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Outline:

• Constraining mantle flow models from geophysical data.

Basic concept, equations and boundary conditions. Available data.

• Inferences of viscosity from the geoid.

Brief history, current state-of-art and limitations.

• Further constraints: Dynamic topography and seismic anisotropy.

Theory and observations.

• Towards more realistic mantle flow models.

Including plate motion, lateral viscosity variations and partial layering.

• Synthetic inversion of geoid, topography and seismic anisotropy data.

• Conclusions



• Constraining mantle flow models

Two strategies:

1. Solving equations of thermal Forward modeling:
convection including parameters ⇒ investigating
and physical relationships behavior of a given
estimated from mineral physics physical system

2. Using geophysical data Inverse modeling:
obtained at the surface ⇒ determining the most
or outside the Earth probable values of

parameters in PDEs
governing mantle flow



• Equations governing flow in the mantle

∇.σ + ρg = 0

∇.v = 0

σ = −pI + η[∇v + (∇v)τ ]

BC(σ,v) at the surface and CMB

ρCp
∂T

∂t
= −ρCp(v.∇T ) +∇.(k∇T ) + ...

ρ = ρ0[1− α(T − T0)]

BC(T ) at the surface and CMB



∇.σ + ρg = 0

∇.v = 0

σ = −pI + η[∇v + (∇v)τ ]

BC(σ,v) at the surface and CMB

+ no time evolution

+ any code (spectral, finite-element,...) can be used

+ body force can be estimated from seismic tomography (ρ ∼ V )

– 3d spherical geometry

– variations of pressure must be evaluated at all density interfaces

– selfgravitation: g = g(ρ, σ)



Inferences of viscosity from the geoid: Basic concept
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Response functions

Case 1: Isoviscous mantle
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Response functions

Case 2: Viscosity increase in the lower mantle
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’Inferences of viscosity from the geoid’: Brief history

• 1930s: Pekeris formulates the basic idea

• 1960s: Theory is developed and used by Runcorn

• 1980s: Structure information obtained from seismic tomography enables

first inversions for viscosity.

• 1984: Ricard et al. and Richards and Hager demonstrate that the ob-

served long-wavelength non-hydrostatic geoid is consistent with a viscosity

increase with depth by a factor of ∼30.

• 1993: Density structure obtained from subduction history is used instead

of seismic tomography data (Ricard et al.).

-100 m 100 m0

SLAB GEOID (degree 2-16) OBSERVED GEOID

Relative viscosities: upper mantle 1, lithosphere 7, lower mantle 30.



• Since 1990: Attempts to incorporate more constraints (plate motion,

dynamic topography, etc.) and a more realistic rheology

• Free-air gravity used as a constraint instead of the geoid (Peltier

et al., 1992).

Geoid:

h =
`max∑
`=2

∑̀
m=−`

h`mY`m

Free-air gravity:

f = (g/R)
`max∑
`=2

∑̀
m=−`

(`− 1)h`mY`m
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• Strong non-uniqueness of the inversion demonstrated (e.g. King, 1995).

• Attempts to include partial layering (Thoraval et al., 1995; LeStunff and

Ricard, 1997).



Problems:

• Whole-mantle flow models with free-slip upper boundary explain the geoid

significantly better than more realistic models in which the observed plate

motion is imposed.

• The best-fitting models are usually characterized by the lithosphere which

is weaker than the lower mantle and by the absence of a pronounced

asthenosphere.

• Whole-mantle flow models predict a correct geoid but usually too big

amplitudes of the large-scale dynamic topography ⇒ importance of partial

layering.

• Role of lateral viscosity variations?

• Inversion of the geoid for viscosity is non-unique: further constraints

needed.



Dynamic topography: Basic concept

Liquid surface

Dynamic topography



Free-slip boundary condition

Predicted traction at the surface Interpretation in terms of topography

Pressure force due to surface topography

ρ σ_
rrF =   gt  = 



BC: free slip

BC: velocity

BC: free slip

BC: V  = 0r

Driving force Dynamic topography

(ii) Imposed plate velocities

(i) Density anomaly (layered flow)

(i) Positive density anomaly



Dynamic topography: Observation

Liquid surface

Dynamic topography
Dynamic topographyReal (observed) topography

Real Earth

crust
lithosphere

mantle

Determining dynamic topography in continental regions requires very good

knowledge of lithospheric density.

