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Abstract:

Melt generation and extraction are often modeled using the two-phase equations developed by
McKenzie (1984) or Scott & Stevenson (1984). Usually various approximations are made to simplify
the problem which may lead to some unphysical results. We have developped a generalized version
of the set of equations introduced by Bercovici et al. (2001) that allows for mass transfer between 
the two phases and consider a self-consistent set of equations. In our description the two phases 
are submitted to different pressure fields whose difference is related to the surface tension at the 
interfaces, to the changes in porosity and to the melting rate. A kinetic relation for the melting rate 
arises from the second law of thermodynamics. The condition of chemical equilibrium corresponds 
to the usual univariant equality of the chemical potentials of each phase when the matrix and melt 
are motionless. In the most general form, the Gibbs-Thomson effect comes out naturally from 
thermodynamic equilibrium considerations.

We apply these new equations to a steady state problem of pressure release of a univariant system. 
We treat melting and compaction simultaneously and we observe several new effects and several
possible regions near the onset of melting which correspond to various force balance situations. 
A consequence of matrix compaction (dilation) is a pressure difference between melt and solid which 
favors (inhibits) melting. Melting is favored when the extraction of melt from the matrix is efficient, 
i.e., when the Darcy velocity is larger then the initial upwelling velocity of the solid matrix. For 
parameters corresponding to pressure release melting under mid ocean ridges melting is favored and 
could start at most ~2 km below the standard solidus. Numerical results suggest that the movement 
of melt and matrix should be close to the Darcy equilibrium where the buoyancy of melt is 
equilibrated by the mechanical interaction between the phases. The Darcy equilibrium follows 
an initial stage where the matrix viscous stresses balance the Darcy friction.
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viscous deformation of the matrix at the onset of melting
results in a pressure difference between melt and solid
that favors (when matrix compacts) or inhibits (when
matrix dilates) melting
melting condition is satisfied at different depth compared
to what is inferred from the average pressure

continuum averaging approach
phases are incompressible viscous fluids
interface between phases treated as additional thermodynamic phase
difference of pressures in the phases related to surface tension 
and viscous deformation
non-equilibrium kinetic relation for the melting rate

Illustration of a control volume containing
fluid pores and matrix grains

equilibrium melting for infinitely fast kinetics

Complete solution
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Case δ=0: Darcy equilibrium
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mid ocean ridge:
- compaction length small compared to the size of the melting zone,
  therefore Darcy equilibrium should be a good approximation
- buoyancy velocity of the order of 100

pure Darcy equilibrium cannot be a solution when:
- viscous forces become important at small porosity
- at the end of the melting zone Darcy equilibrium doesn’t satisfy
  boundary conditions            and                         when
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in Darcy equilibrium buoyancy force is balanced by the Darcy drag

at the onset of melting several regions are present 
that correspond to various force balances
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Visc. force
balances buoyancyequilibrium

compaction

dilation balances Darcy drag

matrix

In the bulk of the melting zone Darcy equilibrium prevails, porosity remains small
Several possible regions near the onset of melting with different force balance situations
The dynamic pressure affects the onset of melting by several km

Conclusions:
Consistent set of equations where melting rate relation arises from thermodynamic considerations

1-D equilibrium melting of a univariant system

force balance:

viscous force Darcy
drag

buoyancy

mass conservation:

melting rate:

... compaction length

... buoyancy velocity

porosity
matrix and fluid velocities

viscosity of the matrix
Darcy interaction coefficient
gravitational acceleration
initial upwelling velocity

matrix and fluid densities

melting rate
temperature
entropy difference (matrix-melt)
fluid pressure
kinetic rate

equilibrium melting corresponds to infinite kinetic coefficient    , then:

inviscid melt
no surface tension

energy equation:


