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• Incompressible Stokes flow with general constitutive tensor.

Constitutive

flow it is convenient to decompose the stress into its deviatoric and volumetric compo-6

nents according to σij = τij − pδij, where p is the dynamic pressure. If we let ui denote7

the fluid velocity, then the conservation of momentum and mass is given by;8

τij,j − p,i + fi = 0,

− ui,i = 0,
(1)

together with the boundary conditions;9

ui = gi, on Γgi

σijnj = hi, on Γhi ,
(2)

where ni is the unit outward normal vector to the boundary of Ω. To uniquely define10

the pressure field we also require that11 ∫
Ω

p dV = ps, (3)

for some constant ps. The strain rate12

ε̇ij = 1
2(ui,j + uj,i), (4)

is related to the deviatoric stress τij via13

τij = Λijklε̇kl, (5)

where Λijkl is referred to as the constitutive tensor. By inserting the constitutive rela-14

tionship (5) and the definition of the strain rate (4) into the momentum equation (1),15

the viscous flow problem can be posed in terms of the unknowns ui, p. Here we consider16

a spatial discretization given the Finite Element Method (FEM), which applied to (1)17

yields a discrete saddle point system Ax = b;18  K G

GT 0


 u

p

 =

 f

h

 , (6)

where K ∈ Rm×m is a symmetric positive definite matrix associated with the discrete19

form of τij,j and G ∈ Rm×n, m > n is associated with the discretized gradient operator.20

Due the presence of the zero matrix in the (2, 2) block, A is indefinite. Formulations21

leading to systems of the form of (6) have been used extensively in the geodynamics22

community for modelling mantle convection (Baumgardner, 1985; Moresi and Soloma-23

tov, 1995; Trompert and Hansen, 1996; Tackley, 1996; Albers, 2000; Kameyama et al.,24

2005), lithospheric deformation (Fullsack, 1995; Wijns et al., 2005; Gerya and Yuen,25

2003; Kaus and Schmalholz, 2006) and diaprism (Poliakov and Podladchikov, 1992).26

The matrices in the block system (6) are generally sparse, but potentially can become27

very large if high resolution, three dimensional simulations are to be performed. In such28

situations, the application of direct solution methods is generally not feasible due to29
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in Ω
}

We formulate the problem entirely in terms of velocity u, and pressure p.
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We consider a linear, isotropic constitutive relationship, thus the deviatoric stress is given by

τij = 2ηε̇ij(u), (9)

where η is the fluid viscosity and the strain rate ε̇ij , is expressed as

ε̇ij(u) =
1
2

(ui,j + uj,i) .

A unique pressure in Eq. (5) is defined by the additional constraint;∫
Ω

p dV = 0.

To define the variational problem, we define the following solution and test spaces for the velocity

V :=
{

u ∈ H1(Ω)d : u = h on ∂ΩD

}
, (10)

V0 :=
{

v ∈ H1(Ω)d : v = 0 on ∂ΩD

}
(11)

and solution and test space for the pressure

P :=

{
q ∈ L2(Ω) :

∫
Ω

q dV = 0

}
. (12)

For Eq.’s (5) and (6) we have the following variational problem: Find (u, p) ∈ V × P such that

A(v,u) + B(v, p) + B(u, q) = F (v), (13)

is satisfied for all (v, q) ∈ V0 × P, where the bilinear forms A(., .), B(., .) are given by

A(v,u) :=
∫

Ω
2η

d∑
i.j=1

ε̇ij(u)ε̇ij(v) dV (14)

B(v, p) := −
∫

Ω
p∇ ! v dV (15)

and F (.) is defined below

F (v) =
∫

Ω
v ! f dV −

∫
∂ΩN

v ! h dS. (16)

The stabiilised bilinear form we use defines a new variational problem via

A(v,u) + B(v, p) + B(u, q)− C(p, q) = F (v), (17)

where the stabilisation operator C(., .) is given as

C(p, q) :=
∫

Ω

1
2η

(p−Π0p) (q −Π0q) dV.

where Π0 is the L2 projection which maps C0 continuous pressure spaces into the space of constant
functions.

For numerical work, we partition Ω into N non-overlapping quadrilateral elements K, such that
Ω = ∪N

e=1K. The set of all elements is denoted via Th. The stabilisation permits equal order basis
functions to be used to approximate the velocity and pressure spaces, uh and ph respectively. We
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 K G

GT 0


u

p

 =

f

h

 (1)

 K G

GT C


X X

X X


−1

(2)

1

Stability issues 

• Variational problem
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where Π0 is the L2 projection which maps C0 continuous pressure spaces into the space of constant
functions.

For numerical work, we partition Ω into N non-overlapping quadrilateral elements K, such that
Ω = ∪N

e=1K. The set of all elements is denoted via Th. The stabilisation permits equal order basis
functions to be used to approximate the velocity and pressure spaces, uh and ph respectively. We

3

Here, PI is L2 projection operator which maps C0 functions
 onto the space of constant functions.

focus on low order methods andl utilise a Q1 basis functions over element for both uh and ph. To this
end, we define the following finite dimensional subspaces for the velocity solution Vh ⊂ V , velocity
test function Vh

0 ⊂ V0 and pressure solution P ⊂ Ph. Accordingly we have,

Vh :=
{

uh ∈ V : uh|K ∈ Q1, ∀K ∈ Th

}
, (18)

Vh
0 :=

{
vh ∈ V0 : vh|K ∈ Q1, ∀K ∈ Th

}
(19)

and solution and test space for the pressure

Ph :=

{
qh ∈ P : qh|K ∈ Q1, ∀K ∈ Th

}
. (20)

Using the spaces in Eq.’s (18), (19) and (20) we define the discrete stabilised variational problem.

A(vh,uh) + B(vh, ph) + B(uh, qh)− C(ph, qh) = F (vh), (21)

The finite dimensional spaces for velocity and pressure are defined via the basis functions Ni and
Mk for the velocity and pressure respectively.

We utilise an isoparemtric formulation, in which we have an element-wise mapping

Je : K %−→ !∀K ∈ Th.

The stiffness matrices are then given as

A(vh,uh) =
∑

!∈Th

Ae; Ae = [aij ], aij =
∫

!
BT

i DBj‖Je‖dV (22)

B(uh,ph) =
∑

!∈Th

Be; Be = [bij ], bij = −
∫

!
Mi∇ " Nj‖Je‖dV (23)

The projection operator Π0 is defined element-wise,

Π0p
h
∣∣
! =

1
‖Je‖

∫
!

ph dV, ∀K ∈ Th

For the Q1 basis function employed where, where ph on each element e is expressed via ph(x) =∑4
k=1 Mkpe

k, this expression reduces to (in two-dimensions)

Π0p
h
∣∣
! =

1
4

(pe
1 + pe

2 + pe
3 + pe

4) .