1%-error in density produces 1-km error in amplitude of dynamic topography!



Dynamic topography
Real topography

Topography due to
thermal cooling lithosphere

crust

Oceanic floormid−ocean ridge
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-1000 m 0 +1000 m

Panasyuk and Hager, JGR 2000Topography corrected to thermal cooling

• amplitudes of the long-wavelength dynamic topography are probably smaller

than 500 m (but depends on the density of continental lithosphere)

• there is no indication that the dynamic topography is positively correlated

with the divergence of plate motion



Seismic anisotropy: Theory

Anisotropy can be predicted by integrating ∇v along a pathline. Theory for

olivine and enstatite, including recrystalization, has recently been developed

by Kaminski et al. (program DRex, GJI 2004).

Problems:

• anisotropy is produced by dislocation creep ⇒ non-Newtonian rheology

• computation of anisotropy requires integration of ∇v in time

• how long time interval should be used for integration?

• predicted anisotropy is usually larger than the observed one

• importance of small-scale convection and composite rheology?

• computation of anisotropy is time-consuming and requires high accuracy



Seismic anisotropy: Observations

Global model of Debayle, Kennett and Priestly, Nature 2005

Depth 100 km Depth 150 km

Depth 200 km Depth 300 km

• large differences between different seismic anisotropy models

• recently, information on anisotropy in the asthenosphere has also been

obtained from magnetotelluric measurements



Towards more realistic models

Solving the inverse problem for viscosity including:

• partial layering

• observed plate motion

• known structure of lateral viscosity variations in the top 300 km

(continental roots)

• more constraints (geoid, topography, seismic anisotropy)

For preliminary results, see also

Čadek and Fleitout, JGR 1999, and Čadek and Fleitout, GJI 2003.



I. Partial layering

’Layering coefficient’ λ, 0 ≤ λ ≤ 1: SPL = (1− λ)SWM + λSL

UPPER  MANTLE

LOWER  MANTLE

Whole−mantle flow (lambda=0)

UPPER  MANTLE

LOWER  MANTLE

Layered flow (lambda=1)

UPPER  MANTLE

LOWER  MANTLE

SURFACE

’660’

Partially−layered flow  (0<lambda<1)

Radial component of velocity at 660 km: V PL
r = (1− λ)V WM

r



II. BC: Observed plate velocity
prescribed at the base of lithosphere

lithosphere

core

mantle

not included in calculation

flow computed only in mantle 
below the lithosphere

Step 1

Step 2

not included in calculation

Plate velocities imposed at the base

Computing deformation of the lithosphere
due to stresses at the bottom boundary

of the lithosphere



III. Lateral viscosity variations

Shields & cratons (SC) Continents I Continents II

SC+oceans SC+oceans+slabs Debayle et al. (2005)



Model parameters, input data and constraints

• Parameterization chosen as simple as possible:

model parameter range explored

1 upper-mantle viscosity 1019 − 1021 Pa s

2 lower-mantle viscosity 1019 − 1024 Pa s

3 scaling factor for lateral viscosity variations 1− 100
(lateral viscosity contrast)

4 layering coefficient λ 0.0− 1.0

5 velocity-to-density scaling in the upper mantle 0.0− 0.4

6 velocity-to-density scaling in the lower mantle 0.0− 0.6

• Density structure: based on differents tomographic models

from the database of T. Becker and L. Boschi

• Data constraints: geoid and free-air gravity (degree 2-8), dynamic

topography (degree 1-8) and seismic anisotropy at 150-km depth.

