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books

See also Samizdat press (http://samizdat.mines.edu)

A Tutorial on inverse problems and model space search – p. 2/53



A tutorial on inverse problems

Principles of inverse problems

Fitting data and nonuniqueness

Iterative methods

Direct search methods and applications

Uncertainty and Bayesian inference
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What is an inverse problem ?

Most people, if you describe a train of events to them, will tell you what
the result would be. There are few people, however, who, if you told
them a result, would be able to evolve from their own inner
consciousness what the steps were which led up to that result. This
power is what I mean when I talk of reasoning backwards.

Sherlock Holmes A Study in Scarlet by Arthur Conan Doyle
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Forward and inverse problems

ObservablesModel

A forward problem

An inverse problem

Physical properties,
unknowns

Measurements,
data
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Estimation and Appraisal

Forward  problem

Estimation
problem

True model m

Data dAppraisal
problem

Estimated model m
~
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Many inverse problems

Medical tomography
1970s

Seismic
tomography

1980s

Helioseismology
1990s
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A philosophy for inverse problems

A way of asking questions of data !

The information you get back depends upon:

The question you pose,

The data you have,

How you define fit to data,

Your parameterization of the unknowns,

m(x) =
N
∑

i=1

αiBi(x)

Your definition of a solution.
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Types of forward problem

Linear,
d = Gm

Nonlinear,
d = g(m)

Linearized,
δd = Gδm

Linearization is like taking a tangent.
Much of inverse theory is based on linearization...
...but its usually only an approximation !
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Fitting the data

Data/model relationship,

d = g(m)

To fit the data we need to measure data misfit,

φ(d,m) = (d − g(m))TC−1
D (d − g(m))

For a linearized problem,

φ(δd, δm) = (δd −Gδm)TC−1
D (δd −Gδm)

Should we just optimize φ(d,m) with respect to m ?
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A least squares solution

From
δd = Gδm

we find δm which minimizes φ, . . . and get the normal
equations

δm = (GTC−1
D G)−1GTC−1

D δd

We introduce the generalized inverse as

δm = G−gδd

Note that if data covariance matrix has the form

C−1
D = σ−2I

the estimated model is independent of the data errors !
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Travel time tomography

Travel time equation

t =

∫

Ro

1

v(x)
dl =

∫

Ro

s(x)dl

If we choose a reference slowness field so(x) and linearize
the relationship about it, we get

δt =

∫

Ro

δs(x)dl

The basis of all travel time tomography.
Discretization: Choose a set of basis functions

δs(x) =
M
∑

j=1

mjφj(x) ⇒ δd = Gδm
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Seismic imaging: a simple experiment

l1

∆S1

∆S2

l2
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Seismic imaging: a simple experiment

∆S1

∆S2
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Seismic imaging: a simple experiment

∆S1

∆S2

l1

l2

l3

l4
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Seismic imaging: a simple experiment

∆S1

∆S2
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Seismic imaging: a simple experiment
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Linear problems and non-uniqueness

x
1

x
2

x
3

Should we just optimize data misfit ?

φ(d,m) = (d −Gm)TC−1
D (d −Gm).
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Regularization in inverse problems

When the problem is under or mixed-determined we can minimize a combination of data
fit and model control.

Ψ(m) = φ(d,m) + λ2ψ(m)

λ is a trade-off parameter that must be chosen. It adds stability but decreases resolution.
If the regularization is chosen ψ(m) = (m− mo)TC−1

M
(m− mo), we get

mn+1 = mn + (GTC−1
D
G+ λ2C−1

M
)−1(GTC−1

D
δd− λ2C−1

M
(mn − mo))

This gives a minimum variance solution. The poorly constrained parts of the model are
damped towards the reference model.
An alternative is a Laplacian operator

ψ(m) = ‖|Lm||2 = m
TLTLm

L is a finite difference approximation to ∇. This minimizes model roughness ( ∂2m
∂x2

) or

flatness ∂m
∂x

.

min
m

{ψ(m)} s.t. φ(d,m) < φ∗
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Example: smoothing data
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Example: smoothing data
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Constructing smooth models - theory

Typically we would want to fit the data and regularize or
smooth the model at the same time.