We define the average element viscosity as

η̄e =
∫

Ω
η(x) dV

/∫
Ω

1 dV
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1
η̄e
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(
qh −Π0q
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) ∣∣

! dV.

Ce =
1
η̄e

∫
!

(I −Π0) (I −Π0) ‖Je‖dV

=
1
η̄e

(
M e − qqT ‖Je‖

) (24)
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Dohrmann & Bochev,  2004

We consider a linear, isotropic constitutive relationship, thus the deviatoric stress is given by

τij = 2ηε̇ij(u), (9)

where η is the fluid viscosity and the strain rate ε̇ij , is expressed as

ε̇ij(u) =
1
2

(ui,j + uj,i) .

A unique pressure in Eq. (5) is defined by the additional constraint;∫
Ω

p dV = 0.

To define the variational problem, we define the following solution and test spaces for the velocity

V :=
{

u ∈ H1(Ω)d : u = h on ∂ΩD

}
, (10)

V0 :=
{

v ∈ H1(Ω)d : v = 0 on ∂ΩD

}
(11)

and solution and test space for the pressure

P :=

{
q ∈ L2(Ω) :

∫
Ω

q dV = 0

}
. (12)

For Eq.’s (5) and (6) we have the following variational problem: Find (u, p) ∈ V × P such that

A(v,u) + B(v, p) + B(u, q) = F (v), (13)

is satisfied for all (v, q) ∈ V0 × P, where the bilinear forms A(., .), B(., .) are given by

A(v,u) :=
∫

Ω
2η

d∑
i.j=1

ε̇ij(u)ε̇ij(v) dV (14)

B(v, p) := −
∫

Ω
p∇ ! v dV (15)

and F (.) is defined below

F (v) =
∫

Ω
v ! f dV −

∫
∂ΩN

v ! h dS. (16)

The stabiilised bilinear form we use defines a new variational problem via

A(v,u) + B(v, p) + B(u, q)− C(p, q) = F (v), (17)

where the stabilisation operator C(., .) is given as

C(p, q) :=
∫

Ω

1
η

(p−Π0p) (q −Π0q) dV.

where Π0 is the L2 projection which maps C0 continuous pressure spaces into the space of constant
functions.

For numerical work, we partition Ω into N non-overlapping quadrilateral elements K, such that
Ω = ∪N

e=1K. The set of all elements is denoted via Th. The stabilisation permits equal order basis
functions to be used to approximate the velocity and pressure spaces, uh and ph respectively. We

3

• Stabilised formulation
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4

where q = ( 1
4 , 1

4 , 1
4 , 1

4 )T and Me is the element mass matrix,

M e = [mij ], mij =
∫

!
Mi(ξ)Mj(ξ)‖Je‖ dV.

4 Block preconditioners for A

5 Preconditioners for S

5.1 Mass matrix

For isoviscous Stokes flow with η = 1, the Schur complement associated with non-stabilised finite
element models (C = 0), is spectrally equivalent to the pressure mass matrix,

S ∼ M =
∑

!∈Th

M e; M e = [mij ], mij =
∫

!
MiMj‖Je‖ dV

ŜM =
∑

!∈Th

Ŝ
e

M ; Ŝ
e

M = [ŝij ], ŝij = − 1
η̄e

∫
!

MiMj‖Je‖ dV (25)

5.2 Discrete algebraic commutator

6 Numerical examples

6.1 Test problems

To study the performance of the

6.2 Convergence of the discretisation

In order to examine and performance of the iterative methods,

6.3 Preconditioning A

6.4 Performance of S

5

• Benefits

• Used by

• No systematic studies for variable viscosity

Parameter free
No macro elements
Simple mesh structure can be used
Data structure re-use
Low order and stable!

Rhea:               Burstedde et. al., 2008
Underworld:     Moresi et. al., 2008
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• Is the discretisation appropriate for variable viscosity flow?

• Q1-P0 examined by Moresi et. al., 1996

• Dohrmann & Bochev error estimates
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M ×N unknowns its. avg. inner its. CPU time (sec)

2002 80,802 13 3 4.99

2842 161,450 14 4 15.59

4002 321,602 13 4 30.03

5662 642,978 14 4 71.19

8002 1,283,202 13 4 131.20
Table 4
REAL: CPU times (seconds) as a function of grid size. Domain [0, 1]× [0, 1]. Sinker viscosity
function. ηin = 106, ηout = 1,∆η = 106.

M ×N unknowns its. avg. inner its. CPU time (sec)

2002 80,802 5 3 1.91

2842 161,450 5 4 6.00

4002 321,602 5 4 11.55

5662 642,978 5 4 27.38

8002 1,283,202 5 4 50.46
Table 5
DIVIDE BY 2.6: CPU times (seconds) as a function of grid size. Domain [0, 1]× [0, 1]. Sinker
viscosity function. ηin = 106, ηout = 1,∆η = 106. Used a different stopping condition

∆η u p

102 1.99 1.49

104 1.97 1.37

108 1.91 1.24
Table 6
L2 convergence rates for solkz. M ×N = {16, 32, 64, 128, 256}.

2

D.A. May, L. Moresi / Physics of the Earth and Planetary Interiors 171 (2008) 33–47 39

and only requires the operators used to define the original prob-
lem in Eq. (6). Whilst derived differently, expression (52) is the
Schur complement preconditioner introduced in Elman (1996) and
known as the BFBt preconditioner. In practice using Eq. (51) does
not result in Z ≈ 0. It has been shown that simple diagonal scaling
significantly improves the approximation in Eq. (47) (Elman et al.,
2006). The scaled BFBt preconditioner is given by

Ŝ−1
sb = (G̃TG̃)

−1
G̃TK̃G̃(G̃TG̃)

−1
, (53)

where

G̃ = M−1/2
d G, K̃ = M−1/2

d KM−1/2
d (54)

and Md is the diagonal of the velocity mass matrix.
The scaled LSC preconditioner suffers from a similar problem

to the approach of Kay, in that it requires operators to be defined
which are not part of the original problem (6). However, compared
to defining the convection-diffusion operator on the pressure space,
the construction of the mass matrix is well defined for all basis
functions. Instead of the scaling (54), we use the scaling defined in
Section 2.6 whenever the BFBt preconditioner is used as this scaling
incorporates the effects of local variations in viscosity. Using Eq.
(34) we redefine the scaled operators in Eq. (54) to be

G̃ = Gs = X−1
1 GX−T

2 , K̃ = Ks = X−1
1 KX−T

2 . (55)

We found that the scaling (55) greatly improves the convergence
rate over the standard (non-scaled) BFBt preconditioner by ensur-
ing that Z is closer to zero. See Section 4.4 for evidence of this. The
scaling modifies the commutator expression in Eq. (47) to:

X−1
1 [KK−1

d G − G(Kp)s]X
−1
2 ≈ 0 (56)

in which the scaled operator (Kp)s = (GTK−1
d G)

−1
GTK−1

d KK−1
d G and

K−1
d = X−2

1 . This relation is closely related to the SIMPLE based
scaled commutator discussed in Elman et al. (2006) with their
choice of M2 = Im and M1 = diag(K), as from our definitions, Kd =
X2

1 will be approximately equal to M1. For the isotropic constitutive
relationships we consider, the maximum value within each row will
occur on the diagonal, thus yielding equality between M1 = diag(K)
and X2

1 . This choice for the scaling appears to be new, and has the
desired feature that it requires no auxiliary operators outside of the
definition of Eq. (6).

