
Examples of inverse problems and data fitting

Malcolm Sambridge

Research School of Earth Sciences

Australian National University

A complement to Inversion Tutorial slides

Inversion – p. 1/42



Constraining Earth’s interior from the surface
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A general nonlinear inverse problem

Nonlinear inverse problem

d = g(m)

where d is the data vector and m is the model vector.

Choose a starting (or best guess model mo) and linearize
about it,

δd = Gδm

But G is not a square matrix. We could solve by
minimizing,

φ = (δd −Gδm)TC−1
D (δd −Gδm)

Where C−1
D is a data covariance matrix.
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A least squares solution

From
δd = Gδm

we find δm which minimizes φ, . . . and get the normal
equations

δm = (GTC−1
D G)−1GTC−1

D δd

We introduce the generalized inverse as

δm = G−gδd

Note that if data covariance matrix has the form

C−1
D = σ−2I

the estimated model is independent of the data errors !
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Example

Data fitting in a discrete,

linearized over-determined
problem.

δd = Gδm
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Earthquake location

What are δd, δm and G ?
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Earthquake location example

Inversion for earthquake location and origin time (error free)

Parameter

X   0.0    3.0  -0.5  0.0

Y   0.0    4.0  -0.6  0.0

Z       10.0        20.0  10.1      10.0

To   0.0    2.0   0.2      0.0

         0  1  2

True value Solution at each iteration

1  -2.1  -0.4      0.0

2  -3.0  -0.2      0.0
3  -3.8  -0.1      0.0

4  -3.0  -0.2      0.0
5  -2.6  -0.3      0.0
6  -2.0  -0.3      0.0
7  -2.9  -0.2      0.0
8  -3.7  -0.2      0.0
9  -4.1  -0.2      0.0
10  -2.4  -0.4      0.0

 Misfit  92.4     0.6    0.0

Station  Arrival time residual

δm = (GTC−1
D G)−1GTC−1

D δd
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Propagating errors from data to model

Each set of observations d is only one realization of many
possible that could have been observed,

d
(i) (i = 1, . . . , K) K → ∞

The generalized inverse gives us an estimated model, m
(i)

from each d
(i)

δm(i) = G−gδd(i)

This leads to the model covariance matrix

CM = G−gCD(G−g)T

⇒ CM = (GTC−1
D G)−1 (Least squares)

If C−1
D = σ−2I → CM = σ2(GTG)−1
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Earthquake location with noise
Inversion for earthquake location and origin time (σ = 0.1 s)

 

1  -2.0  -0.1      0.1  0.1

2  -3.0  -0.1      0.0         0.0
3  -3.8   0.0      0.1         0.1

4  -3.2  -0.1      0.0         0.0
5  -2.8  -0.2        -0.1        -0.1
6  -2.1  -0.3        -0.1        -0.1
7  -2.9  -0.1      0.0  0.0
8  -3.7  -0.1      0.0  0.0
9  -4.0  -0.1      0.0  0.0
10  -2.5  -0.3      0.0  0.0

 Misfit  93.74    0.33   0.04 0.04

Station Arrival time residual

Parameter

X   0.0    3.0  -0.2  0.2  0.2

Y   0.0    4.0  -0.9      -0.4      -0.4

Z       10.0        20.0  12.2      12.2      12.2

To   0.0    2.0         0.0      -0.2      -0.2

         0  1  2  3

True value Solution at each iteration

0.06

0.01

0.01

0.00

 0.01

 0.08

-0.13

 0.01

  0.01

-0.13

  1.16

-0.08

 0.00

 0.01

-0.08

 0.01

X      Y    Z        To

0.25     0.28     1.08    0.10

δm = (GTC−1
D G)−1GTC−1

D δd
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Confidence regions about the best fit model

How do we find confidence regions about best model, m
∗ ?

We could map out the data misfit function φ(m),

φ(m) = (d − g(m))TC−1
D (d − g(m))

It can be shown that for a linearized
problem the confidence contours are
quadratic and given by

δφ(m) = δmTC−1
M δm

Size and shape of the confidence
regions determined by the inverse
model covariance C−1

M .

95 %

68 %

99 %

1 σ

2 σ

3 σ
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Confidence contours and goodness of fit

The confidence probability assigned to each contour and
the φ(m∗) is made with χ2 statistics.

χ2(m) =
N
∑

i=1

(di − gi(m))2

σ2
i

Expected misfit for the best model m
∗,

χ2(m∗) = ndf = N − k

Use statstical tables for a χ2 distribution
with (N − k) degrees of freedom.
What if we don’t know data errors ?