ψ(d,m) =
N
∑

i=1

(di − s(xi,m))2 + µJ(s)

Where,

J(s) =

∫

[(

∂2s

∂x2

2
)

+ 2

(

∂2s

∂x∂y

2
)

+

(

∂2s

∂y2

2
)]

dx

Can we find a smooth model that fits the data exactly ?

s(x,m) = p(x) +
N
∑

i=1

λiφ(x − xi)

Yes ! use Thin Plate Splines for φ(x) (Duchon, 1976)
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Smooth models - practice
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Relaxing the fit to data

We do not want to fit noisy data exactly !

ψ(d,m) =
N
∑

i=1

(di − s(xi,m))2 + µJ(s)

In order to relax the requirement to fit the data we must find
a value of the trade-off parameter µ.

Model Roughness

D
at

a 
m

is
fi

t 

µ small µ

large µ
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Choosing trade-off parameter

One way of finding a balance between data fit and model
smoothness is Generalized Cross Validation - which
essentially means use the data to find a value for µ.

G(µ) =
N
∑

i=1

(di − si(xi,m))2

Where si(x,m) is the TPS interpolant produced when the
ith datum is removed. Find µ that minimizes G(µ). Note

µ→ ∞ ⇒ G(µ) ↑

µ→ 0 ⇒ G(µ) ↑

G(µ) is a bootstrap measure of interpolation error.
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Minimizing GCV to find µ
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Generalized cross validation
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Generalized cross validation
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Features of discrete inverse problems

Linearization is an approximation

Parametrization is a choice

Nonuniqueness can occur
over determined
even determined
under determined

More data reduces input noise but independent data
matters most.

Trade-off between model variance and resolution
(spread)

More worked examples available: Over and under-determined linear systems, error
propagation, SVD, resolution and covariance matrices.
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What is a solution to an inverse problem ?

Data fit contours

Regularization  contours

acceptable data fit

- Extremal solution

- Optimal data fit 

   solution (c.f. MAP)

- Data acceptable 

   solutions
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Linear problems

Single minima,

Gradient methods work,

Quadratic convergence,

Many unknowns,

d = Gm

Gi,j =
∂di

∂mj

φ(d,m) = (d−Gm)TC−1
D (d−Gm)+λ2(m−mo)

TC−1
M (m−mo)
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Weakly nonlinear problems

Single minimum (?)

Gradient methods work,

Many unknowns,

δd = Gδm

Gi,j =
∂di

∂mj

φ(d,m) = (δd −Gδm)TC−1
D (δd −Gδm) +

λ2(m − mo)
TC−1

M (m − mo)
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Weakly nonlinear problems II

But gradient methods
can still fail . . .

δd = Gδm

Gi,j =
∂di

∂mj

. . . if you start in the wrong place.
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Strongly nonlinear problems

Multi-modal misfits

Linearization fails

Direct search techniques
might work

100 − 102 unknowns

d = g(m)

Derivatives, ∂di

∂mj
, of little use !

φ(d,m) = (d − g(m))TC−1
D (d − g(m)) +

λ2(m − mo)
TC−1

M (m − mo)
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Data misfit surfaces: Receiver functions
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Data misfit in History matching

A synthetic example
with one unknown.
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Parameter space search techniques

Derivative free or direct search techniques can be useful
for weakly and strongly nonlinear problems.

Classes of direct search algorithm:

Uniform random search

Simulated annealing
(thermodynamics)

Evolutionary algorithms
(biology)

Neighbourhood sampling
(geometry)
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Uniform sampling

Uniform random sampling means uniform in volume !

Volume of the hypercube in
d dimensions,

V = Ld

Curse of dimensionality

L

L

Pseudo - random Quasi - random
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Uniform Monte Carlo Inversion

A whole earth Monte Carlo inversion by Press (1968)

ENTER

EXIT

Random selection

α model

 Test  α  TT 

Pass

Pass

Pass

Fail

Fails < n Times

< j successful models

> j successful 

models

Fails > n Times

Fail

Fail

Pass

 Test  β  TT 

 Test  Mass, Moment 

 Test  Eigenfrequencies

97 Modes

 Print, Graph Successful

Model and Diagnostics

Random selection

β model

Random selection

ρ model

Keilis-Borok & Yanovskaya (1967) first introduced Monte Carlo inversion into geophysics.
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Simulated annealing
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A Global optimization technique.