3.2.2. Implementation
Each application of the scaled variant of the BFBt preconditioner

requires us to evaluate z = Ŝ−1
sb r. The procedure to define this oper-

ation is shown below:

solve for z̄ : L̃pz̄ = r,
compute : t1 = Gsz̄,
compute : t2 = Kst1,
compute : z̄ = GT

s t2,
solve for z : L̃pz = z̄.

(57)

Recall that the operator L̃p = GT
s Gs is subject to pure Neumann

boundary conditions, thus it contains a constant null space. When
solving systems such as L̃pz = r, the null space is removed by the
procedure described in Section 2.4. As each application of the
BFBt preconditioner requires two Poisson solves to be performed,
we wish to use an effective preconditioner. To achieve this, we
explicitly form the matrix–matrix product L̃p = GT

s Gs and define a
preconditioner using an incomplete Cholesky, ICC(k) factorization
of L̃p. Alternatively we could have defined the operator GT

s Gs as a
matrix free object, but this limits our choice of possible precon-
ditioners. The CPU time required to form L̃p is ameliorated by the
gain achieved by using ICC(k) as opposed to having to use a matrix-
free operator which is more difficult to precondition. In addition,
the manner in which the diagonal scaling was constructed helps
reduce the condition number of L̃p as X2 was defined by requiring
that GT

s Gs ≈ In. This should also help improve the convergence of
any Krylov method used to define z = L̃−1

p r.

4. Numerical experiments

4.1. Prototypical geodynamic problems

To study the convergence behavior of the SCR and FC methods
applied to Eq. (6), we examined some simple problems that are rep-
resentative of geodynamic processes. We solve the incompressible
Stokes equations in the two-dimensional domain ! ≡ (0, 1)×(0, 1).
The constitutive tensor used was isotropic, and thus locally "ijkl
is completely defined by the single parameter #. The distinction
between each model is the form of the viscosity function used.
The viscosity structures we consider are (i) an exponentially vary-
ing viscosity with depth (Revenaugh and Parsons, 1987), (ii) a
step function viscosity in x (Zhong, 1996) and (iii) a step function
viscosity in both x and y. The viscosity structure and bound-
ary conditioners for the three models considered are provided in
Fig. 2.

The forcing term used was f = (0, −$g). For the models SOLKY
and SOLCX, we used $ = − sin(ny%y) cos(nx%x) with g = 1.0 and
ny = 1, nx = 1. In all cases the background viscosity used was
#0 = 1. The form of the viscosity function used in SOLKY was
# = #0 exp(2By). In this model, we considered the viscosity contrast

Fig. 2. Definition of the test problems. The viscosity structures are named (from left to right) SOLKY, SOLCX, and SINKER. In each of the three models, we impose the boundary
conditions uini = 0 and &ijnj = 0 on each side, where ni is the unit outward normal vector to the boundary of !.

(Revenaugh & Parsons, 1987)
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Step function viscosity: step(x)

10

M ×N unknowns its. avg. inner its. CPU time (sec)

2002 80,802 13 3 4.99

2842 161,450 14 4 15.59

4002 321,602 13 4 30.03

5662 642,978 14 4 71.19

8002 1,283,202 13 4 131.20
Table 4
REAL: CPU times (seconds) as a function of grid size. Domain [0, 1]× [0, 1]. Sinker viscosity
function. ηin = 106, ηout = 1,∆η = 106.

M ×N unknowns its. avg. inner its. CPU time (sec)

2002 80,802 5 3 1.91

2842 161,450 5 4 6.00

4002 321,602 5 4 11.55

5662 642,978 5 4 27.38

8002 1,283,202 5 4 50.46
Table 5
DIVIDE BY 2.6: CPU times (seconds) as a function of grid size. Domain [0, 1]× [0, 1]. Sinker
viscosity function. ηin = 106, ηout = 1,∆η = 106. Used a different stopping condition

∆η u p

102 1.99 1.49

104 1.97 1.37

108 1.91 1.24
Table 6
L2 convergence rates for solkz. M ×N = {16, 32, 64, 128, 256}.

∆η u p

102 1.91 0.49

104 2.00 0.49

108 2.00 0.78
Table 7
L2 convergence rates for solcx. M ×N = {16, 32, 64, 128, 256}.
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and only requires the operators used to define the original prob-
lem in Eq. (6). Whilst derived differently, expression (52) is the
Schur complement preconditioner introduced in Elman (1996) and
known as the BFBt preconditioner. In practice using Eq. (51) does
not result in Z ≈ 0. It has been shown that simple diagonal scaling
significantly improves the approximation in Eq. (47) (Elman et al.,
2006). The scaled BFBt preconditioner is given by

Ŝ−1
sb = (G̃TG̃)

−1
G̃TK̃G̃(G̃TG̃)

−1
, (53)

where

G̃ = M−1/2
d G, K̃ = M−1/2

d KM−1/2
d (54)

and Md is the diagonal of the velocity mass matrix.
The scaled LSC preconditioner suffers from a similar problem

to the approach of Kay, in that it requires operators to be defined
which are not part of the original problem (6). However, compared
to defining the convection-diffusion operator on the pressure space,
the construction of the mass matrix is well defined for all basis
functions. Instead of the scaling (54), we use the scaling defined in
Section 2.6 whenever the BFBt preconditioner is used as this scaling
incorporates the effects of local variations in viscosity. Using Eq.
(34) we redefine the scaled operators in Eq. (54) to be

G̃ = Gs = X−1
1 GX−T

2 , K̃ = Ks = X−1
1 KX−T

2 . (55)

We found that the scaling (55) greatly improves the convergence
rate over the standard (non-scaled) BFBt preconditioner by ensur-
ing that Z is closer to zero. See Section 4.4 for evidence of this. The
scaling modifies the commutator expression in Eq. (47) to:

X−1
1 [KK−1

d G − G(Kp)s]X
−1
2 ≈ 0 (56)

in which the scaled operator (Kp)s = (GTK−1
d G)

−1
GTK−1

d KK−1
d G and

K−1
d = X−2

1 . This relation is closely related to the SIMPLE based
scaled commutator discussed in Elman et al. (2006) with their
choice of M2 = Im and M1 = diag(K), as from our definitions, Kd =
X2

1 will be approximately equal to M1. For the isotropic constitutive
relationships we consider, the maximum value within each row will
occur on the diagonal, thus yielding equality between M1 = diag(K)
and X2

1 . This choice for the scaling appears to be new, and has the
desired feature that it requires no auxiliary operators outside of the
definition of Eq. (6).