σ2 =
1

N − k
φ(m∗)

95 %

68 %

99 %

1 σ

2 σ

3 σ
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Goodness of fit

ndf χ2(95%) χ2(50%) χ2(5%)

5 1.15 4.35 11.07

10 3.94 9.34 18.31

20 10.85 19.34 31.41

50 34.76 49.33 67.50

100 77.93 99.33 124.34

Percentage points of the χ2 distribution.

What happens if the χ2 value is too small or too large ?
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Goodness of fit: comparing two solutions

What if we have two solutions m
∗

1 and m
∗

2 with different
numbers of unknowns, M1 and M2, and the second model
fits the data better than the first.

χ2
ν1
> χ2

ν2

where ν1 = N −M1 and ν2 = N −M2.

How can we tell if the improvement in data fit is significant ?

The F-ratio test can be performed,

F =
χ2

ν1

χ2
ν2

Statistical tables give the probability distribution P (F ), i.e.
that ratios greater than or equal to F occur 5% of the time.
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Model resolution matrix

If we obtain a solution to a linearized inverse problem,

δm = G−gδd

Then we have

δm = G−gGδmtrue = Rδmtrue

This defines the model resolution matrix, R. For an
over-determined problem we get

R =
[

(GTC−1
D G)−1GTC−1

D

]

G = I

R measures the degree of blurring and does not depend
on the errors in the data !
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Example

Data fitting in a discrete,
linearized under and over

determined problem.

δd = Gδm
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Travel time tomography

Travel time equation

t =

∫

Ro

1

v(x)
dl =

∫

Ro

s(x)dl

If we choose a reference slowness field so(x) and linearize
the relationship about it, we get

δt =

∫

Ro

δs(x)dl

The basis of all travel time tomography.
Discretization: Choose a set of basis functions

δs(x) =
M
∑

j=1

mjφj(x) ⇒ δd = Gδm
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Idealized tomographic experiment
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Idealized tomographic experiment

Using rays 1 → 4 we get









1 0 1 0

0 1 0 1

0
√

2
√

2 0√
2 0 0

√
2

















δm1

δm2

δm3

δm4









=









δd1

δd2

δd3

δd4









which gives

GTG =









3 0 1 2

0 3 2 1

1 2 3 0

2 1 0 3









which has eigenvalues 0,2,4,6 and hence is singular !

δm = (GTC−1
D G)−1GTC−1

D δd
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Singular value decomposition

We can write GTG in terms of eigenvectors and
eigenvalues

GTG = V ΛV T V = (v1, . . . ,vp : vp+1, . . . ,vr)

GGT = UΛUT U = (u1, . . . ,uq : uq+1, . . . ,ud)

where Λ = diag(λ1, . . . , λp, 0, . . . ). This gives the Lanczos
decomposition of the generalized inverse

G−p = VpΛ
−1
p UT

p

R = G−pG = (VpΛ
−1
p UT

p )(UpΛpV
T
p ) = VpV

T
p

Inadequate ray resolution causes blurring !
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Null space = resolution blurring

The resolution matrix becomes

δm =









0.75 −0.25 0.25 0.25

−0.25 0.75 0.25 0.25

0.25 0.25 0.75 −0.25

0.25 0.25 −0.25 0.75









δmtrue

The ray distribution cannot resolve equal slowness
perturbations in blocks 1 and 2, with opposite perturbations
in 3 and 4.

The zero eigenvalues create a null space !
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Tomography blurring
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Inversion: null spaces
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Features of inverse problems

Linearization is an approximation

Parametrization is a choice

Unknowns of different types (e.g. velocity and
hypocentres)

Nonuniqueness can occur
over determined
even determined
under determined

More data reduces input noise but independent data
matters most.

Trade-off between model variance and resolution
(spread)
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Underdetermined inversion: Regularization

When the problem is under or mixed-determined we can
minimize a combination of data fit and model control.

Ψ(m) = φ(d,m) + λ2ψ(m) (1)

λ is a trade-off parameter that must be chosen. It adds
stability but decreases resolution.
If the regularization is chosen ψ(m) = δmT δm

⇒ G−g = (GTC−1
D G+ λ2I)−1GTC−1

D

This gives a minimum variance solution. The poorly
constrained parts of the model are damped towards the
reference model.

Distrust struture on the scale length of the blocks !
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Underdetermined inversion: Regularization

An alternative is a Laplacian operator

ψ(m) = ‖|Lm||2 = m
TLTLm

L is a finite difference approximation to ∇2.

Model roughness (or flatness) is minimized.

Resulting models will be smooth but not of minimum
variance

Blocks not sampled will be smoothed.

Distrust large amplitude anomalies in areas with few data !

