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Introduction

= Geochemical analysis of Lavas from Hawaii, Iceland, Galapagos
etc. provide compelling evidence on the heterogenious nature of
mantle plumes.

= Mantle entrainment is the preferred geochemical explanation for
this.

= However: Dynamics of mantle entrainment are poorly known.
= |[mportant questions:

» \Which regions of the mantle are more efficiently sampled by
mantle plumes?

» |s the heterogenious nature of mantle plumes inherited at the
source, or does it develop through entrainment during plume
ascent?

» How is the plume affected by mantle discontinuities?



Part 1. Laboratory Experiments
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Anatomy of a plume

= Most Laboratory Experiments have
used injection of a hot, buoyant fluid
INnto a viscous medium

= "Classic" Plume introduced by Griffith
& Campbell (1990):

» Rapid increase of Plume head
size due to enrainment of
surounding material into the plume
head

» little mixing between plume source
material and surrounding material:
Source material gets thinned to
fillament-like layers that surround
the entrained material, some
source material pools in a
donut-shaped region around the
plume head.

» N0 measurable entrainment in the
plume talil
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Experimental Setup

= S0 far, there's been no systematic
study where the plume is formed by
thermally buoyant material alone.

= Therefore, our setup uses a small
(~2cm diam.) heating element to
iInduce a plume in the lab tank

= The syrup is contaminated with small
glass particles. The experiment is
illuminated by a (roughly) parallel
sheet of light, sampling slices of the
tank interior

= data aquisition is done by CCD
camera and standard Video recording

= The CCD images are processed by a
dedicated particle tracking algorithm.
Through this, flow speed and
entrainment rates are determined.

»
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Initial results... don't match!
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New Model Plume?

= | aboratory work results and Griffith &
Campbell could only be reconciled
after marking the "plume source"
material

= Marking is done by heating up the
heating element to 100+°C, thus
evaporating the water component in
the syrup without caramelising the
sugar component.

= This results in tiny bubbles of steam
rising up in the plume, and being
restricted to the material directly
heated by the heating element.

= Resulting shape in agreement with
the "classic" plume model.




Samples of lab experiments
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Anatomy of the plume - revised

= Lab experiments indicate that there's
little entrainment of surrounding
material into the plume head
(contrary to Griffith & Campbell).

= Also, there's no measurable
entrainment into the plume tail

= The rising plume drags a "plume
sheath" of source region material in
Its wake that rises at roughly the
same speed as the plume.

= Any entrainment happening during
plume ascent is between the plume
sheath and the surrounding material.

= Only after the plume head spreads
out In reaction to the surface
boundary, significant entrainment into
the head is observed.
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Entrainment in lab experiments

= Entrainment measured
through the particle tracking
files: where does a particle
start, where does it end up.

= Not too precise, since limitated
by the particle tracking
algorithm's performance and e
the experimental setup

= Chemical way of measuring
entrainment too costly and
time-intensive
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Part 2 - Numerical Modelling




Lab condition modelling - temperature field:
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Lab condition modelling - particles:
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Comparison of lab and numerical experiments:

= Good, almost perfect match between lab and numerical
experiments.

= "Plume sheath" as pronounced in the numerical experiments as
In the lab experiments

= Both lab and numerical experiments show a remarkably low
plume temperature when the plume reaches the upper boundary
- 3°C - 7°C above the surrounding non-plume material at most,
between 3% and 9% of the original temperature contrast. Thus,
heat conduction does seem to play a bigger part than initially
thought.

= The plume sheath of the ascending plume contains ~15 times as
much material as the plume itself.

= Once the plume is established, the plume sheath thins
considerably, but never completely dissolves



Entrainment in the numerical model
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How are distinct reservoirs sampled during
plume ascent?
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Is there intermixing between the sampled
reservoirs?
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A xy-slice through the plume tail
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How Is the plume source layer sampled?
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In Summary:

= There is no radial transport of material within the plume - material
sampled to the left of the plume axis stays on the left side of the
plume axis during entrainment and ascent.

= The source layer is most effectively sampled. Heterogenities in
the source layer are most likely to affect the plume composition

= Mantle reservoirs are entrained into the plume sheath and/or
dragged along in the wake of the rising plume. Therefore,
material from both the upper and the lower mantle can be
transported to the surface.



Mantle conditions modelling - temperature field
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Mantle condition modelling: particles
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Mantle conditions modelling - how are mantle
discontinuities sampled?
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Summary of mantle plume modelling:

= Good agreement between laboratory experiments, numerical models using lab
conditions and numerical models using mantle conditions.

= The thermal boundary layer of the plume source region is the region most
effectively sampled by the plume.

= As in the lab models, a plume sheath forms in the wake of the plume head and
entrains material all along the plume path.

= Discontinuities in the mantle do not represent a barrier to the rising plume.
They can, however, slow down its ascent, causing a significant thickening of
the plume and plume sheath.

= The mantle regions most effectively entrained are the regions along the mantle
discontinuities (e.g. 660km discontinuity, 410km discontinuity).

= Our melting model shows that only part of the plume head melts, and only a
small part of the material entrained in the plume sheath enters the melting
region of the hotspot. However, there is significant melting even before the
plume head reaches the surface, due to the pressure the rising plume exerts on
the mantle above.



Thanks for your time & attention!



