingers, it gives erroneous results for the mushroom-—
like patterns. However, this is not crucial because those patterns are beyond
the scope of the analysis that we want to perform here. A discrete Fourier
transformation (DFT) gives the power spectrum of each interface. Fig. 33
shows the temporal evolution of the amplitude A of a typical mode. It is
seen that A grows exponentially from the first image to ¢t = 200 ms. By an
exponential fit

A(k) = Ai(k) exp(n(k)t) (5)
we obtain the growth rate n for every wave number % in our spectra, where
A; is the initial amplitude.

In order to test the reliability of our experimental setup we have performed
100 independent runs. We only analysed image series for which the time
for rotating the apparatus 180 degrees was smaller than 450 ms. These 42
measurements (average rotation time: 404 ms + 31 ms) were analysed to
obtain a mean growth rate for each wave number.
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Fig. 33. Amplitude A obtained from a DFT-analysis for a typical wave number
(here k = 7 cm™") in dependence on time t. The solid line is yielded by a fit
according to Eq. (5). The data correspond to Fig. 32.

Results. The square dots in Fig. 34 show the measured dispersion relation.
It is seen that the growth rates increase with increasing wave number until
they saturate at larger k. In the case of large wave numbers we did not
obtain exponential fits for all experimental runs. This is due to the fact that
the amplitude is very small and that we approach the limit of the resolution
of our image processing.

An obvious question concerning the underlying mechanism of the pattern
formation in our system is: How do different material parameters affect the
dispersion relation? We have carried out experiments with different values
for the total mass and different size distributions. Using 2 g, 4 g, and 8 g of
sand we observe a small shift of all growth rates towards larger values with
increasing mass of sand. This effect is independent of the wave number. Using
three different size distributions 56-63um, 71-80um and 90-100um we found
that the mean particle diameter does not have any significant influence on
n(k). As a common feature we find the same overall behaviour for all material
sets: The growth rates increase for small k and reach a plateau for larger
values of k.

In an attempt to understand the pattern formation of the sedimenting
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Fig. 34. Comparison of the experimental dispersion relation with theory. The
square dots are the mean values of 42 experiments. The error bars give the standard
deviation of the mean value. The solid line is yielded by a least square fit of the
function obtained by a linear stability analysis.

suspension we considered a two—fluid model, where the suspension is seen
as one fluid with a higher density than water, the second fluid. Within this
model, our experiment is very reminescent of a classical hydrodynamic insta-
bility — the Rayleigh—Taylor instability. It occurs when a more dense fluid is
stratified over a less dense one. The interface between the fluids is unstable,
and the growth rate of a disturbance is a characteristic function of the wave-
length and the fluid parameters. Following this idea, we have compared the
experimentel dispersion relation with the results of a linear stability analysis
of the two—fluid problem (Lange et al. 1998). The suspension is treated as a
Newtonian fluid with a time dependent density, the initial density is set to be
equal to that of the sedimented sand layer. The viscosity of the suspension is
taken as a fit parameter. Under the assumption of vanishing surface tension
a viscosity of about 100 times that of water is found. However, the theory
is two—dimensional, while in the experiment due to the long rotation-time a
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three—dimensional flow ensues, which affects the appearing patterns. In ad-
dition, we feel that there is a strong need of more precise measurements of
the volume fraction of the falling suspension in order to enhance the quality
of the quantitative comparison.

To our knowledge there is only one other publication examining Rayleigh-
Taylor instabilities with suspensions (Didwania and Homsy 1981). These au-
thors were not able to measure any growth rates or dispersion relations.
There are also two—dimensional numerical simulations of a sedimenting par-
ticle front (Manwart and Schwarzer 1998). As the growth law for the ampli-
tudes of the power spectrum the authors find:

(1

Alt) =
(1) at+b

exp(—bt) + ¢ (6)

This result is confirmed by an linear stability analysis where the density
i1s taken to be constant in time. However, for our experimental data the
exponential growth gives the better fit. It is obvious that additional work is
needed in order to understand the nature of the pattern formation during
sedimentation.

3.3 Summary and Outlook

We presented a number of experiments and numerical simulations suitable
for quantitative comparison with theoretical descriptions of granular matter.
Especially in the case where only a few particles were involved, we found a
remarkable agreement with the numerical and analytical models. For most
of the experiments presented here, however, a quantitative comparison has
not yet been achieved. We expect to see a lot of progress within the next few
years especially due to numerical methods. An overview on these methods is
provided in the appendix.
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Appendix: Numerical methods for simulating the
dynamics of granular materials

Since there is no general theory for granular matter, numerical simulations
are a useful tool for investigating idealized systems. Here they can provide
a deeper insight into the systems. In numerical simulations we are looking
for a passage from microscopic laws to macroscopic behaviour, i.e. the pre-
diction of characteristic length and time scales. A big issue is the size of the
investigated system. In order to model a realistic system at least 10° parti-
cles have to be used. Even though granular particles in vacuum only interact
when they collide, since the particles are large enough not to feel the Van der
Waals forces, it is a numerically very intensive job and can only be done with
todays high performance computers. For the dynamics of granular media. it is
essential that the interaction is dissipative and nonlinear. Various numerical
techniques have been developed to address the difficulties in simulations of
the dynamics of granular matter.

