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Structure

Motivation
Why simulating the earth‘s mantle?
Why a new numerical model?

Basics of Rayleigh-Bernard convection with variable viscosityBasics of Rayleigh Bernard convection with variable viscosity
Mathematical model
Numerical model

Validation / Benchmarking
Parameter ranges
R i l ifi tiRegime classification
Scaling laws 
What‘s next?What s next?
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Simulation Setup

Standard Boussinesq u 0  


Free slip
Finite V/E/D 3D / 2D
Flexible Grid 2T T T 1 0
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BiCGStab solver
Highly parallel DC
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Highly parallel DC
IDL framework for evaluation / vis
Independent C++ code, STL 2 5g HdRa  p
Purely internally heated w/ insulated bottom
85 cases: 55 T-dep. & 30 T+P-dep. ( ) exp( )PT T z    
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Projected spherical icosahedra grid (ar=0.55)
Resolution: 10k lateral & 34 shells ~ 360k Nodes
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Parameter range

Ra0 and γ varied for two different scenarios, with P-dep. Viscosity of 100 
and without
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Points of interest

Lid thickness
Internal temperature
Boundary layer
Viscosity contrastViscosity contrast
Rayleigh numbers
Nusselt numberNusselt number
Structure
Time dependencyp y
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Lid thickness determination

Various methods possible

Delamination / erosion versus conductive heat flow 

Which one is “right”?

Main methods:
Threshold in V
Tangent through
inflexion point 
(fails on some weakly(fails on some weakly
convecting systems!)
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Lid thickness – A summary
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Reduction to iso-viscous parameters beneath the lid

Measured lid thickness upper boundary
Proves that convection beneath the lid can be treated as isoviscous
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The quality of the rheological constant with the 
previous lid measurement methodsp

Assume relation between temperature drop and rheological gradient

݄ݎ ݄ݎ

݄ݎ ݅ ܮ

Tangent through
inflexion point of the

fvelocity profile best choice

Steady state generallySteady state generally
higher a_rh
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Internal temperature fit with the rheological constant

After Davaille 92; Grasset 98; Reese 99,05; Deschamps 99
Confirms weak dependence of all three parameters
Choose higher arh to get a less-eroded lid
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Structural analysis – Spherical Harmonics

Example case: Ra0=1, γ=80
Temperature Velocity
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Structural analysis – Spherical Harmonics

Example case: Ra0=1, γ=80
Temperature Velocity
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Structural analysis – Spherical Harmonics

Example case: Ra0=1000, γ=60
Temperature Velocity
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Structural analysis – Spherical Harmonics

Example case: Ra0=1000, γ=60
Temperature Velocity
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Mode Cycling

C li b t l d i t d f bil lidCycling between low dominant modes for some mobile lid cases
Fluent transistions between quasi-steady (low-) modes 
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Dominant mode not suited 

Mode – Ra fit for the stagnant lid regime

Central mode provides better representation:
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Mode – Ra fit for the stagnant lid regime

Jump function introduced to get continuous function
Regularized gamma funtion PRegularized gamma funtion P
acts as jump function
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ܾ
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Three parameters:
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p
a: Transition to time-
dependent convection
b: Jump height
m: slope in the time-
dependent regime a

b

dependent regime
Derived through full inversion

a
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Mode – Ra fit for the stagnant lid regime

Jump function introduced to get continuous function
Regularized gamma funtion PRegularized gamma funtion P
acts as jump function

ܲሺ ܴ ሻ ൬l ሺܴ ሻ l ሺ ሻ
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Three parameters:

߱ ൌ ܲሺܽ, ܴܽሻ ݉ ൬lnሺܴܽሻ െ lnሺܽሻ 
݉
൰  ߱݉݅݊

p
a: Transition to time-
dependent convection
b: Jump height
m: slope in the time-
dependent regimedependent regime

Derived through full inversion
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Time dependent convection and its dependence on 
the mode