3.2.2. Implementation
Each application of the scaled variant of the BFBt preconditioner

requires us to evaluate z = Ŝ−1
sb r. The procedure to define this oper-

ation is shown below:

solve for z̄ : L̃pz̄ = r,
compute : t1 = Gsz̄,
compute : t2 = Kst1,
compute : z̄ = GT

s t2,
solve for z : L̃pz = z̄.

(57)

Recall that the operator L̃p = GT
s Gs is subject to pure Neumann

boundary conditions, thus it contains a constant null space. When
solving systems such as L̃pz = r, the null space is removed by the
procedure described in Section 2.4. As each application of the
BFBt preconditioner requires two Poisson solves to be performed,
we wish to use an effective preconditioner. To achieve this, we
explicitly form the matrix–matrix product L̃p = GT

s Gs and define a
preconditioner using an incomplete Cholesky, ICC(k) factorization
of L̃p. Alternatively we could have defined the operator GT

s Gs as a
matrix free object, but this limits our choice of possible precon-
ditioners. The CPU time required to form L̃p is ameliorated by the
gain achieved by using ICC(k) as opposed to having to use a matrix-
free operator which is more difficult to precondition. In addition,
the manner in which the diagonal scaling was constructed helps
reduce the condition number of L̃p as X2 was defined by requiring
that GT

s Gs ≈ In. This should also help improve the convergence of
any Krylov method used to define z = L̃−1

p r.

4. Numerical experiments

4.1. Prototypical geodynamic problems

To study the convergence behavior of the SCR and FC methods
applied to Eq. (6), we examined some simple problems that are rep-
resentative of geodynamic processes. We solve the incompressible
Stokes equations in the two-dimensional domain ! ≡ (0, 1)×(0, 1).
The constitutive tensor used was isotropic, and thus locally "ijkl
is completely defined by the single parameter #. The distinction
between each model is the form of the viscosity function used.
The viscosity structures we consider are (i) an exponentially vary-
ing viscosity with depth (Revenaugh and Parsons, 1987), (ii) a
step function viscosity in x (Zhong, 1996) and (iii) a step function
viscosity in both x and y. The viscosity structure and bound-
ary conditioners for the three models considered are provided in
Fig. 2.

The forcing term used was f = (0, −$g). For the models SOLKY
and SOLCX, we used $ = − sin(ny%y) cos(nx%x) with g = 1.0 and
ny = 1, nx = 1. In all cases the background viscosity used was
#0 = 1. The form of the viscosity function used in SOLKY was
# = #0 exp(2By). In this model, we considered the viscosity contrast

Fig. 2. Definition of the test problems. The viscosity structures are named (from left to right) SOLKY, SOLCX, and SINKER. In each of the three models, we impose the boundary
conditions uini = 0 and &ijnj = 0 on each side, where ni is the unit outward normal vector to the boundary of !.

(Zhong, 1996)
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Finding 1

11

• Optimal convergence rates for velocity and pressure were 
obtained for viscosity structures which are continuous.

• For discontinuous viscosity structures, optimal convergence 
rates were obtained for velocity but sub-optimal convergence 
rates were obtained for pressure.
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Iterative methods for Stokes flow

12

• the discretisation parameters (Example; grid resolution)

• the constitutive parameters (Example; smoothly varying vs. discontinuous 
viscosity

• the constitutive behaviour (Example; isotropic vs. anisotropic)

• the solution is obtained in O(n) time... ie. multigrid

The ideal approach should be optimal in the sense that the 
convergence rate of method will be bounded independently of

These are a challenging set of requirements
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Preconditioners...

13

• The number of iterations required for convergence is related to 
the distribution of eigenvalues.

• Preconditioning is the process of “improving” the distribution of 
eigenvalues, such that the number of iterations is reduced                                      
=> accelerator
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i) 
ii) should be cheap to construct the preconditioner,
iii) should be cheap to apply the preconditioner, 
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• Decouple u and p

• Solve the Schur complement system

• Represent S as a matrix-free object.  To compute                we

• Outer Krylov iterations performed on Sp=h’,                                                                             
inner iterations performed on Ky=x.

• Need preconditioners for S and K.

y = Sx

where  is the Schur complement. 

Schur Complement Reduction

solve for p : (GT K−1G− C)p = GT K−1f − h,

solve for u : Ku = f −Gp.

S = GT K−1G− C

compute: f∗ = Gx,

solve for u∗ : Ku∗ = f∗,

compute: y = GT u∗ − Cx.
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Fully Coupled

15

• Treat the Stokes problem as single coupled system 

• Apply any suitable Krylov method to 

• We require preconditioner for 

• Block diagonal or block upper triangular

One of the main issues with the segregated approach is that when an iterative method179

is applied in (23b), a sufficiently accurate solution must be obtained otherwise the outer180

iterations may not converge. For reliability in the convergence rate of the outer solver,181

one should ensure that the residual from the inner system satisfies ‖ri‖ < cεo, where182

0 < c ≤ 1 and εo is the tolerance placed on the residual of the outer Krylov method.183

Developing inexact approaches with a relaxed evaluation of matrix-vector products184

involving S is an on going area of research (Bouras and Frayssé, 2005) but we do not185

consider using such techniques here.186

For the segregated approach to be competitive, fast solvers for Kx = y are required. For187

case when m is small, exact factorizations are effective as K need only be factored once188

per time step and then may subsequently be re-used in each outer iteration. Suitable189

preconditioners are required to accelerate the convergence of the iterative methods190

applied to S and K. The SCR approach is attractive from the point of view that191

for inf-sup stable discretizations, all isoviscous models will produce a discrete Schur192

complement with a condition number independent of the discretization parameter h,193

thus bounding the number of outer iterations required for convergence. This result is194

no longer true if the viscosity varies in space. In this case, the condition number of S195

will still vary due to changes in constitutive relationship, thus preconditioning (22a) is196

essential to minimize the number of outer iterations required for convergence. In §3 we197

discuss several strategies to construct preconditioners for S.198

2.3 Fully coupled approach (FC)199

As an alternative to decoupling the velocity and pressure unknowns we can consider200

writing (6) as Ax = b, A ∈ R(m+n)×(m+n) where201

A =

 K G

GT 0

 , x =

u

p

 , b =

f

h

 , (24)

and applying a Krylov method directly to the full block system A. We will refer to this202

as the fully coupled (FC) approach. An important aspect of the fully coupled approach203

is the choice of block preconditioner Â. Several block preconditioners for the indefinite204

system have been examined, including205

Âd =

 K̂ 0

0 −Ŝ

 , Âu =

 K̂ G

0 −Ŝ

 . (25)

The block diagonal preconditioner Âd was studied in Elman and Silvester (1996b);206

Rusten and Winther (1992); Silvester and Wathen (1994), but the block upper trian-207

gular preconditioner Âu introduced in Bramble and Pasciak (1988) has been shown to208

be a more effective preconditioner. See Benzi et al. (2005) (§10.1.2) for more details.209

8

Elman, Silvester (1994)
Rusten, Winther (1992)
Silvester, Wathan (1994)

Bramble, Pasciak (1988)
Murphy, Golub (2000)

Ax = b

A.

