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Questions about the mantle system
(chemistry and rheology)

- What causes and controls plate tectonics?
Spatial strain localization, memory/damage
Why (only) Earth?

Temporally cyclic, uniform, or punctuated?

- Thermo-chemical evolution of Earth
Role of H 0 and C cycling, biosphere

Role of continental dynamics
- Role of the lower thermal boundary and plumes?



Mantle heat transport constraints
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Present day heat budgets
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Seafloor age constraint  ageua
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= Product of plate reorganizations and spreading rate variations

= Besides heat flow, implications for relative sealevel, ocean
geochemistry, and ocean circulation



Present-day seafloor age dlstrlbutlon

= Triangular age ]
distribution may 3-
indicate j

— Uniform
subduction rate,
unlike thermal
convection
(Parsons, 1582)

— Constant seafloor
production since
180 Ma
(Rowley, 2002)

= Continents and
sphericity will affect ]
age distribution P
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= age o from I\/Iuller et al (2008)
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= Total area constant

A 1-D model of seafloor
age distribution (o) over time

= Model equation
T = age t= time
® = destruction rate

= Stationary subduction
probability ¢

C = production rate
= a(t=0,t)=C ()

Becker et al. (2009)



Subduction probability for constant
production and triangular distribution
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Alternative age distributions for
constant production rates I
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Alternative age distributions for
constant production rates II

Age distribution
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Alternative age distributions for
constant production rates III
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Time-variable
seafloor production —
Synthetic example

= Slab-pull (sgrt(age))
probability
= Production rate variable at

10% amplitude with 25 Myr
period

area per age o [km?/Myr]

area per age o [km?/Myr]

seafloor age t [Myr]



Time-variable s
production — E
n . ag = 3
Best-fit variability for g
present day age 2
= Single harmonic production :
variation at 6% amplitude and =
60 Myr period =

= Misfit y* = 3 compared to y* = g
4.8 for steady triangular ;)

= For two harmonics: ¥ = 1.9 -
= Broad trends are captured by g
©

1-D model, details will depend
on ridge jumps, continents etc.
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Seafloor age reconstructions

140 Ma ~ 110 Ma B

IR 200 aget([Myr] I | age < [Myr]
0 50 100 150 200 250 - | 8 150 200 250
; f— Tlm

| age  [Myr] g' | | age © [Myr]

T 1
0 50 100 150 200 250 0 50 100 150 200 250
Miiller et al. (2008)




Reconstructed age distributions

140 Ma
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Geologically inferred
seafloor productlon rate varlatlons

(L

= Muller et aI '

(o))
R

production rate C [km?/yr]

time [Ma]

= ~20% variability

Gaffin (1987); Muller et al. (2008)



Best-fit spreading rate variations

] Fit to ages — Muller
1 over 140 Ma — Gaffin

1 (130/270 Myr) — harmonic 1
harmonic 2

-ﬂ

()]

(6)
i * 0 T N T T ——

Fit to present-"
day age
(60/360 Myr)

IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

production rate C [km?/yr]

Becker et al. (2009)



Age misfit as a function of geologically
inferred spreading variability
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oceanic heatflow Q/Q(i=0)

Variations in heat flow over 60 Ma

s,
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= Loyd, GJ reconstruction
= Loyd, Hall reconstruction

time [Ma]

Based on
Integration
over seafloor
ages from Xu
et al. (2006)
using a
modified half-
space cooling
law

Significant
decrease in
heat flow and
relative
sealevel

Harrison (1980); Loyd et al. (2007)



oceanic heatflow Q/Q(i=0)

Variations in heat flow over 120 Ma
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oceanic heatflow Q/Q(i=0)

Variations in heat flow over 120 Ma
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Conclusions from
seafloor age modeling

Slab-pull subduction probability and variable seafloor
production rate work as well as, or better than, the
triangular, constant scenario (cf. Demicco, 2004)
Slab-pull plus bending might provide good
parametrization of oceanic plate system

Heat flow has decreased by ~0.25%/Ma over Cenozoic
(cf. Harrison, 1980; Loyd et al., 2007)

Indication of ~60 Myr and ~270 Myr periodicity in
seafloor production

Plate tectonics is not about to shut down



Context for heat flow variations:
Parameterized convection models

= Can use volume and time-averaged
equation for mantle temperature 7 to gain
some insight

= Ingredients:

— Assumptions about radiogenic heating,
Urey ratio y(0) for present day

— Scaling relationship between Rayleigh
number (7 (7, viscosity 1)) and heat flux

= Assumes traditionally that boundary )
layer analysis for isochemical I'
convective system holds, B ~ 1/3

QCOI’ZV@CCK:RG(T’ n)ﬁ




temperature [° C]

The Tozer (1972) thermostat
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The thermal catastrophe for p = 1/3

Different Urey ratios \

Bound on temperatures, assuming
(r_nantle was never more than 30% hotte_r\
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Chemical boundary layers
and bending

= Viscous dissipation in slab bending of
importance for plate velocities (Conrad & Hager,
1999a; Becker et al., 1999: Buffett, 2006)

— B 4 (Conrad & Hager, 1999b)

= Fractionation (melting column f( 7)) at ridges
affects density and viscosity (via volatiles) (i.e.

thermo-chemical boundary: layers, e.g. LLee et
al., 2005)

— B 4{ (Korenaga, 2003)
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temperature T/ T(t = 0)
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temperature
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0
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= Fluctuations in heat flow are,
of course, expected from
geodynamical models

= +/- 0.1%/Ma for mobile lid
(e.g. Moresi & Solomatoyv,
1999), more for dramatic
reorganizations (e.g. Stein et
al., 2004; Zhong et al., 2007) 2

= Dearth of “realistic” models p
with continents and visco-
plastic rheology (not much

losiger) ~ | Heat flow from spherical,
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surface heat flow

Heat flow from spherical,
15 Nn(T, o) flow

§.018 0.02

20 | e e

urface heat flow

10 L L L
0.01 0.012 0.014 0.016 0.018 0.02

time



temperature T/ T(t = 0)

1.3
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1.3
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Context of heat flow variability

= Recent decrease in heat flow much larger than
secular cooling, indicating periodic fluctuations

= Change in heat flow since 120 Ma such that
Urey ratio at present may be an over-, rather
than an underestimate

= Thermo-chemical scaling of heat transport may.
be required to avoid thermal catastrophe in

Archean



Constraints from dynamical
plume models
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Constraints on internal heating
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Plate tectonics and heating mode

temp. Internal
: heating

log 1o(viscoslly)
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Foley & Becker (in press)
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Evaluating the hetspot ;sjtrllog
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S tomographic models; 12 likely deep plumes
advection vs. no advection

dvg/vy( %)
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Boschi et al. (2007)
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Conclusions

- Some hotspots caused by deep plumes

- Correlations with tomography are statistically highly
significant when conduit advection is taken into
account

- Most deep plumes are on top of the Africa and South
Pacific large low velocity zones

- Freely advected plume sources are preferred over
fixed sources, no pinning on piles required

- Further exploration of petrological and geochemical
data will help tighten plume constraints on heat flux
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