Sampling from a Gibbs-Boltzmann dis-
tribution,

σ(m) = e
−φ(m)

T

Temperature schedule, T
decreases with time,

Metropolis algorithm used to gen-
erate samples with an equilibrium
distribution of σ(m).
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Evolutionary and genetic algorithms

N models
Random
pairing

Crossover

Tournament
Selection

Mutate child

Random
Initialization
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Adaptive neighbourhood sampling

Partitioning the model space adaptively re-sampling using the
Neighbourhood algorithm
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A comparison of approaches

 

 

 

 

 

 

 

 

 

 0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

   1.0  2.0  3.0  4.0  5.0  6.0

True model

 Best fit
   model

Shear wave velocity (km/s)

 1  1000

Model density

 100 10

D
e

p
th

 (
k

m
)

-5.0 -2.5 0.0 2.5 5.0 7.5 10.0

Time (s)

A
m

p
li

tu
d

e
 

Observed 

Predicted

Observed 

Predicted

 

 

  

 

 

 

 

 

 

 

 

 

 

 0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

   1.0  2.0  3.0  4.0  5.0  6.0

True model

 Best fit
   model

Shear wave velocity (km/s)

D
e

p
th

 (
k

m
)

-5.0 -2.5 0.0 2.5 5.0 7.5 10.0

Time (s)

A
m

p
li

tu
d

e
 

Observed 

Predicted

 

 

 

 

 

 

 

 0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

   1.0  2.0  3.0  4.0  5.0  6.0

True model

Starting
  model

 Final
model

Local optimization Direct search (NA) Uniform random
Shear wave velocity (km/s)

D
e

p
th

 (
k

m
)

-5.0 -2.5 0.0 2.5 5.0 7.5 10.0

Time (s)

A
m

p
li

tu
d

e
 

A Tutorial on inverse problems and model space search – p. 42/53



Exploitation vs Exploration

Tabu
search

Exploration

Steepest
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   annealing
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         importance
            sampling

Genetic
algorithms

Uniform
search

Importance
sampling

Evolutionary
programming

Newton-Raphson
and other gradient

methods

Amoeba
search

Neighbourhood  algorithm
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Examples: Beam power maximization
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(From Kennett et. al. 2003)
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Waveform fitting

Receiver functions &

Surface waves
Coupled source moment 

tensor & depth location

Seismic waveforms Seismic sources
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(From Yoshizawa & Kennett (2002); Marson-Pidgeon et al.(2000))
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Mapping out multiple acceptable regions
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Mapping out acceptable regions
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Probabilistic approach to inverse problems

All information in the form of probability density functions.
Bayes rule

p(m|d) ∝ p(d|m)p(m),

Posterior = Likelihood x prior

p(m|d) = exp

{

−
1

2
(d − g(m))TC−1

D (d − g(m))

−
1

2
(m − mo)

TC−1
M (m − mo)

}

Statistical sampling methods are needed to draw samples
from the posterior.
Markov chain Monte Carlo (MCMC) is the workhorse
technique.
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Bayesian sampling

Prior 1-D marginal
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Bayesian inference

Bayesian inference can be applied to:

The model inference problem
Estimating the unknowns

The model comparision problem
Hypothesis testing
When the number of unknowns is one of your unknowns !

Example in additional material.
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Intensive forward models

Current research trends are aimed at computationally intensive forward
problems.

Using morphological data to 

constrain landscape processes

40 90

Age (Myr)

Using Thermo-chronological data

to constrain deformation processes
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Parallelism

An ensemble based approach is ideally suited to exploit parallel
computing architectures
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Inversion software

Choose inversion 
algorithm

Insert forward code

Java inversion toolkit

Real-time monitoring

Sensitivity visualization
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