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Topics

® Introduction

®* Code, Boundary Conditions and Equations
®* The Melt Channel Instability

®* Results

® Conclusions
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Open questions

pure shear / reactive / mech.
simple shear ? channeling

® Could channeling occur in a matrix under a given stress
field?

®* \Which orientation does it take?

® |s it possible to achieve a focussing of melt towards a
Mid Oceanic Ridge (MOR)?

® Does applying different stress fields influence the forma-
tion/orientation of channels?
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Code, boundary conditions and equations

e 2D-Finite-Difference-Code

® |t solves the relevant fluid-dynamic equations (conservation of
mass and momentum, according to McKenzie (84)) for melt
and matrix respectively

® Solving: Stream function formulation and the Compaction
Boussinesq Approximation for the momentum equation

® Simple Shear with no slip at all boundaries
® Pure Shear with free slip at all boundaries
® Simple and Pure Shear with no slip at all boundaries
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Non-dimensionalization

Melt Rayleigh Number

5p9h’
Rm = P
Mo K
Melt "Retention” Number
h2 a2

Dimless. velocity

u = u Mope i

K K

dp density contrast, g gravity acceleration, h box height,  diffusion constant, ng
scaling viscosity, n fluid viscosity, a,b,n geom. factor, ¢ porosity, u velocity, ¢

strain rate
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The Melt Channel Instability

dev. stress
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The non. dim. growth rate o’

From a linear stability analysis of the governing equations,
o' (non.dim.) comes out as

k
2 (1 — ) 29 n,, ay k?
Oé’:,g— nf 0 NO(CLl)

_ k
€0 1+ (nbo + %7780) an0 k2

Nshear = Moe~ '¥ after Kohlstedt 2000

Mbulk = 1M0C1 =2 ; P after Schmeling 2000
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Initial field

Inclined Sine Inclined 1D ellipsoid

100 .
gridpoint

Inclined ellipsoid

100 . 100 .
gridpoint gridpoint

Coordinate system: 0° denotes the vertical, CCW
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Does FDCON reproduce the theoretical o'

n,=Ng dry (McKenzie 84) 6(::7.3

n,=ng dry CBA (McKenzie 84)
r]b((p,cl,cz,effect.) dry 6c=14.7
r]b((p,cl,cz,effect.) dry CBA

r]b((p,cl,cz,intrin.) dry (Schmeling 00) 6C:21.4
r]b((p,cl,cz,intrin.) dry CBA (Schmeling 00)
r]b((p,cl,cz,effect.) wet 6C:9.3
r]b((p,cl,cz,effect.) wet CBA

r]b((p,cl,cz,intrin.) wet (Schmeling 00) 6C:13.57
r]b((p,cl,cz,intrin.) wet CBA (Schmeling 00)
experiments n,=Ng dry CBA SS

experiments n,=const. dry SS

experiments nb(cp,cl,cz,intrin.) wet CBA SS
experiments r]b(cp,c efftiv.) wet CBA SS
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1D Sine ["=1Rtn=05¢=1e — 10

— theoretical : — theoretical
dp =0.1 dp =0.1
—~— dp=1.0 —= 0p=10
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— theoretical : — theoretical
dp =0.1 dp = 0.1
dp=1.0 - jp=1.0
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The effective wavenumber for simple shear
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Superposition of pure and simple shear

?> =2 Rin=05 RmM=00 ¢, =13° e~15
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Simple shear

Rtn=05 Rm=0.0 ¢, =45° e~4
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Simple shear with buoyancy

Rtn=0.5 Rm=2000.0 ¢, =45 e~4
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Application to the Earth

® Plume with power law after 1 Ma
® Sea floor spreading velocity 1 ¢m/a
® Finite strain after 1 Ma = ¢ = 0.05
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Application to the Earth

channel orientation (whole system) [angle]
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Conclusion

®* Mechanic channeling may occur.

® The porosity grows exponentially, with a growth rate

which is proportional to ¢, -

®* The analytical solution of the channeling problem as well as
the simulations show that channeling occurs in an orientation

parallel to the maximum compressive stress for all examined
geometries.

® |n a simple shear regime the analytical solution matches the
1D ellipsoid and 2D ellipsoid bodies, when the wavenumbers
from the theory are divided by a factor off approx. two
(rendering an effective wavenumber).

® |n a pure shear regime an effective wavelength for a 1D
ellipsoid could be specified, but only for elongation +45° from
the maximum compressive stress direction.

®* We did not achieve a focussing towards the MOR.

®* The CBA just influences small wavelengths, and may be
considered when introducing an effective viscosity.
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The End
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