For large numbers of unknowns (> 104) iterative methods
are needed to solve the resulting system of equations, e.g.
conjugate gradients. → High performance computation.

Inversion – p. 25/42



Solutions to inverse problems

Data fit contours

Regularization  contours

acceptable data fit

- Extremal solution

- Optimal data fit 

   solution (c.f. MAP)

- Data acceptable 

   solutions
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Example

Fitting data and smoothing
models

Ψ(m) = φ(d,m) + λ2ψ(m)
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Example: smoothing data

-2.0

-1.0

0

1.0

2.0

X

2πππ/2 3π/20

F

We want to fit the data and find the curve which generated it.
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Example: smoothing data

-2.0

-1.0

0

1.0

2.0

X

2πππ/2 3π/20

F

We want to fit the data and find the curve which generated it.
This is the curve that generated the data
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Constructing smooth models - theory

Typically we would want to fit the data and regularize or
smooth the model at the same time.

ψ(d,m) =
N
∑

i=1

(di − s(xi,m))2 + µJ(s)

Where,

J(s) =

∫

[(

∂2s

∂x2

2
)

+ 2

(

∂2s

∂x∂y

2
)

+

(

∂2s

∂y2

2
)]

dx

Can we find a smooth model that fits the data exactly ?

s(x,m) = p(x) +
N
∑

i=1

λiφ(x − xi)

Yes ! use Thin Plate Splines for φ(x) (Duchon, 1976)
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Smooth models - practice

-4.0

-2.0

0

2.0

4.0

X

F

2πππ/2 3π/20
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Relaxing the fit to data

We do not want to fit noisy data exactly !

ψ(d,m) =
N
∑

i=1

(di − s(xi,m))2 + µJ(s)

In order to relax the requirement to fit the data we must find
a value of the trade-off parameter µ.

Model Roughness

D
at

a 
m

is
fi

t 

µ small µ

large µ
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Choosing trade-off parameter

One way of finding a balance between data fit and model
smoothness is Generalized Cross Validation - which
essentially means use the data to find a value for µ.

G(µ) =
N
∑

i=1

(di − si(xi,m))2

Where si(x,m) is the TPS interpolant produced when the
ith datum is removed. Find µ that minimizes G(µ). Note

µ→ ∞ ⇒ G(µ) ↑
µ→ 0 ⇒ G(µ) ↑

G(µ) is a bootstrap measure of interpolation error.
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Minimizing GCV to find µ

10
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Generalized cross validation

-2.0

-1.0

0

1.0

2.0

X

2πππ/2 3π/20

F

True

Estimated

95% Confidence
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Generalized cross validation

-2.0

-1.0

0

1.0

2.0

X

2πππ/2 3π/20

F

True

Estimated
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Example

Bayesian inference
model comparison
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Bayesian inference

Bayesian inference can be applied to:

The model inference problem
Estimating the unknowns

The model comparision problem
Hypothesis testing
When the number of unknowns is one of your unknowns !
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Bayesian inference

p(H1|d)

p(H2|d)
=
p(d|H1) p(H1)

p(d|H2) p(H2)

Posterior = Likelihood × Prior

where

H1 = Hypothesis1

H2 = Hypothesis2
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A regression example

-0.25 0 0.25 0.5 0.75 1 1.25
X

0

0.25

0.5

0.75

1

1.25

Y

Polynomial fits through X Y data

Lets fit the data with a polynomial, y = a0 +
∑k−1

i=1 aix
i and

let k be one of the unknowns !
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Best fit solutions

1 2 3 4

Dimension  k Dimension  k 

Dimension  k 

0.8

1

1.2

1.4

1.6

1.8

2

χ2

χ2 of best fit model

3.03%

31.4%
32.2%

27.5%

1 2 3 4
0
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P(χ2) for best fit model

1 2 3 4
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Bayesian Information Criterion

Statistical measures of significance of fit.

Inversion – p. 40/42



The number of unknowns

0.04%

87%

11.9%

1.05%

Dimension kDimension k
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Posterior on dimension  P( k | d)

24.97% 24.98% 24.96% 25.09%

0.01

0.1

1

10

100

Prior on dimension  P( k )

1 2 3 41 2 3 4

Bayesian Inference is parsimonious !

Occams razor is incorporated naturally
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Posterior predictions

k = 1 k = 2

k = 4k = 3

Reversible jump

       MCMC

Combined

Density (%)
0 100 

(a)

(c)

(e)

(b)

(d)

(f)

-0.25 0 0.25 0.5 0.75 1 1.25
X

0

0.25

0.5

0.75

1

1.25

Y

Polynomial fits through X Y data

Samples produced by MCMC and the original data.
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