−→ Ax = b, A ∈ R(m+n)×(m+n)
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Both options require preconditioners for K and S
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• Billinear form of the deviatoric stress tensor gradient

• Discrete operator

• A spectrally equivalent billinear form is

K =
(

K11 K12

K21 K22

)
a(u, v) =

∫
Ω

2η εij(u)εij(v) dV

â(u, v) =
∫

Ω
η (∇uk) ! (∇vk) dV

[ Axelsson, Padiy, “On a robust and scalable linear 
elasticity solver based on a saddle point formulation” ]

with discrete operator given by

K̂ =
(

K11 0
0 K22

)

K: Velocity Component Decomposition 
(VCD)
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K: Velocity Component Decomposition 
(VCD)

17

• Block Gauss-Seidel

• Discrete counterpart of the stress gradient is given by

• Treat each velocity component as scalar, variable coefficient diffusion problem.

• Each scalar problem permits effective multigrid preconditioning.

xk+1 = (D + L)−1 (
b− Uxk

)Ax = b

(
K11 K12

K21 K22

) (
u
v

)
=

(
fx

fy

)
A = D + L + U

D = diag [K11, K22]

K−1
iiEach           given by CG,  with                      , preconditioned via ML.

‖rk‖
‖r0‖ < 10−2

ML:    http://software.sandia.gov/Trilinos

Mijalkovic & Mihajlovic, 2000

Mihajlovic & Mijalkovic, 2002
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Results: exp(y) + step(x)

18

elements θ (∆η)

M ×N 4.6 (102) 13.8 (106) 18.4 (108)

1002 4 4 4

2002 4 4 4

3002 4 4 4
Table 1
Iterations as a function of exponent, θ and viscosity contrast, ∆η. Domain [0, 1] × [0, 1].
Viscosity function used η = 106exp(θx).

elements ∆η

M ×N 102 106 1010

1002 5 5 5

2002 5 5 5

3002 5 5 5
Table 2
Iterations as a function of viscosity contrast, ∆η. Domain [0, 1] × [0, 1]. Viscosity function
used η = ∆η, x ≥ 0.5, η = 1.0, x < 0.5.

M ×N unknowns its. CPU time (sec)

2002 80,802 4 7.2

2842 162,450 4 12.7

4022 324,818 4 25.8
Table 3
CPU times (seconds) as a function of grid size. Domain [0, 1]× [0, 1]. Viscosity function used
η = 106exp(θx). ∆η = 106.

1

η = 106 exp(θy)

exp(y)

(robustness)

4
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and only requires the operators used to define the original prob-
lem in Eq. (6). Whilst derived differently, expression (52) is the
Schur complement preconditioner introduced in Elman (1996) and
known as the BFBt preconditioner. In practice using Eq. (51) does
not result in Z ≈ 0. It has been shown that simple diagonal scaling
significantly improves the approximation in Eq. (47) (Elman et al.,
2006). The scaled BFBt preconditioner is given by

Ŝ−1
sb = (G̃TG̃)

−1
G̃TK̃G̃(G̃TG̃)

−1
, (53)

where

G̃ = M−1/2
d G, K̃ = M−1/2

d KM−1/2
d (54)

and Md is the diagonal of the velocity mass matrix.
The scaled LSC preconditioner suffers from a similar problem

to the approach of Kay, in that it requires operators to be defined
which are not part of the original problem (6). However, compared
to defining the convection-diffusion operator on the pressure space,
the construction of the mass matrix is well defined for all basis
functions. Instead of the scaling (54), we use the scaling defined in
Section 2.6 whenever the BFBt preconditioner is used as this scaling
incorporates the effects of local variations in viscosity. Using Eq.
(34) we redefine the scaled operators in Eq. (54) to be

G̃ = Gs = X−1
1 GX−T

2 , K̃ = Ks = X−1
1 KX−T

2 . (55)

We found that the scaling (55) greatly improves the convergence
rate over the standard (non-scaled) BFBt preconditioner by ensur-
ing that Z is closer to zero. See Section 4.4 for evidence of this. The
scaling modifies the commutator expression in Eq. (47) to:

X−1
1 [KK−1

d G − G(Kp)s]X
−1
2 ≈ 0 (56)

in which the scaled operator (Kp)s = (GTK−1
d G)

−1
GTK−1

d KK−1
d G and

K−1
d = X−2

1 . This relation is closely related to the SIMPLE based
scaled commutator discussed in Elman et al. (2006) with their
choice of M2 = Im and M1 = diag(K), as from our definitions, Kd =
X2

1 will be approximately equal to M1. For the isotropic constitutive
relationships we consider, the maximum value within each row will
occur on the diagonal, thus yielding equality between M1 = diag(K)
and X2

1 . This choice for the scaling appears to be new, and has the
desired feature that it requires no auxiliary operators outside of the
definition of Eq. (6).

3.2.2. Implementation
Each application of the scaled variant of the BFBt preconditioner

requires us to evaluate z = Ŝ−1
sb r. The procedure to define this oper-

ation is shown below:

solve for z̄ : L̃pz̄ = r,
compute : t1 = Gsz̄,
compute : t2 = Kst1,
compute : z̄ = GT

s t2,
solve for z : L̃pz = z̄.

(57)

Recall that the operator L̃p = GT
s Gs is subject to pure Neumann

boundary conditions, thus it contains a constant null space. When
solving systems such as L̃pz = r, the null space is removed by the
procedure described in Section 2.4. As each application of the
BFBt preconditioner requires two Poisson solves to be performed,
we wish to use an effective preconditioner. To achieve this, we
explicitly form the matrix–matrix product L̃p = GT

s Gs and define a
preconditioner using an incomplete Cholesky, ICC(k) factorization
of L̃p. Alternatively we could have defined the operator GT

s Gs as a
matrix free object, but this limits our choice of possible precon-
ditioners. The CPU time required to form L̃p is ameliorated by the
gain achieved by using ICC(k) as opposed to having to use a matrix-
free operator which is more difficult to precondition. In addition,
the manner in which the diagonal scaling was constructed helps
reduce the condition number of L̃p as X2 was defined by requiring
that GT

s Gs ≈ In. This should also help improve the convergence of
any Krylov method used to define z = L̃−1

p r.