Monte Carlo Method

One widely used numerical technique to study particle motions is the so—
called Monte Carlo method. The name stems from the extensive use of ran-
dom numbers in the calculations which are used to find new particle posi-
tions which minimize the potential energy of the system. This method was
introduced into the field of granular materials more than 10 years ago to
study the size segregation of binary mixtures undergoing vertical vibrations
(Rosato et al. 1986, Rosato et al. 1987). Hard spheres were used with a nor-
mal restitution coefficient of zero to avoid an increase in potential energy.
It was successful in stressing the geometrical effects of the process. A scal-
ing law, relating the segregation velocity to the amplitude of shaking and
to the diameter ratio of the particles, was found as well (Devillard 1990). It

also served in testing a segregation model in a ternary system (Rosato et al.
1991).

Cellular Automata

The use of cellular automaton models to study granular materials dates back
to the introduction of the concept of self-organized criticality, where sand
pile avalanche statistics were used as one example (Bak et al. 1987). In these
models space is discretized into cells which have the size of the particles and
can either be occupied or empty. The particle dynamics are modeled by a set
of particle collision rules which apply when certain conditions are fulfilled, i.e.
the local surface angle (slope) exceeds a threshold value. Theses rules were
later refined by deriving them from experiments to study the segregation pro-
cess (Fitt and Wilmott 1992) during particle outflow from two-dimensional
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hoppers. It is also possible to choose collision rules which require the system to
fulfill the Navier-Stokes equations, which is then called lattice-gas automa-
ton (Flekkpy and Herrmann 1993). This seems to be a promising starting
point to model granular materials when the rules are modified to include the
important aspects of gravity, dissipation and static friction.

Method of steepest descent

This deterministic model, which is capable of dealing with a very large num-
ber of particles, was first described by Jullien et al. (1992). It is motivated
by the method of ballistic deposition and should be understood as a toy-
model to study the geometrical effects in granular materials. Particles follow
the path of steepest descent and undergo a sequence of rolling and falling
steps before they reach a local surface minimum. New particle contacts are
treated as completely inelastic collisions. This model was used to model the
segregation process in the growing heap of a pile with an impressive 107 and
more particles (Meakin and Jullien 1992). The original model was extended
by incorporating the exact form of the external excitation by Baumann et al.
(1994) to study particle size segregation in rotating drums and was renamed
bottom-to-top-restructuring.

Molecular Dynamics (Granular Dynamics or Discrete Element
Method)

The aforementioned methods have several limitations: (i) No physical time
scale enters the models since the collision time is assumed to be zero, there-
fore a direct connection of the update time and the physical time is missing
which greatly reduces the scope of these approaches. (ii) These models are
capable to study mostly geometrical effects. To overcome these difficulties
and limitations, another method is most widely used to model the dynamics
of granular materials called discrete element method (DEM) which is essen-
tially a molecular dynamics method including the particle history (Cundall
and Strack 1979).

Here, each particle i is approximated by a sphere with radius R;, sketched
in Fig. 35 and the wall is treated as a particle with infinite mass and radius.
Only contact forces during collisions are considered and, depending on the
material we want to simulate, the particle can or cannot rotate. For an exam-
ple: in contrast to glass beads mustard seeds are slightly aspherical, so they
tend not to rotate easily and the approximation of non-rotating particles is
used. Whenever two particles ¢ and j are closer than the sum of their radii
particle j exerts a force on particle i and vice versa. The total contact forces
can be split up into:

— Elastic, repulsive contact force in normal direction

f§7 = Y (memr, rer) ((Ri + Ry)— | 135 )™
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Fig. 35. Coordinate system during particle-particle collisions.

where Y is the Young modulus of the investigated material and Ir;;| the
distance between the centers of mass of particle i and particle j.
For & = 1 we get a Hooke like force and for e = 1.5 the Hertzian contact
force.

— Dissipation in normal direction

G = —F (Mo, Tert) Vij - 70
Y(mem, resr) is the dissipation coefficient and is determined by the coeffi-
cient of restitution €pes. vij = vi + (wi x 7)) — (v + (w; X (—71))) denotes
the relative velocity of the two colliding particles at the contact point, see
Fig. 35. .
— Frictional forces in shear direction

1. Static friction (with static friction we get a finite angle of repose):

b= “ksf‘rij - 5(t)dt .

For the static shear force, we put upon contact a linear spring between
the two particles which results in a restoring force, i.e. the friction is
proportional to the displacement of the original contact points.

2. Dynamic friction:

fid) = —evii - 8(8) -
This is a viscous friction where the force is proportional to the relative
velocity.
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Both tangential forces are limited by the Coulomb criterion which states
that the magnitude of the tangential force cannot exceed the magnitude of
the normal force multiplied by the friction coefficient . Therefore, if the
restoring force would be larger than Coulomb’s frictional force we switch
to the friction with Coulomb’s Law and we get:

Fohee = sign(fid) min(fg?, | wf3? + £520 1) -

The model parameters (Y, 7, ks(7s), #) have the following physical inter-
pretation: Y is related to the material stiffness, v to the energy loss during
collisions (in experiments measured via the restitution coefficient) and the
pair k¢(7vs) and p controls the energy loss and static friction in the shear
direction, e.g. via the surface roughness (Foerster et al. 1994). Commonly,
is referred to as the Coulomb friction coefficient.

A detailed discussion of the different force laws is given by Schifer et al.
(1996), and a review of different applications using granular dynamics is given
by Ristow (1994).

A technique very similar to the discrete element method are event driven
simulations in which a variable time step is used which is well suited for dilute
systems (Luding et al. 1994).
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