• Inversion: solved by systematic exploration of the model space



Fitting the geoid and free-air gravity

-100 m 0 +100 m -50 mgal 0 +50 mgal 

O
B

S
E

R
V

E
D

P
R

E
D

IC
TE

D
 

FREE-AIR GRAVITYGEOID



Predicted gravity [%]

LVV: Stable continents (SC) SC+slabs+young oceans
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Predicted gravity [%]

LVV: Stable continents (SC) SC+slabs+young oceans
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Predicted gravity [%]

LVV: Stable continents (SC) SC+slabs+young oceans
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Fitting the geoid and free-air gravity - Summary I

Percentage of predicted data

best-fitting model free-air geoid
gravity

no LVV 42% 73%
whole-mantle flow (λ = 0)

LVV included 47% 78%
whole-mantle flow (λ = 0)

LVV and partial 60% 91%
layering included (λ = 0.6)

Impact of LVV
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Lateral viscosity contrast
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Fitting the geoid and free-air gravity - Summary II

Best-fitting model parameters

optimum value acceptable

upper-mantle viscosity 3× 1020 Pas < 7× 1020 Pas

lower-mantle viscosity 4.8× 1022 Pas < 1× 1023 Pas

viscosity in asthenosphere below oceans 3× 1018 Pas ≤ 5× 1019 Pas

lateral viscosity contrast ≥ 100 > 10

layering coefficient λ 0.58 0.40− 0.75

velocity-to-density scaling (UM) 0.14 0.05− 0.20

velocity-to-density scaling (LM) 0.24 0.15− 0.35



Fitting the dynamic topography

How to formulate the inversion?

• minimuma absolute values

• least-squares

• correlation criterion

• small-amplitude criterion

Data:

• large uncertainties!

-1000 m 0 +1000 m

Panasyuk and Hager, JGR 2000

Topography corrected to thermal cooling



MIN 0 MAX

’OBSERVED’ PREDICTED

Oceanic topography corrected to cooling

Panasyuk & Hager (Tmax= 1260 m) Model A (Tmax= 1650 m)

Model Acor (Tmax= 420 m)

Model B (Tmax= 320 m)



Small-amplitude criterion

Model is acceptable if it gives amplitudes smaller than ∼ 500 m.

Densities in the top 200 km are omitted.
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Small-amplitude criterion prefers models with λ ∼ 0.6, ηUM ≤ 3× 1020 Pa.s

and the viscosity increase by a factor of at least 20 in the lower mantle.



Fitting the azimuthal anisotropy

PREDICTED’OBSERVED’



Fitting the azimuthal anisotropy

φ = 45  for random fieldso

φ

< 90O0 <O

predicted

observed

φ

Anisotropy in horizontal plane

• best agreement with the observation obtained in the depth range

of 100-200 km (φ=32-35 deg)

• at 300 km, φ ∼ 40 degrees

• crutial role of plate motion boundary condition

• solution of inversion is not much influenced by the choice of parameters

in DRex code (amount of enstatite, integration time etc.)



Fitting the azimuthal anisotropy - Summary

Resolution of the inverse problem is rather low. Inversion prefers models with

a high-viscosity lower mantle. The other parameters, including λ and lateral

viscosity contrast, are not resolved.
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Unsatisfactory fit to the data (φ > 32 deg)! Possible reasons: (i) insufficient

knowledge of the density structure in the upper mantle, (ii) linear rheology,

(iii) low resolution, (iv) small-scale convection, (v) ’data’ errors.



Conclusions

• Partial layering (λ ∼ 0.6) is necessary for predicting correct geoid and

free-air gravity data if the observed plate motion is prescribed as a BC and

small amplitudes of the dynamic topography are requested.

• Strong lateral viscosity variations in the top 200-300 km of the mantle,

associated with continental roots beneath stable continental regions, fur-

ther improve the fit to the geoid. The existence of these lateral viscosity

variations is neither excluded, nor confirmed by the other data considered.

• Both topographic and seismic anisotropy data prefer models with

a viscosity increase with depth.

• The correct prediction of dynamic topography and seismic anisotropy

data will require more accurate information on the density structure of the

upper mantle.

• Potential of seismic anisotropy data has not yet been fully explored. So

far, their inclusion into the inverse modeling has not lead to any significant

inprovement of the models.