4. Numerical experiments

4.1. Prototypical geodynamic problems

To study the convergence behavior of the SCR and FC methods
applied to Eq. (6), we examined some simple problems that are rep-
resentative of geodynamic processes. We solve the incompressible
Stokes equations in the two-dimensional domain ! ≡ (0, 1)×(0, 1).
The constitutive tensor used was isotropic, and thus locally "ijkl
is completely defined by the single parameter #. The distinction
between each model is the form of the viscosity function used.
The viscosity structures we consider are (i) an exponentially vary-
ing viscosity with depth (Revenaugh and Parsons, 1987), (ii) a
step function viscosity in x (Zhong, 1996) and (iii) a step function
viscosity in both x and y. The viscosity structure and bound-
ary conditioners for the three models considered are provided in
Fig. 2.

The forcing term used was f = (0, −$g). For the models SOLKY
and SOLCX, we used $ = − sin(ny%y) cos(nx%x) with g = 1.0 and
ny = 1, nx = 1. In all cases the background viscosity used was
#0 = 1. The form of the viscosity function used in SOLKY was
# = #0 exp(2By). In this model, we considered the viscosity contrast

Fig. 2. Definition of the test problems. The viscosity structures are named (from left to right) SOLKY, SOLCX, and SINKER. In each of the three models, we impose the boundary
conditions uini = 0 and &ijnj = 0 on each side, where ni is the unit outward normal vector to the boundary of !.

η =

{
1 x < 1

2

∆η x ≥ 1
2

elements θ (∆η)

M ×N 4.6 (102) 13.8 (106) 18.4 (108)

1002 4 4 4

2002 4 4 4

3002 4 4 4
Table 1
Iterations as a function of exponent, θ and viscosity contrast, ∆η. Domain [0, 1] × [0, 1].
Viscosity function used η = 106exp(θx).

elements ∆η

M ×N 102 106 1010

1002 5 5 5

2002 5 5 5

3002 5 5 5
Table 2
Iterations as a function of viscosity contrast, ∆η. Domain [0, 1] × [0, 1]. Viscosity function
used η = ∆η, x ≥ 0.5, η = 1.0, x < 0.5.

M ×N unknowns its. CPU time (sec)

2002 80,802 4 7.2

2842 162,450 4 12.7

4022 324,818 4 25.8
Table 3
CPU times (seconds) as a function of grid size. Domain [0, 1]× [0, 1]. Viscosity function used
η = 106exp(θx). ∆η = 106.

1

step(x)
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and only requires the operators used to define the original prob-
lem in Eq. (6). Whilst derived differently, expression (52) is the
Schur complement preconditioner introduced in Elman (1996) and
known as the BFBt preconditioner. In practice using Eq. (51) does
not result in Z ≈ 0. It has been shown that simple diagonal scaling
significantly improves the approximation in Eq. (47) (Elman et al.,
2006). The scaled BFBt preconditioner is given by

Ŝ−1
sb = (G̃TG̃)

−1
G̃TK̃G̃(G̃TG̃)

−1
, (53)

where

G̃ = M−1/2
d G, K̃ = M−1/2

d KM−1/2
d (54)

and Md is the diagonal of the velocity mass matrix.
The scaled LSC preconditioner suffers from a similar problem

to the approach of Kay, in that it requires operators to be defined
which are not part of the original problem (6). However, compared
to defining the convection-diffusion operator on the pressure space,
the construction of the mass matrix is well defined for all basis
functions. Instead of the scaling (54), we use the scaling defined in
Section 2.6 whenever the BFBt preconditioner is used as this scaling
incorporates the effects of local variations in viscosity. Using Eq.
(34) we redefine the scaled operators in Eq. (54) to be

G̃ = Gs = X−1
1 GX−T

2 , K̃ = Ks = X−1
1 KX−T

2 . (55)

We found that the scaling (55) greatly improves the convergence
rate over the standard (non-scaled) BFBt preconditioner by ensur-
ing that Z is closer to zero. See Section 4.4 for evidence of this. The
scaling modifies the commutator expression in Eq. (47) to:

X−1
1 [KK−1

d G − G(Kp)s]X
−1
2 ≈ 0 (56)

in which the scaled operator (Kp)s = (GTK−1
d G)

−1
GTK−1

d KK−1
d G and

K−1
d = X−2

1 . This relation is closely related to the SIMPLE based
scaled commutator discussed in Elman et al. (2006) with their
choice of M2 = Im and M1 = diag(K), as from our definitions, Kd =
X2

1 will be approximately equal to M1. For the isotropic constitutive
relationships we consider, the maximum value within each row will
occur on the diagonal, thus yielding equality between M1 = diag(K)
and X2

1 . This choice for the scaling appears to be new, and has the
desired feature that it requires no auxiliary operators outside of the
definition of Eq. (6).

3.2.2. Implementation
Each application of the scaled variant of the BFBt preconditioner

requires us to evaluate z = Ŝ−1
sb r. The procedure to define this oper-

ation is shown below:

solve for z̄ : L̃pz̄ = r,
compute : t1 = Gsz̄,
compute : t2 = Kst1,
compute : z̄ = GT

s t2,
solve for z : L̃pz = z̄.

(57)

Recall that the operator L̃p = GT
s Gs is subject to pure Neumann

boundary conditions, thus it contains a constant null space. When
solving systems such as L̃pz = r, the null space is removed by the
procedure described in Section 2.4. As each application of the
BFBt preconditioner requires two Poisson solves to be performed,
we wish to use an effective preconditioner. To achieve this, we
explicitly form the matrix–matrix product L̃p = GT

s Gs and define a
preconditioner using an incomplete Cholesky, ICC(k) factorization
of L̃p. Alternatively we could have defined the operator GT

s Gs as a
matrix free object, but this limits our choice of possible precon-
ditioners. The CPU time required to form L̃p is ameliorated by the
gain achieved by using ICC(k) as opposed to having to use a matrix-
free operator which is more difficult to precondition. In addition,
the manner in which the diagonal scaling was constructed helps
reduce the condition number of L̃p as X2 was defined by requiring
that GT

s Gs ≈ In. This should also help improve the convergence of
any Krylov method used to define z = L̃−1

p r.

4. Numerical experiments

4.1. Prototypical geodynamic problems

To study the convergence behavior of the SCR and FC methods
applied to Eq. (6), we examined some simple problems that are rep-
resentative of geodynamic processes. We solve the incompressible
Stokes equations in the two-dimensional domain ! ≡ (0, 1)×(0, 1).
The constitutive tensor used was isotropic, and thus locally "ijkl
is completely defined by the single parameter #. The distinction
between each model is the form of the viscosity function used.
The viscosity structures we consider are (i) an exponentially vary-
ing viscosity with depth (Revenaugh and Parsons, 1987), (ii) a
step function viscosity in x (Zhong, 1996) and (iii) a step function
viscosity in both x and y. The viscosity structure and bound-
ary conditioners for the three models considered are provided in
Fig. 2.

