Numerical investigation of the Melt Channel Instability

Hamburg 2004

K. Müller, H. Schmeling

K. Müller, e-mail: kdg@gmx.de

Institut für Meteorologie und Geophysik, J.W. Goethe Universität Frankfurt a.M.

Topics

- Introduction
- Code, Boundary Conditions and Equations
- The Melt Channel Instability
- Results
- Conclusions

Open questions

- Could channeling occur in a matrix under a given stress field?
- Which orientation does it take?
- Is it possible to achieve a focussing of melt towards a Mid Oceanic Ridge (MOR)?
- Does applying different stress fields influence the formation/orientation of channels?

Code, boundary conditions and equations

- 2D-Finite-Difference-Code
- It solves the relevant fluid-dynamic equations (conservation of mass and momentum, according to McKenzie (84)) for melt and matrix respectively
- Solving: Stream function formulation and the Compaction Boussinesq Approximation for the momentum equation
- Simple Shear with no slip at all boundaries
- Pure Shear with free slip at all boundaries
- Simple and Pure Shear with no slip at all boundaries

Non-dimensionalization

Melt Rayleigh Number

$$Rm = \frac{\delta \rho g h^3}{\eta_0 \kappa}$$

Melt "Retention" Number

$$Rtn = \frac{\eta_f \, h^2}{\eta_0 \, k_0}$$

$$k_{\varphi} = \frac{a^2}{b} \, \varphi^n = k_0 \, \varphi^n$$

Dimless. velocity

$$u' = u \frac{h}{\kappa} \stackrel{ps}{=} \dot{\varepsilon} \frac{h^2}{\kappa}$$

 $\delta \rho$ density contrast, g gravity acceleration, h box height, κ diffusion constant, η_0 scaling viscosity, η_f fluid viscosity, a,b,n geom. factor, φ porosity, u velocity, $\dot{\varepsilon}$ strain rate

The Melt Channel Instability

The non. dim. growth rate α'

From a linear stability analysis of the governing equations, $\alpha' \ (non.dim.)$ comes out as

$$\alpha' = \frac{\alpha}{\dot{\varepsilon}_0} = \frac{2 (1 - \varphi_0) \frac{k_{\varphi_0}}{\eta_f} \eta_{s_0} a_1 k^2}{1 + (\eta_{b_0} + \frac{4}{3} \eta_{s_0}) \frac{k_{\varphi_0}}{\eta_f} k^2} \sim O(a_1)$$

$$\eta_{\underline{s}hear} = \eta_0 e^{-a_1 \varphi}$$
 after Kohlstedt 2000

$$\eta_{\underline{b}ulk} = \eta_0 c_1 \frac{c_2 - \varphi}{\varphi}$$
 after Schmeling 2000

Initial field

Coordinate system: 0° denotes the vertical, CCW

Does FDCON reproduce the theoretical α'

1D Sine $\Gamma' = 1 \ Rtn = 0.5 \ \dot{\varepsilon} = 1e - 10$

The effective wavenumber for simple shear

Superposition of pure and simple shear

$$\frac{\dot{arepsilon}_{ps}}{\dot{arepsilon}_{ss}} = 2$$
 Rtn = 0.5 Rm = 0.0 $\varphi_{\sigma_{max}} = 13^{\circ}$ $\varepsilon \approx 1.5$

Simple shear

Simple shear with buoyancy

Rtn = 0.5 Rm = 2000.0 $\varphi_{\sigma_{max}} = 45^{\circ}$ $\varepsilon \approx 4$

Application to the Earth

- Plume with power law after 1 Ma
- Sea floor spreading velocity $1 \ cm/a$
- Finite strain after $1 Ma = \varepsilon = 0.05$

Application to the Earth

Conclusion

- Mechanic channeling may occur.
- The porosity grows exponentially, with a growth rate which is proportional to $\dot{\varepsilon}$, $\frac{1}{Rtn}$.
- The analytical solution of the channeling problem as well as the simulations show that channeling occurs in an orientation parallel to the maximum compressive stress for all examined geometries.
- In a simple shear regime the analytical solution matches the 1D ellipsoid and 2D ellipsoid bodies, when the wavenumbers from the theory are divided by a factor off approx. two (rendering an effective wavenumber).
- In a pure shear regime an effective wavelength for a 1D ellipsoid could be specified, but only for elongation $\pm 45^o$ from the maximum compressive stress direction.
- We did not achieve a focussing towards the MOR.
- The CBA just influences small wavelengths, and may be considered when introducing an effective viscosity.

The End

