A Tutorial on inverse problems and model
space search

Malcolm Sambridge

Research School of Earth Sciences

Australian National University

25th Course of the International School of Geophysics
9th Int. Workshop on Numerical Modeling of Mantle Convection and Lithospheric Dynamics
8-14 September 2005, EMFCSC, Erice, Sicily.

A Tutorial on inverse problems and model space search — p. 1/53



books

Inverse Problem Theory
and Merhods tue Modsl Parameier Fitsmation

emphysical Inverse Theory
.mu.m..l::]

TR
Lk L

Parameter
Estimation and
o Inverse Problems

i
=7/

Robert |, Parker

adi

Richard C. Aster
Brian Borchers
Clifford H. Thurber

See also Samizdat press (http://samizdat.mines.edu)

A Tutorial on inverse problems and model space search — p. 2/53



A tutorial on inverse problems

Principles of inverse problems

Fitting data and nonuniqueness
lterative methods

Direct search methods and applications

o o o o 0

Uncertainty and Bayesian inference
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What is an inverse problem ?

Most people, if you describe a train of events to them, will tell you what
the result would be. There are few people, however, who, if you told
them a result, would be able to evolve from their own inner
consciousness what the steps were which led up to that result. This
power is what | mean when [ talk of reasoning backwards.

Sherlock Holmes A Study in Scarlet by Arthur Conan Doyle
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Forward and inverse problems

Measurements,
data
A forward problem
Model Observables

“~

Aninverse problem

Physical properties,
unknowns

A Tutorial on inverse problems and model space search — p. 5/53



Estimation and Appraisal

Forward problem

Appraisal
problem

Estimated model m

Estimation
problem
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Many inverse problems

Medical fomography
1970s

Seismic
tomography
1980s

Helioseismology
1990s
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A philosophy for inverse problems

A way of asking questions of data !

The information you get back depends upon:
® The question you pose,

The data you have,

How you define fit to data,

o o @

Your parameterization of the unknowns,

m(x) = Z a;B;(x)

» Your definition of a solution.
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Types of forward problem

Figure 7.2-2: lllustration of the the effect of linearizing about an inverse

problem starting model.

d=Am) |/

; Linear
[ approximation

Linear,

Predicted
by starting —
model

Nonlinear,

Data

Linearized, ,
5d — G(Sm Observed — .'/’First iteration

I I
True model Starting model
Model

Linearization is like taking a tangent.
Much of inverse theory is based on linearization...

...but its usually only an approximation !
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Fitting the data

Data/model relationship,
d = g(m)
To fit the data we need to measure data misfit,
6(d,m) = (d—g(m)) Cp'(d — g(m))

For a linearized problem,

o(dd,dm) = (6d — Gom)" O (dd — Gom)

Should we just optimize ¢(d, m) with respect to m ?
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A least squares solution

From

od = Gom
we find dm which minimizes ¢, ... and get the normal
equations

om = (G'CL'G)'G'C5lod

We introduce the generalized inverse as

om = G 96d

Note that If data covariance matrix has the form
C’Bl — o %]

the estimated model is independent of the data errors !
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Travel time tomography

Travel time equation

t—Lﬂ&W:/f@W

If we choose a reference slowness field s, () and linearize
the relationship about it, we get

515:/ ds(x)dl

The basis of all travel time tomography.
Discretization: Choose a set of basis functions

M
ds(@) =Y mydi(w) = [dd=Gém
j=1
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Seismic imaging: a simple experiment

1, I
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-
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Seismic imaging: a simple experiment
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Seismic imaging: a simple experiment

A Tutorial on inverse problems and model space search — p. 15/53



Seismic imaging: a simple experiment
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Seismic imaging: a simple experiment
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Linear problems and non-uniqgueness

Should we just optimize data misfit ?

o(d,m) = (d - Gm)'C;'(d - Gm).
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Regularization in inverse problems

When the problem is under or mixed-determined we can minimize a combination of data
fit and model control.

U(m) = ¢(d, m) + \2¢p(m)
A is a trade-off parameter that must be chosen. It adds stability but decreases resolution.
If the regularization is chosen 1 (m) = (m — m,)TC; ' (m — m,), we get

M1 =mp + (GTCL'G 4+ N2Cy ) HGTChléd — A2y (my, — my,))

This gives a minimum variance solution. The poorly constrained parts of the model are
damped towards the reference model.
An alternative is a Laplacian operator

¥(m) = [[|Lm]> = m" L7 Lm

L is a finite difference approximation to V. This minimizes model roughness (82@) or

ox
om
ox '

flathness
min{y(m)} st ¢(d,m) < ¢*
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Example: smoothing data
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Example: smoothing data

2.0 T . T
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Constructing smooth models - theory

Typically we would want to fit the data and regularize or
smooth the model at the same time.

N

Qﬂ(d, m) — Z (dz — S(wiv m))2 + MJ(S)

1=1

[ 9257 §%s 5252\
il 9 i
Ox? i 0xdy i 0y? da

Can we find a smooth model that fits the data exactly ?

s(x,m) = p(x) + Z Nid(T — ;)

Where,

Yes ! use Thin Plate Splines for ¢(x) (Duchon 1976)md|p
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Smooth models - practice
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Relaxing the fit to data

We do not want to fit noisy data exactly !

N

w(dv m) — Z (d’b — 8(:132', m))2 + NJ(S)

1=1

In order to relax the requirement to fit the data we must find
a value of the trade-off parameter L.

A

Data misfit

Y

Model Roughness
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Choosing trade-off parameter

One way of finding a balance between data fit and model

smoothness Is Generalized Cross Validation - which
essentially means use the data to find a value for L.

