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Outline 

 Background 
 Technical details 
 Examples 

See 2 recent PEPI papers for more details: 
Tackley, P. J., Modelling compressible mantle convection with
 large viscosity contrasts in a three-dimensional spherical shell
 using the yin-yang grid 
Hernlund, J. W. and P. J. Tackley, Modeling mantle convection in
 the spherical annulus. 



Stag3D: 1992- 

1993 GRL 
1998 AGU monograph 

Compressible TALA 

3D cartesian 
2D cartesian, axisymmetric 
     or cylindrical 



Self-consistent 
plate 

tectonics 
(2000ab) 



Cartesian: 
how to make 

spherical? 



‘Yin-Yang’ grid 
(Kageyama, 

JAMSTEC ESC)  

 Orthogonal => 
simple finite-
differences 
possible 

 Overlapping 
region (6% of 
total) 



Minimum overlap YY grid 

 Eliminates differing solutions in overlap 
 Jagged boundaries of subgrids 
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Staggered grid primitive 
variables 



Compositional treatment uses 
tracers 

 Track 
composition on 
Lagrangian 
tracers  

 (Eulerian grid, as 
before) p,T
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Truncated anelastic equations 



Spherical stress divergences 



Iteration procedure (velocity/
pressure) 

 Pointwise (~like Patankar’s SIMPLER) 
 Update x-velocities 
 Update y-velocities 
 Update z-velocities 
 Update pressure to reduce div.v 

 Cellwise (‘pressure coupled’) 
 Solve pressure + 6 surrounding v components 

simultaneously 
 Converges better but slower 
 Not yet implemented in new version 





Iterations: details 
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Velocity correction 

Pressure correction 
(to reduce divergence) 

Velocity update
 for pressure
 correction 



Calculation of dR/dP 
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‘pseudo-compressibility’ also gives 1/viscosity factor (Kameyama) 
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Multigrid solvers 

 Gauss-Seidel or Jacobi iterations effectively 
smooth short-wavelength error (residual) but 
long-wavelengths take a long time 

 Therefore smooth the residual on grids with 2* 
the spacing, then 4* spacing, 8* spacing etc. 

  Ideally leads to convergence in fixed #iter 
regardless of grid size 

 Problem: if viscosity varies rapidly, not correctly 
represented at coarse levels => slow or non-
convergence 



Multigrid cycles 



Multigrid viscous flow solvers are well 
established in the community 

  Finite-difference const visc (potentials) 
  Sotin & Parmentier 1994: Cartesian 

  Finite volume/difference, primitive variable, variable viscosity 
  Tackley 1993 (compressible) 
  Trompert&Hansen 1996: implicit T, improved viscosity restriction 
  Auth+Harder 1999: 2D, FAS, SCGS smoother 
  Albers 2000: FAS, mesh refinement 
  Hernlund+Tackley 2003: Cubed sphere (constant viscosity) 
  Kameyama 2004: Cartesian, Earth Simulator 
  Choblet 2004: Cubed sphere 
  Tackley 2006: Yin-yang sphere 

  Finite-element, variable viscosity 
  TERRA (1980s-): Spherical, isocahedral 
  CITCOM (~1993): Cartesian, rectangular 
  CITCOM-S (1997?): Spherical, 8-sided elements 



Parallelization 

 Cartesian or single spherical block 
 Straighforward 3D domain decomposition, 

simple communication patterns, 100s CPUs 
 Care needed on coarse grids 

 Yin-Yang sphere 
 2 blocks on different node(s) 
 Each block divided in 4 while maintaining 

simple communication 
 Then decompose in radius 
 Current version up to 64 cpus. 



Domain decomposition 

CPU 0 CPU 1

CPU 3CPU 2

CPU 5CPU 4

CPU 6 CPU 7

Single CPU 8 CPUs



Boundaries 
 When updating points at 

edge of subdomain, need 
values on neighboring 
subdomains 

 Hold copies of these locally 
using “ghost points” 

 This minimizes #of 
messages, because they 
can be updated all at 
once instead of individually 

=ghost points



Boundary communication 

Step 1: x-faces

Step 2: y-faces (including
 corner values from step 1)

[Step 3: z-faces (including corner
 values from steps 1 & 2)]

Doing the 3 directions sequentially avoids the need for
 additional messages to do edges & corners (=>in 3D, 6
 messages instead of  26)



StagYY Performance 



Up to 1.2 billion unknowns on only 32 nodes (64 cpus) 





Advecting 20M tracers 

 Excellent efficiency 



How about other aspects of 
performance? 

