Product quotient threefolds with K^3 <= 4 1) Group: G= <12, 4> Types: T1=[ 0, 2, 2, 2, 3 ] T2=[ 0, 2, 2, 2, 3 ] T3=[ 0, 2, 2, 2, 3 ] Invariants: pg=0, q2=3, q1=0, e=40, K^3=4 and chi=4 Singularities: {* 1/3^^12, 1/2^^44 *} 2) Group: G= <12, 5> Types: T1=[ 0, 2, 6, 6 ] T2=[ 0, 2, 6, 6 ] T3=[ 0, 2, 6, 6 ] Invariants: pg=0, q2=2, q1=0, e=28, K^3=4 and chi=3 Singularities: {* 1/6^^4, 1/3^^10, 1/2^^16 *} 3) Group: G= <12, 5> Types: T1=[ 0, 2, 6, 6 ] T2=[ 0, 2, 6, 6 ] T3=[ 0, 2, 6, 6 ] Invariants: pg=0, q2=4, q1=0, e=40, K^3=4 and chi=5 Singularities: {* 1/6^^8, 1/3^^8, 1/2^^36 *} 4) Group: G= <12, 5> Types: T1=[ 0, 2, 6, 6 ] T2=[ 0, 2, 6, 6 ] T3=[ 0, 2, 6, 6 ] Invariants: pg=0, q2=1, q1=0, e=24, K^3=4 and chi=2 Singularities: {* 1/3^^12, 1/2^^12 *} 5) Group: G= <12, 5> Types: T1=[ 0, 2, 6, 6 ] T2=[ 0, 2, 6, 6 ] T3=[ 0, 2, 6, 6 ] Invariants: pg=1, q2=3, q1=0, e=28, K^3=4 and chi=3 Singularities: {* 1/6^^4, 1/3^^10, 1/2^^16 *} 6) Group: G= <12, 5> Types: T1=[ 0, 2, 6, 6 ] T2=[ 0, 2, 6, 6 ] T3=[ 0, 2, 6, 6 ] Invariants: pg=2, q2=3, q1=0, e=24, K^3=4 and chi=2 Singularities: {* 1/3^^12, 1/2^^12 *} 7) Group: G= <24, 3> Types: T1=[ 0, 3, 3, 4 ] T2=[ 0, 3, 3, 4 ] T3=[ 0, 3, 3, 6 ] Invariants: pg=0, q2=3, q1=0, e=52, K^3=4 and chi=4 Singularities: {* 1/3^^30, 1/2^^12 *}