N

G(u) = Z (di — si(x;, m))2

1=1

Where s;(x, m) is the TPS interpolant produced when the
ith datum is removed. Find p that minimizes G(u). Note

p—00=G(u) 1
p—0=G(p 1

G (1) 1s a bootstrap measure of interpolation error.
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Minimizing GCV to find u
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2.0

1.0

-1.0

Generalized cross validation
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..... 95% Confidence

/2
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2.0

Generalized cross validation

— True

—— Estimated

/2
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Features of discrete inverse problems

°

Linearization is an approximation
Parametrization is a choice

Nonunigueness can occur
s over determined

s even determined

s under determined

# More data reduces input noise but independent data
matters most.

® Trade-off between model variance and resolution
(spread)

| I

More worked examples available: Over and under-determined linear systems, error
propagation, SVD, resolution and covariance matrices.
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What Is a solution to an inverse problem ?

Data fit contours

acceptable data fit

& - Optimal data fit
&

solution (c.f. MAP)

A - Extremal solution

(D - Data acceptable

solutions \

Regularization contours

4
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Linear problems

Single minima,
Gradient methods work,
Quadratic convergence,

o o 0o b

Many unknowns,

d = Gm
d;
Gi,j S a

8mj

o(d, m) = (d—Gm)" O5' (d—Gm)+\*(m—m,)" C;/ (m—m,)
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Weakly nonlinear problems

# Single minimum (?)
# Gradient methods work,
#» Many unknowns,

od = Gom
od;
Gi,j N (9mj

o(d, m) = (6d — Gém)"' C;'(6d — Gom) +

N (m —m,) Cyt (m — m,)
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Weakly nonlinear problems Il

But gradient methods
can still fail . ..

od = Gom
od;
Gi,j B 8mj

. If you start in the wrong place.
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Strongly nonlinear problems

Multi-modal misfits

°

L iInearization fails

L I

Direct search techniques
might work

® 10° — 102 unknowns

d = g(m)

Derivatives, %, of little use !
J

¢(d,m) = (d — g(m))’ Cp'(d — g(m)) +

N (m —m,)' C (m —m,)
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Data misfit surfaces: Receiver functions

Shear wave velocity (km/s)
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Data misfit in History matching

A synthetic example
with one unknown.

Depth (Feet)
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200

400

200

0

20 40 60 0 20 40 60
A

H H
(Courtesy P. King)
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Parameter space search techniques

Derivative free or direct search techniques can be useful
for weakly and strongly nonlinear problems.

Classes of direct search algorithm:

# Uniform random search
# Simulated annealing )

(thermodynamics)

#® Evolutionary algorithms

(biology) -
#® Neighbourhood sampling £
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Uniform sampling

Uniform random sampling means uniform in volume !

Volume of the hypercube in
d dimensions,

V=1L¢ L
Curse of dimensionality
L
' Pseudo - random Quasi - random
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Uniform Monte Carlo Inversion

A whole earth Monte Carlo inversion by Press (1968)
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Keilis-Borok & Yanovskaya (1967) first introduced Monte Carlo inversion into geophysics.
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A Global optimization technique.

Sampling from a Gibbs-Boltzmann dis-

tribution,

® Temperature schedule, 1’
decreases with time,

® Metropolis algorithm used to gen-
erate samples with an equilibrium

distribution of o ().

Simulated annealing
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Evolutionary and genetic algorithms

Random

R Crossover
Initialization
Random
N models pairing
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Adaptive neighbourhood sampling

Partitioning the model space adaptively re-sampling using the
Neighbourhood algorithm
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A comparison of approaches

Local optimization Direct search (NA) Uniform random
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Steepest
descent

Newton-Raphson
and other gradient
methods

Exploitation vs Exploration

Exploitation —»

Evolutionary
programming

Simulated
annealing

algorithms

Importance
sampling

Uniform
search

Exploration >
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(From Kennett et. al. 2003)

Examples: Beam power maximization
NA-sampling




Waveform fitting
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(From Yoshizawa & Kennett (2002); Marson-Pidgeon et al.(2000))
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Mapping out multiple acceptable regions
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Mapping out acceptable regions
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Probabilistic approach to inverse problems

All information in the form of probability density functions.
Bayes rule
p(m|d) o p(d|m)p(m),

Posterior = Likelihood x prior

plomld) = exp { =5 (d ~ g(m))7C;'(d ~ glom)
—% (m —m,)" Cyf (m — mo)}

Statistical sampling methods are needed to draw samples

from the posterior.
Markov chain Monte Carlo (MCMC) is the workhorse

technique.
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Bayesian sampling
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Bayesian inference

Bayesian inference can be applied to:

o 3 i

E
oo

Wa l.l'ru-:i'- 1 & ny's
E T
[ ] 1] ['X]

[

# The model inference problem
Estimating the unknowns

Van- 4T s

#® The model comparision problem
Hypothesis testing
When the number of unknowns is one of your unknowns !

Example in additional material.
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Intensive forward models

Current research trends are aimed at computationally intensive forward
problems.

> W T
50 75 100 125 1 175 40 9 O
He age iMal

Using morphological data to Using Thermo-chronological data
constrain landscape processes to constrain deformation processes
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Parallelism

An ensemble based approach is ideally suited to exploit parallel
computing architectures

Y

v

Y

¥
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Parameter,_| Forward _*
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o ©
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Parameter | Forward i , g 3
set 4 model run 4 O L
o
Parameter Forward J
set N model run N

Ranking of Models

Generate new models

A
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derra\Wult

Using state-of-the-art
computational techniques
developed at the ANU

for solving complex data
inference problems in the
Earth Sciences

NN R

Java inversion toolkit

Insert forward code

v

Choose inversion
algorithm

Inversion software

Sensitivity visualization
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Real-time monitoring
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