Large-strain deformation experiments under deep mantle conditions using a rotational Drickamer apparatus (RDA)

Shun-ichiro Karato, Yu Nishihara, Yousheng Xu and David Tinker

Yale University, Department of Geology & Geophysics, New Haven, CT

Rheological properties and deformation microstructures (lattice-preferred orientation, grain-size evolution) in deep mantle minerals are critical to our understanding of global dynamics but quantitative deformation experiments at high-temperatures were limited to ~ 0.3 GPa. To extend this pressure at least by a factor of 50 (i.e., 15 GPa), we have spent last ~ 10 years to develop new techniques of high-pressure deformation ([Karato and Rubie, 1997; Xu et al., 2005; Yamazaki and Karato, 2001]). A rotational Drickamer apparatus (RDA) is a result of this effort by which quantitative deformation experiments have been performed to ~ 15 GPa and ~ 1800 K to shear strains to ~ 2 ([Xu et al., 2005; Yamazaki and Karato, 2001]).

The apparatus is composed of a pair of opposed anvils (with a gasket) inserted in a cylinder. A thin sample is inserted in a sample space together with heater and other materials. After pressurization and annealing (to eliminate unwanted defects), a sample is sheared by rotating one of the anvils. Both stress and strain are monitored by synchrotron X-ray: stress from X-ray diffraction and strain by X-ray imaging using the technique developed by Don Weidner and his colleagues. We have made a number of modifications to adopt synchrotron techniques with RDA. Important modifications include the process of making a disk heater and X-ray transparent electrodes. As opposed to D-DIA where deformation experiments are conducted by the radial motion of anvils ([Wang et al., 2003), anvils in a RDA are supported in a similar way as static experiments. Consequently, deformation experiments can be performed at much higher ($\sim 50\%$) pressures in RDA than in D-DIA if anvils with same material are used as demonstrated by the data ($[Xu\ et\ al.,\ 2005]$). In addition, the maximum strain achieved is much larger for RDA than for D-DIA that has two important consequences: (1) Microstructural development such as lattice-preferred orientation can be studied only at larges strains, and (2) steady-state rheological properties can only be determined when a sample shows steady-state rheology that is achieved (according to our results) only after several 10s%.

The RDA has been used to deform wadsley ite and olivine (in addition to Fe and (Mg,Fe)O). We have shown that a constant strain-rate experiment can be performed to P \sim 15 GPa and T \sim 1800 K, and the first stress-strain curves for wadsley ite and olivine were obtained under these conditions (for olivine to \sim 11 GPa) ([Nishihara et al., 2005]). We found: (1) there is a significant transient period (up to \sim 20-40% strain) after which nearly steady-state deformation is achieved (this implies that results from low strain experiments significantly underestimate the steady-state strength), and (2) wadsley ite is somewhat stronger than olivine (a factor of 2-3) under the conditions so far explored.

References:

Karato, S., and D.C. Rubie, Toward experimental study of plastic deformation under deep mantle conditions: a new multianvil sample assembly for deformation experiments under high pressures and temperatures, Journal of Geophysical Research, 102, 20111-20122, 1997.

Nishihara, Y., D. Tinker, Y. Xu, Z. Jing, K.N. Matsukage, and S. Karato, Plastic deformation experiments of wadsleyite and olivine under the deep mantle conditions using a rotational Drickamer apparatus (RDA): Implications for the rheological contrast at the 410 km discontinuity, Journal of Geophysical Research, 2005.

Wang, Y., W.B. Durham, I.C. Getting, and D.J. Weidner, The deformation-DIA: A new apparatus for high temperature triaxial deformation to pressures up to 15 GPa, Review of Scientific Instruments, 74, 3002-3011, 2003.

Xu, Y., Y. Nishihara, and S. Karato, Development of a rotational Drickamer apparatus for large-strain deformation experiments under deep Earth conditions, in Frontiers in High-Pressure Research: Applications to Geophysics, edited by J. Chen, Y. Wang, T.S. Duffy, G. Shen, and L.F. Dobrzhinetskaya, pp. 167-182, Elsevier, Amsterdam, 2005.

Yamazaki, D., and S. Karato, High pressure rotational deformation apparatus to 15 GPa, Review of Scientific Instruments, 72, 4207-4211, 2001.