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Mantle convection is special (compared to other dynamical processes which take place in the
outer core or in the atmosphere) in that it is taking place in a solid medium. Mineral Physics
studies conducted in the past years have yielded a mineralogical model of the Earth’s mantle
which satisfies the seismological constraints. The need for a rheological model of the mantle
based on this mineralogy has appeared very early. However, this approach has faced very severe
limitations. Indeed, the rheology of solids is much more complicated than with liquids (it is often
strongly non-linear, and can involve a vast range of micrsocopic mechanisms). Important issues
such as the influence of pressure or low strain-rates on the deformation mechanism of solids are
still poorly understood. Moreover, the extreme P, T conditions prevailing in the mantle have been
an obstacle to experimental investigations for a long time.

This situation has evolved significantly in the past few years. Outstanding breakthroughs have
been achieved in the field of experimental deformation at high pressure. Well controlled
deformation experiments can be conducted at conditions approaching those of the transition zone
using the newly developed Deformation DIA and Rotational Drickamer Apparatus whereas
higher pressures are accessible with the Kawai multianvil presses and the Diamond Anvil Cells.
The development of in-situ stress and strain measurements using synchrotron sources have given
to these experiments their complete dimension. Alternatively, it is now possible to address the
issue of rheology from the numerical point of view. The difficulty here is that this property is
intrinsically multiscale. Several approaches must be combined to take into account the physics
involved at the atomic scale (quantum mechanics), at the mesoscopic scale (collective behaviour
of defects), at the scale of the aggregate (continuum mechanics) and to make the link with mantle
properties. These approaches will be briefly described.

Finally, these recent progresses will be illustrated by some ongoing research dealing with:

- Olivine (influence of pressure on plastic anisotropy, dislocation dynamics, texture formation)

- MgSiOs perovskite (slip systems, influence of orthorhombic distortions, behaviour within a
polycrystalline aggregate with MgO)

- Post-perovskite (plastic shear anisotropy)
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The usual tools of
rock mechanics

Paterson rig
P <0.5GPa

The experimental approach

Constitutive equation:

=Ao" fy.a;, exp(-A T)
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Mechanical test

Galilée (Leyden 1638)

Rotational Drickamer Apparatus

Thin disc (0.8 x 4 mm)
Strain rate > 106 s

saki & Karato (2001)

See poster P2



Deformation - DIA

Strain rate > 106 s
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and D. Weidne

Multianvil experiments
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Multiscale modelling of plasticity

Solid state physics

Crystal defects (dislocations)

Scale: single crystal

3D dislocation dynamics - L. Kubin (ONERA)

Multiscale modelling of plasticity

Continuum mechanics

Complex strain and stress
partitionning

Self-consistent methods
Finite elements

Taking physics into account

Multiscale modelling of plasticity
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Anisotropy,... and anisotropy

olivine (>60% upper mantle)

vpmin

Mantle
Seismic anisotropy
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Mineral:

Elastic anisotropy Rock, possibly textures

(plastic deformation)

Deformation of forsterite at high-
pressure

Olivine

Slip systems

Shear deformation assembly
Karato & Rubie (1997)

11 GPa - 1400°C




Deformation of forsterite at high-

pressure High-pressure deformation experiments

[001] dislocations
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[100] Synthetic Mg,Si0, single crystals

Fo,98
[011]c compression axis

¢ (010) slip system: S =0.5

Couvy et al. EJM (2004) 2 P. Raterron

High-pressure deformation experiments Mechanical results
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Mechanical results Mechanical results

010) slip sytem Pressure has an
influence on plastic
deformation
mechanisms

(Yannick, add this one to your list !)
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Modelling Plastic anisotropy Dislocations and GSF’s
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Dislocations and GSF’s Dislocations and GSF’s

Isolating one elementary sheared Generali stacking Fault (GSF):
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Homogeneous shear
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Dislocations and GSF’s

Energy barrier
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Ab initio calculations
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Energy barrier (mJ/m?)

Unrelaxed GSF
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Pressure influence
From GSF to dislocations:
the Peierls model
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[001] screw dislocation in forsterite Plasticity at the mesoscopic scale

(J. Durinck - coll Devincre & Kubin, ONERA)

Collective behaviour

Andrew Walker



Geometry of slip
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Mechanical data and dislocation mobility Mechanical data and dislocation mobility
determination: [001] dislocations determination: [100] dislocations
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Olivine: dislocation dynamics Olivine: dislocation dynamics
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Olivine: dislocation dynamics
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From single crystal to polycrystal

A simple approach: homogenisation methods

Homogencous equivalent medium
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Visco Plastic Self-Consistent

Models (VPSC)

eformation regime

Very robust for
CPO calculations

axial
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A. Tommasi

Going to mantle scale ?

(coll Mainprice & Tommasi, Montpellier)

Linking textures...

.. to seismic anisotropy

Visco Plastic Self-Consistent
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Seismic properties
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Ringwoodite

GSF

P. Carrez, A. Tommasi, D. Mainprice & P. Cordier (2005) EJM, Submitted
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MgSiO; perovskite

Deformation experiment
performed at: 25 GPa -
1400°C
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MgSiO; perovskite
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MgSiO; perovskite

Deformation experiment
performed at: 25 GPa -
1400°C

Shear bands

MgSiO, perovskite: plastic shear anisotropy

b,
A
Orthorhombic

‘ Pbnm

$

18



Orthorhombic description is needed
42 GPa < 82 GPa
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(Mg,Fe)SiO, perovskite: stress

Uniaxial stress vs. pressure

Calculated with shear modulus from Normalized un?axial stress (/G)
first principles calculations. VS. macroscopic strain

By definition

Olivine
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Perovskite (Mg,Fe)Si0,

(Mg,Fe)SiO, perovskite
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From single crystal to polycrystal

Polycrystal generation

Voronoi polyhedra model
Random microstructure

Finite elements methods

From single crystal to polycrystal

Taking grains interactions into account

Two-phase aggregate: Pv-Mw

v'30 % Mw __
v'70 % Pv

Strong rheology
contrast

Coll: K. Madi, S. Forest - Mines Paris
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Two-phase aggregate: Pv-Mw

v 70 % Pv

Coll: K. Madi, S. Forest - Mines Paris

Two-phase aggregate:

Von Mises equivalent stress Equivalent strain

Coll: K. Madi, S. Forest - Mines Paris

Two-phase aggregate: Pv-Mw

v 30 % Mw

Coll: K. Madi, S. Forest - Mines Paris

Two-phase aggregate:

000035

Pv takes the stress 00003

10000

Strain

I: K. Madi, S. Forest - Mines Paris
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Two-phase aggregate: Pv-Mw Two-phase aggregate: Pv-Mw

Perovskite:
« controls the rheology

Magnesiowustite:
« Takes the strain

AT Madi et al. EPSL (2005)
« Seismic anisotropy

Phase Post-perovskite MgSiO4

Olivine °
) % L)
Cmcm (Base-centered orthorhombic)
a 2.462 A
(atb)2 421 A % 2
c 6.108 A
b 8.053 A

Y
N

perovskite

EPSL, May
Ono, Nature, July 2004 S Ogano
g Tsuch
200:
ily 2004 Post-perovskite
(Mg, Fe)O
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Conclusion

Volume Fraction

Thank you !
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Paul Raterron (def HP - In situ)
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