Feasibilities of GeoFlow as Thermal Convection Experiment for Modelling Mantle Dynamics

N. Scurtu, B. Futterer, N. Dahley, C. Egbers

Dept. Aerodynamics and Fluid Mechanics, Brandenburg University of Technology Cottbus, Germany

supported by: German Aerospace Center e.V. (DLR), grant number 50 WM 0122, European Space Agency (ESA), grant number AO99-049, ESA Topical Team, grant number 18950/05/NL/VJ

Workshop on Geodynamics 2008

・ロト ・同ト ・ヨト ・ヨト

Scurtu et al.

GeoFlow

Overview

GeoFlow

- Topical Team
- Motivation Earth's mantle convection
- 2 State of the art
 - Numerical studies of mantle convection
 - Flow pattern formations
 - Viscosity laws

- GeoFlow II
 - Model geometry and general parameters
 - Fluid determination
 - Experiment preparation and realization
- Outlook
 - Reflight of GeoFlow

▶ ∢ ⊒ ▶

< □ > < 同 >

Topical Team Motivation - Earth's mantle convection

GeoFlow - Topical Team

Science Team

- BTU Cottbus, Germany
- University of Potsdam, Germany
- University of Leeds, U.K.
- CIRM, Marseille, France
- ESPCI, Paris, France

Space Industries

- EADS Astrium GmbH, Friedrichshafen, Germany
- MARS, Naples, Italy
- Alcatel Alenia Space, Turin, Italy
- E-USOC, Madrid, Spain

Space Agencies

• ESA, Noordwijk, Netherlands

▶ ∢ ⊒ ▶

DLR, Bonn, Germany

Scurtu et al.

Topical Team Motivation - Earth's mantle convection

Mantle convection

- Thermal convection in the Earth mantle is driving mechanism of the plate tectonics.
- Earth's mantle behaves like an extremely viscous fluid on large time scales ⇒ approx. as a Stokes flow
- The only force that drives the convective flow is buoyancy force. Coriolis and Lorentz forces do not play any significant role.
- The mantle convection is thermally and compositionally driven
- The strong dependence of the fluid rheology on temperature and/or depth (pressure) has a great impact on the style of convection.
- The rheology of mantle materials is not simply Newtonian → a multicomponent system

Topical Team Motivation - Earth's mantle convection

Motivation

- thermal convection in rotating spherical shells
- central force field
- Microgravity environment \rightarrow ISS

Fluid dynamics

- stability of flow states
- pattern formation
- transition to turbulence

(DLR)

● GeoFlow I fluid with low, nearly constant viscosity → liquid outer core

GeoFlow II

fluid with non-uniform viscosity $\ \rightarrow \$ liquid mantle

Mantle properties

the viscosity of the mantle strongly depends on

- temperature
- pressure / depth
- stress

Scurtu et al.

3

State of the art

2D or 3D Cartesian domain \rightarrow rectangular box heated from the bottom boundary

- M. Ogawa: Mantle convection: A review, Fluid Dynamic Research (2008)
- R. A. Trompert and U.Hansen: *On the Rayleigh number dependence of convection with strongly temperature-dependent viscosity*, Physics of Fluids (1998)
- U. Christensen and H. Harder: *Three-dimensional convection with variable viscosity*, Geophys. J. Int. (1991)

3D spherical convection model, $r_i/r_o = 0.55 \rightarrow$ effects of basal and internal heating

- H. Bunge, M. A. Richards and J. R. Baumgardner: *Effect of depth-dependent viscosity on the planform of mantle convection*, Letters to Nature (1996)
- J. T. Ratcliff, G. Schubert and A. Zebib: Effects of temperature-dependent viscosity on thermal convection in a spherical shell, Physica D (1996)
- Louise H. Kellogg, S. D. King: The effect of temperature dependent viscosity on the structure of new plumes in the mantle: Results of a finite element model in a spherical, axisymmetric shell, Earth and Planetary Science Letters (1997)
- K. Stemmer, H.Harder and U.Hansen: A new method to simulate convection with strongly temperature- and pressure-dependent vicosity in a spherical shell: Applications to the Earth 's mantle, Physics of the Earth and Planetary Interiors (2006)

< ロ > < 同 > < 回 > < 回 >

Numerical studies of mantle convection Flow pattern formations Viscosity laws

• Tropert & Hansen (1998) \rightarrow rising and falling blobs at viscosity contrast $\Delta \eta = 10^6$

Ra = 1

 $\operatorname{Ra} = 100$

 $\mathrm{Ra}=1000$

• Bunge, Richards & J. R. Baumgardner (1996) \rightarrow temperature distribution

Scurtu et al

Results: a modest increase in a mantle viscosity with depth has a dramatic effect on the planform of convection.

isoviscous

 $\Delta \eta = 30$

Ratcliff, Schubert & Zebib (1996) → plume-like upwellings
→ mobile lid, sluggish lid and stagnant lid convective regimes

Results: the strong dependence of the fluid rheology on temperature has a great impact on the style of convection

GeoFlow

Viscosity laws

 $\bullet~$ Mantle materials modeled by a Newtonian rheology $~\rightarrow~$ Arrhenius relation

Temperature-dependent viscosity law $\eta(T) = \eta_0 exp[-E(T - T_{ref})]$ *E* activation parameter T_{ref} reference temperature $\eta_0 = \eta(T_{ref})$

Temperature- and pressure-/depth-dependent viscosity law $\eta(p, T) = \eta_0 exp[-E(T - T_{ref}) + V(r_o - r)] \qquad E, V \text{ are constants}$

In a simple Newtonian lithosphere, ruptures cannot take place
⇒ non-Newtonian rheology, mantle materials are a multi-component system (Ogawa 2008)