The forcing term used was f = (0, −$g). For the models SOLKY
and SOLCX, we used $ = − sin(ny%y) cos(nx%x) with g = 1.0 and
ny = 1, nx = 1. In all cases the background viscosity used was
#0 = 1. The form of the viscosity function used in SOLKY was
# = #0 exp(2By). In this model, we considered the viscosity contrast

Fig. 2. Definition of the test problems. The viscosity structures are named (from left to right) SOLKY, SOLCX, and SINKER. In each of the three models, we impose the boundary
conditions uini = 0 and &ijnj = 0 on each side, where ni is the unit outward normal vector to the boundary of !.
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Results: layer
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Results: exp(y)

θ = 13.8, ∆η = 106

η = 106 exp(θy)

(optimal)

elements θ (∆η)

M ×N 4.6 (102) 13.8 (106) 18.4 (108)

1002 4 4 4

2002 4 4 4

3002 4 4 4
Table 1
Iterations as a function of exponent, θ and viscosity contrast, ∆η. Domain [0, 1] × [0, 1].
Viscosity function used η = 106exp(θx).

elements ∆η

M ×N 102 106 1010

1002 5 5 5

2002 5 5 5

3002 5 5 5
Table 2
Iterations as a function of viscosity contrast, ∆η. Domain [0, 1] × [0, 1]. Viscosity function
used η = ∆η, x ≥ 0.5, η = 1.0, x < 0.5.

M ×N unknowns outer its. avg. inner its. CPU time (sec)

2002 80,802 4 3 1.9

2842 161,450 4 3 4.3

4002 321,602 4 3 9.3

5662 642,978 4 3 19.0

8002 1,283,202 4 3 37.0

11342 2,576,450 4 3 59.6

16022 5,139,218 4 3 116.7
Table 3
CPU times (seconds) as a function of grid size. Domain [0, 1]× [0, 1]. η = 106 exp(θy),∆η =
106.

1
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and only requires the operators used to define the original prob-
lem in Eq. (6). Whilst derived differently, expression (52) is the
Schur complement preconditioner introduced in Elman (1996) and
known as the BFBt preconditioner. In practice using Eq. (51) does
not result in Z ≈ 0. It has been shown that simple diagonal scaling
significantly improves the approximation in Eq. (47) (Elman et al.,
2006). The scaled BFBt preconditioner is given by

Ŝ−1
sb = (G̃TG̃)

−1
G̃TK̃G̃(G̃TG̃)

−1
, (53)

where

G̃ = M−1/2
d G, K̃ = M−1/2

d KM−1/2
d (54)

and Md is the diagonal of the velocity mass matrix.
The scaled LSC preconditioner suffers from a similar problem

to the approach of Kay, in that it requires operators to be defined
which are not part of the original problem (6). However, compared
to defining the convection-diffusion operator on the pressure space,
the construction of the mass matrix is well defined for all basis
functions. Instead of the scaling (54), we use the scaling defined in
Section 2.6 whenever the BFBt preconditioner is used as this scaling
incorporates the effects of local variations in viscosity. Using Eq.
(34) we redefine the scaled operators in Eq. (54) to be

G̃ = Gs = X−1
1 GX−T

2 , K̃ = Ks = X−1
1 KX−T

2 . (55)

We found that the scaling (55) greatly improves the convergence
rate over the standard (non-scaled) BFBt preconditioner by ensur-
ing that Z is closer to zero. See Section 4.4 for evidence of this. The
scaling modifies the commutator expression in Eq. (47) to:

X−1
1 [KK−1

d G − G(Kp)s]X
−1
2 ≈ 0 (56)

in which the scaled operator (Kp)s = (GTK−1
d G)

−1
GTK−1

d KK−1
d G and

K−1
d = X−2

1 . This relation is closely related to the SIMPLE based
scaled commutator discussed in Elman et al. (2006) with their
choice of M2 = Im and M1 = diag(K), as from our definitions, Kd =
X2

1 will be approximately equal to M1. For the isotropic constitutive
relationships we consider, the maximum value within each row will
occur on the diagonal, thus yielding equality between M1 = diag(K)
and X2

1 . This choice for the scaling appears to be new, and has the
desired feature that it requires no auxiliary operators outside of the
definition of Eq. (6).

3.2.2. Implementation
Each application of the scaled variant of the BFBt preconditioner

requires us to evaluate z = Ŝ−1
sb r. The procedure to define this oper-

ation is shown below:

solve for z̄ : L̃pz̄ = r,
compute : t1 = Gsz̄,
compute : t2 = Kst1,
compute : z̄ = GT

s t2,
solve for z : L̃pz = z̄.

(57)

Recall that the operator L̃p = GT
s Gs is subject to pure Neumann

boundary conditions, thus it contains a constant null space. When
solving systems such as L̃pz = r, the null space is removed by the
procedure described in Section 2.4. As each application of the
BFBt preconditioner requires two Poisson solves to be performed,
we wish to use an effective preconditioner. To achieve this, we
explicitly form the matrix–matrix product L̃p = GT

s Gs and define a
preconditioner using an incomplete Cholesky, ICC(k) factorization
of L̃p. Alternatively we could have defined the operator GT

s Gs as a
matrix free object, but this limits our choice of possible precon-
ditioners. The CPU time required to form L̃p is ameliorated by the
gain achieved by using ICC(k) as opposed to having to use a matrix-
free operator which is more difficult to precondition. In addition,
the manner in which the diagonal scaling was constructed helps
reduce the condition number of L̃p as X2 was defined by requiring
that GT

s Gs ≈ In. This should also help improve the convergence of
any Krylov method used to define z = L̃−1

p r.

4. Numerical experiments

4.1. Prototypical geodynamic problems

To study the convergence behavior of the SCR and FC methods
applied to Eq. (6), we examined some simple problems that are rep-
resentative of geodynamic processes. We solve the incompressible
Stokes equations in the two-dimensional domain ! ≡ (0, 1)×(0, 1).
The constitutive tensor used was isotropic, and thus locally "ijkl
is completely defined by the single parameter #. The distinction
between each model is the form of the viscosity function used.
The viscosity structures we consider are (i) an exponentially vary-
ing viscosity with depth (Revenaugh and Parsons, 1987), (ii) a
step function viscosity in x (Zhong, 1996) and (iii) a step function
viscosity in both x and y. The viscosity structure and bound-
ary conditioners for the three models considered are provided in
Fig. 2.

