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Motivation

• We are part of the DFG priority program SPP 1144

• Energy-, material- and life-cycles at spreading axes

• ~20 groups working in different fields:
   geochemistry, biology, hydrothermal processes,
   tectonics and geodynamics

• Interaction between groups required:
   Hydrothermal field locations             Tectonic environment
   Hydrothermal energy release            Biology

• 2 study regions at the Mid-Atlantic Ridge
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The Southern Study Area
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MAR basalts near Ascension island
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• Numerical modeling of melting and mantle flow

• Find correlations between our models and 
geochemical & geophysical observations

• Estimate thermal energy input into the crust

• How (un)likely is a weak mantle plume in this area?
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A new convection code

• Finite Elements:
unstructured meshes, highly flexible resolution

• Fast solver for 3D viscous flow

• tested:
different types of elements 
iterative solvers, some using multigrid

• finally chosen:
6-node triangles (2D), 10-node tetrahedrons (3D)
Multigrid-Preconditioned Conjugate Gradient

• Melting of multiple mantle components

• Parallel
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A new convection code

• Powerful developing environment 
incl. editor/debugger/visualization

• Code modifications are simpler
less programming time for testing different algorithms

• Matlab’s “Profiler”:
quickly identify and speed up slow code parts

• Sparse matrix capabilities (FE bookkeeping, operations)

• Distributed Computing Toolbox , -Engine

   

Why Matlab?
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• Vectorizing!
re-write loops as vector (matrix) operations

• Avoid operations with small matrices!

• resort and merge small matrices for fewer operations

• “MILAMIN” paper by Dabrowski et al. (G-cubed, 2008)
(element integration/assembly in blocks of ~500 elements
for a 2MB fast cache)

A new convection code

Tricks to speed up Matlab
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Boundary conditions and numerical resolution
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Vertical velocities and relief of 1200 °C isotherm

Plate speed: 16mm/yr
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Melting rates at 40 km depth
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Melting rates at 40 km depth and relief of 1200 °C
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Location of zoomed plot
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Isotherms & melting rates at 40 km depth
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Numerical resolution at the top
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• transform faults (TFs): colder regions, 
almost no mantle upwelling

• max melting at max distance from TFs

• even small ridge axis displacements hinder 
mantle upwelling, thus melt production

First conclusions
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• feedback mechanisms between melting and 
mantle flow
(dehydration & melt effects on viscosity
depletion & melt effects on density)

• porous flow approximation for melt 
migration         crustal thickness calculation

• more detailed 3D runs on our new cluster 
(include thermal/compositional anomalies)

Work in progress & outlook
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Thank you for your attention !
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