Stress-dependent viscosity law

 $\eta(p, T, \omega) = \eta_0(p) exp[-E(T - T_{ref}) - F\omega/(1 + \omega)]$

 $\rightarrow\,$ dependence of eff. viscosity on the stress history

The damage parameter: $rac{d\omega}{dt}=\Gamma\sigma_{ij}\dot{arepsilon}_{ij}-rac{\omega}{ au}$

 $\rightarrow\,$ to realize a multi-valued nature of eff. viscosity

E, F are constants ω damage parameter

Model geometry and general parameters Fluid determination Experiment preparation and realization

Model geometry and general parameters

- rotating spherical annulus
- inner sphere heated, outer sphere cooled
- high voltage ⇒ central artificial force field

Nomenclature

gap widthdreference dynamic viscosity η_0 viscosity contrast Δ thermal diffusivity κ dielectric thermal coeff. of expansion γ angular velocity Ω

$d = r_o - r_i$

$$\Delta \eta = \eta_{max}/\eta_{min}$$

$$\gamma$$

 $\Omega = 2\pi n$

Dynamic viscosity

- Geoflow I $\eta \approx const$
- Geoflow II $\eta(T)$

Parameters

geometry

physical property of fluid

buoyancy to central gravity (artificial)

Coriolis force

radius ratio $\mu = \frac{r_i}{r_o}$ Prandtl number $Pr = \frac{\eta_0}{\rho\kappa}$ Rayleigh number $Ra = \frac{\rho\gamma}{r_o}$ Taylor number $Ta = (2, r_o)$

 $\operatorname{Ra} = \frac{\rho \gamma \Delta T g_e d^3}{\eta_0 \kappa}$ $\operatorname{Ta} = (2\rho \Omega d^2 / \eta_0)$

Scurtu et al.

GeoFlow

9/13

Model geometry and general parameters Fluid determination Experiment preparation and realization

Identification of the fluid viscosity

Temperature dependency for different experiment fluids possible filling the spherical shell system of GeoFlow

- Bayer silicone oil M5 → experimental fluid of GeoFlow I
- alkane (paraffins) and alkanole fluids:

Tetradecane ($C_{14}H_{30}$), Octanol ($C_8H_{18}O$), Nonanol ($C_9H_{20}O$)

(Handbook of Chemistry and Physics, B&T, 2008) ・ロット (雪) () () () ()

-

Study of the parameters according to technical requirements

- flashpoint
- transparency \rightarrow index of refraction
- $\bullet \hspace{0.1in} \text{safety guidelines} \hspace{0.1in} \rightarrow \hspace{0.1in} \text{Material Safety Data Sheet}$

Study of the parameters according to scientific requirements

- temperature dependent viscosity
- ${lackbdolde}$ dielectrical properties $\ \rightarrow\$ for setting up the high voltage potential
- \Rightarrow the alkanes offer the better dielectric performance than the alkanoles
- $\Rightarrow\,$ the alkanoles show a significant percentage increase of temperature dependency of viscosity in the relevant thermal working regime

-		
Pr	Ra	Ta
64.6	$2.86 \cdot 10^3 - 1.43 \cdot 10^5$	$5.37\cdot 10^1 - 3.36\cdot 10^6$
142	$1.67\cdot 10^3 - 8.17\cdot 10^4$	$2.77 \cdot 10^0 - 1.73 \cdot 10^5$
108	$9.59\cdot 10^3 - 4.80\cdot 10^5$	$6.90\cdot 10^1 - 4.31\cdot 10^6$
35.9	$2.57\cdot 10^3 - 1.29\cdot 10^5$	$6.83 \cdot 10^2 - 4.27 \cdot 10^7$
	64.6 142 108 35.9	Pr Ra 64.6 $2.86 \cdot 10^3 - 1.43 \cdot 10^5$ 142 $1.67 \cdot 10^3 - 8.17 \cdot 10^4$ 108 $9.59 \cdot 10^3 - 4.80 \cdot 10^5$ 35.9 $2.57 \cdot 10^3 - 1.29 \cdot 10^5$

Model geometry and general parameters Fluid determination Experiment preparation and realization

Experiment preparation

- GeoFlow refurbishment with low costs
- preliminary experiments
 - $\rightarrow~$ characteristics of the flow in a rectangular cavity
- preparation of accompanying laboratory experiments
 - \rightarrow under terrestrial conditions
 - $\rightarrow~$ spherical gap flow approaches

Experiment realization

- experiment strategy \rightarrow Experiment Science Requirements (ESR), ...
- $\bullet~$ experiment realization $~\rightarrow~$ comparison with GeoFlow I

Numerical simulations

- extension of the pseudo-spectral code used for GeoFlow I
 - → R. Hollerbach: A spectral solution of the magneto-convection equations in spherical geometry, Int. J. Numer. Meth. Fluids 32 (2000)
- implementation of temperature dependent viscosity
 - $\rightarrow~$ choose of an adequate temperature dependent viscosity law
 - $\rightarrow~$ implementation of the viscosity law in the numerical code
 - \rightarrow accomplishment of numerical simulations in the experiment parameters range

Reflight of GeoFlow

Outlook - GeoFlow II

- reflight planned for 2009/2010
- for GeoFlow II similar experiment procedure like GeoFlow I
- the experimental fluid is substitute with a strong temperature dependent fluid for simulate mantle convection (Nonanol (C₉H₂₀O) or Octanol (C₈H₁₈O))
- scientific analyses are comparable to those for GeoFlow I, but convective behavior is expected different to the results by GeoFlow I

GeoFlow experiment is available

- $\rightarrow\,$ loocking for the best fluid model to verify the experimental results
- $\rightarrow~$ to verify with the experiment existing numerical results from mantle dynamics