 The main problem facing these 
codes is lack of robustness to large 
viscosity variations (e.g., orders of 
magnitude per grid point) 

 Accurate treatment of non-diffusive 
chemical variations is also a major 
challenge 



Problem: Not robust with large 
viscosity variations! 

From Albers 2000
V=dashed
F=long-dashed
W=dot-dashed
Mod-V (dotted)
Mod-W (solid)



  Convergence 
depends on 3D 
structure 

  Additional 
coarse iterations 
greatly helps! 

From Albers
V=dashed
F=long-dashed
W=dot-dashed
Mod-V (dotted)
Mod-W (solid)



The solution: Matrix-dependent 
pressure prolongation 

The pressure correction is ~proportional to viscosity 
If fine-grid cell has much lower viscosity than coarse-grid 
cell, correction is much too large => divergence! 

Tried weighting prolongation according to viscosity:  
 can help, but sometimes gets worse 

Instead weight using 
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Prolongation & restriction on 
staggered grid 



Matrix-dependent pressure 
prolongation scheme  
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Robust for any viscosity field (so far) 



54000* between adjacent points 196000* between adjacent points 



ROBUST to large viscosity 
variations 

 Case above has 13+ orders of 
magnitude total, 6 orders between 
adjacent cells 

C T visc 



Geometries modelled 
Change with single switch 

full sphere regional spherical Cartesian -3D 

-2D Spherical axisymmetric 
Spherical annulus 



2D Spherical Annulus geometry 
(Hernlund & Tackley, 2008) 









‘Advanced’ features 

 Geoid 
 Self-consistent mineralogy 



Geoid & dynamic 
topography 

(me, Nakagawa & 
Stegman) 



Self-consistent phase changes / mineralogy 
(with J. Connolly & F. Deschamps 

 Mantle rocks have complicated phase 
diagrams that are only crudely 
approximated in typical convection 
calculations 

 Phase assemblage depends on 
composition, temperature, pressure 

 => Calculate phase assemblage and 
resulting physical properties by minimization 
of free energy using PERPLEX by J. Connolly 

  Integrate into large-scale dynamical 
simulations of thermo-chemical convection 
of planets 



Mineralogy: complex sequence of 
composition-dependent phase 

changes 

 From Ita and Stixrude 



Calculated phase relationships 

Determined by Free Energy minimization technique: PERPLEX 
[Connolly, 2005] 

€ 

G T,P( ) = ni T,P( )µi T,P( )
i
∑

Data for components for two 
materials from [Stixrude and 
Lithgow-Bertelloni, 2005]  

Solid line: Solidus 

Component Harzburgite 
(mol%) 

MORB 
(mol%) 

SiO2 36.04 41.75 
MgO 57.14 22.42 
FeO 5.41 6.00 
CaO 0.44 13.59 
Al2O3 0.96 16.24 

Physical properties (density) 



Numerical example: Thermo-
chemical with PERPLEX properties  

Time = 4.5Gyrs after initial state 



Examples of 
applications 



The usual benchmark tests 



Transitions mobile->sluggish->stagnant lid 

Iike Ratcliff et al 1996 





Generation of 
plate tectonics 

Hein van Heck & me, 
GRL 2008 



Henri Samuel:  
Core formation (G3, 2008) 



Slab-CMB
 interaction 

(me) 



Earth evolution  (Nakagawa & me) 

Temp. Comp. PPV S-anomalies 

0.0% 

1.8% 

3.6% 





  episodic “subduction”   
  Thin crust 
  Layer above CMB  

Temperature  Composition 

M. Armann & me 



Mars 
- after 1 billion years 

black lines             Ra = 3e+6 

red lines                Ra = 5e+6 

green lines            Ra = 7e+6 

blue lines: Ra = 3e+6, no melting 

   Temperature        Crust. thickness 

Tobias Keller & me 



Summary of StagYY 
 Many geometries including spherical shell

 using the yin-yang grid 
 Efficient & scalable multigrid solver,

 tracers for composition 
 Large viscosity contrasts due to MDPI 
 Compressible truncated anelastic 
 Self-consistent mineralogy 
 Melting, melt migration, crustal formation 
 Self-gravitational geoid 
 Parameterized core cooling 
 Self-contained – no libraries except MPI 



Future extensions 

 Local grid refinement (adaptive?) 
 Visco-elasticity 