Only transient part
considered to avoidconsidered to avoid
influence of IC

One as a good 
boundary to avoid
erroneous fluctuations

Transition around
degree 8-9 confirmed
for P-dependent cases
as well
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Velocity and its dependence on the mode

Evident from correlation to Ra
Different scaling between (quasi-)steady state and time dependent cases
V l it i t ith dditi l d dVelocity increase stronger with additional pressure dependence 
Temperature dependent Temperature and pressure
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Boundary layer

Introducing reduced boundary layer thickness δrh*

Never reaches surface on mobile or isoviscous cases but centers around δ0
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Omnipresent correlation of boundary layer depth to 
the Nusselt number

Correlation present for all cases, stagnant lid and mobile
Includes pressure dependentIncludes pressure dependent 
cases marked as diamonds
Centers around reduced
boundary layer
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Boundary layer thickness scaling

As predicted by boundary layer theory, for all mobile & isoviscous cases:

For stagnant lid cases the
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For stagnant lid cases, the 
layer thickness depends on 
its depth and viscosity:
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Reduced boundary layer thickness and the lid

Correlation between reduced BL
and Ra only in the time dependentand Ra only in the time dependent
regime
BUT: fits pressure dep. cases as wellp p
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Resulting equation for the lid:
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Boundary layer Rayleigh number

Calculated the same way
as isoviscous Ra / T

Layer thickness used
das deff

Range similar toRange similar to 
Deschamps & Sotin 2000

Constant for time dependent
convection with ~1193

Unclear for P-dependence
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Lateral viscosity contrast

Approximately equal to radial contrast for mobile regime on T-dep. cases
For T&P dep. cases, in the mobile regime, increased by the amount of ∆ηP

For stagnant lid cases constant: T-dep. cases ~30, T&P-dep. cases ~100
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Transition to the stagnant lid regime

Mobility criterions:
T-dep. cases
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T & P-dep. cases
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Direct heat flow profile reconstruction

Regularized Gamma function P reconstructs heat flow profile 

ሺ݀ሻݍ ൌ ሺ݀ሻܿݍ ሺ1 െ ܲሺߞ ݀߳ , 1ሻ4ሻ 

Independent of regime or pressure dependent viscosity

Only 2.5 parameters required to reconstruct complete HF and T profile 
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Incomplete (regularized) Gamma function

Jump function, like error function erf 
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Indirect fit
Scale ε and ζ from real input values Ra0 & γζ p γ
Unfortunately different regimes lead again to different parameters – no 
„Unification“

1
߳ ൌ 0.864 ߛ  0.277 ln ܴܽ0 െ 2.54 ߞ ൌ 4.33 ߳ ܴܽ0
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HFR examples
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HFR expamples
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HFR expamples – TP mobile case
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HFR examples: complete failure on weak convection
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Fit of internal temperature with HFR method
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Anomalies

One case with too high viscosity contrast and without a stagnant lid

C fi d i 2D ith hi h l tiConfirmed in 2D with high resolution

Ra0=1000 γ=100 ∆ηP=100Ra0=1000, γ=100, ∆ηP=100
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The Frank-Kamenetskii approximation

F h i l b ti th i tFrom chemical combustion theory: approximates 
Arrhenius laws to linear exponential laws
Mixed definition of the DAFK parameter, sometimes justp , j
γ and sometimes γ*Ti

Arrhenius Linearised

ߟ ൌ
ߤ
0ߤ

ൌ ܵߟ expሺെߛ ܶሻ ߟ ൌ ݂݁ݎߟ exp ൬
ܣ

ܶ  0ܶ
൰ 

ca
se

e 
ca

se Reconstruction from
simulated T profile:

ag
na

nt
 li

d 

eg
re

e-
O

ne
simulated T profile:
Dotted line from linear, 
black line Arrhenius

OK f SLSt
a

D
e OK for SL cases, 

others?

Folie 38
C. Huettig et al.: Scaling laws for internally heated mantle convection