The forcing term used was f = (0, −$g). For the models SOLKY
and SOLCX, we used $ = − sin(ny%y) cos(nx%x) with g = 1.0 and
ny = 1, nx = 1. In all cases the background viscosity used was
#0 = 1. The form of the viscosity function used in SOLKY was
# = #0 exp(2By). In this model, we considered the viscosity contrast

Fig. 2. Definition of the test problems. The viscosity structures are named (from left to right) SOLKY, SOLCX, and SINKER. In each of the three models, we impose the boundary
conditions uini = 0 and &ijnj = 0 on each side, where ni is the unit outward normal vector to the boundary of !.
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(optimal)
Results: step(x)

η =

{
1 x < 1

2

106 x ≥ 1
2

M ×N unknowns its. avg. inner its. CPU time (sec)

2002 80,802 13 3 4.99

2842 161,450 14 4 15.59

4002 321,602 13 4 30.03

5662 642,978 14 4 71.19

8002 1,283,202 13 4 131.20
Table 4
REAL: CPU times (seconds) as a function of grid size. Domain [0, 1]× [0, 1]. Sinker viscosity
function. ηin = 106, ηout = 1,∆η = 106.

M ×N unknowns its. avg. inner its. CPU time (sec)

2002 80,802 5 3 1.91

2842 161,450 5 4 6.00

4002 321,602 5 4 11.55

5662 642,978 5 4 27.38

8002 1,283,202 5 4 50.46
Table 5
DIVIDE BY 2.6: CPU times (seconds) as a function of grid size. Domain [0, 1]× [0, 1]. Sinker
viscosity function. ηin = 106, ηout = 1,∆η = 106. Used a different stopping condition

2
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and only requires the operators used to define the original prob-
lem in Eq. (6). Whilst derived differently, expression (52) is the
Schur complement preconditioner introduced in Elman (1996) and
known as the BFBt preconditioner. In practice using Eq. (51) does
not result in Z ≈ 0. It has been shown that simple diagonal scaling
significantly improves the approximation in Eq. (47) (Elman et al.,
2006). The scaled BFBt preconditioner is given by

Ŝ−1
sb = (G̃TG̃)

−1
G̃TK̃G̃(G̃TG̃)

−1
, (53)

where

G̃ = M−1/2
d G, K̃ = M−1/2

d KM−1/2
d (54)

and Md is the diagonal of the velocity mass matrix.
The scaled LSC preconditioner suffers from a similar problem

to the approach of Kay, in that it requires operators to be defined
which are not part of the original problem (6). However, compared
to defining the convection-diffusion operator on the pressure space,
the construction of the mass matrix is well defined for all basis
functions. Instead of the scaling (54), we use the scaling defined in
Section 2.6 whenever the BFBt preconditioner is used as this scaling
incorporates the effects of local variations in viscosity. Using Eq.
(34) we redefine the scaled operators in Eq. (54) to be

G̃ = Gs = X−1
1 GX−T

2 , K̃ = Ks = X−1
1 KX−T

2 . (55)

We found that the scaling (55) greatly improves the convergence
rate over the standard (non-scaled) BFBt preconditioner by ensur-
ing that Z is closer to zero. See Section 4.4 for evidence of this. The
scaling modifies the commutator expression in Eq. (47) to:

X−1
1 [KK−1

d G − G(Kp)s]X
−1
2 ≈ 0 (56)

in which the scaled operator (Kp)s = (GTK−1
d G)

−1
GTK−1

d KK−1
d G and

K−1
d = X−2

1 . This relation is closely related to the SIMPLE based
scaled commutator discussed in Elman et al. (2006) with their
choice of M2 = Im and M1 = diag(K), as from our definitions, Kd =
X2

1 will be approximately equal to M1. For the isotropic constitutive
relationships we consider, the maximum value within each row will
occur on the diagonal, thus yielding equality between M1 = diag(K)
and X2

1 . This choice for the scaling appears to be new, and has the
desired feature that it requires no auxiliary operators outside of the
definition of Eq. (6).

3.2.2. Implementation
Each application of the scaled variant of the BFBt preconditioner

requires us to evaluate z = Ŝ−1
sb r. The procedure to define this oper-

ation is shown below:

solve for z̄ : L̃pz̄ = r,
compute : t1 = Gsz̄,
compute : t2 = Kst1,
compute : z̄ = GT

s t2,
solve for z : L̃pz = z̄.

(57)

Recall that the operator L̃p = GT
s Gs is subject to pure Neumann

boundary conditions, thus it contains a constant null space. When
solving systems such as L̃pz = r, the null space is removed by the
procedure described in Section 2.4. As each application of the
BFBt preconditioner requires two Poisson solves to be performed,
we wish to use an effective preconditioner. To achieve this, we
explicitly form the matrix–matrix product L̃p = GT

s Gs and define a
preconditioner using an incomplete Cholesky, ICC(k) factorization
of L̃p. Alternatively we could have defined the operator GT

s Gs as a
matrix free object, but this limits our choice of possible precon-
ditioners. The CPU time required to form L̃p is ameliorated by the
gain achieved by using ICC(k) as opposed to having to use a matrix-
free operator which is more difficult to precondition. In addition,
the manner in which the diagonal scaling was constructed helps
reduce the condition number of L̃p as X2 was defined by requiring
that GT

s Gs ≈ In. This should also help improve the convergence of
any Krylov method used to define z = L̃−1

p r.

4. Numerical experiments

4.1. Prototypical geodynamic problems

To study the convergence behavior of the SCR and FC methods
applied to Eq. (6), we examined some simple problems that are rep-
resentative of geodynamic processes. We solve the incompressible
Stokes equations in the two-dimensional domain ! ≡ (0, 1)×(0, 1).
The constitutive tensor used was isotropic, and thus locally "ijkl
is completely defined by the single parameter #. The distinction
between each model is the form of the viscosity function used.
The viscosity structures we consider are (i) an exponentially vary-
ing viscosity with depth (Revenaugh and Parsons, 1987), (ii) a
step function viscosity in x (Zhong, 1996) and (iii) a step function
viscosity in both x and y. The viscosity structure and bound-
ary conditioners for the three models considered are provided in
Fig. 2.

The forcing term used was f = (0, −$g). For the models SOLKY
and SOLCX, we used $ = − sin(ny%y) cos(nx%x) with g = 1.0 and
ny = 1, nx = 1. In all cases the background viscosity used was
#0 = 1. The form of the viscosity function used in SOLKY was
# = #0 exp(2By). In this model, we considered the viscosity contrast

Fig. 2. Definition of the test problems. The viscosity structures are named (from left to right) SOLKY, SOLCX, and SINKER. In each of the three models, we impose the boundary
conditions uini = 0 and &ijnj = 0 on each side, where ni is the unit outward normal vector to the boundary of !.
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Finding 2

25

• Block Gauss-Siedel based preconditioner is robust

• Mild dependence on dimension of viscosity structure

• Approach is optimal and maintains robustness, exhibiting O(n) 
solution times when used in conjunction with ML

• Parallel efficiency not explored here. Others have demonstrated 
scalability with ML.

Arbenz et. al., 2008
Burstedde et. al., 2008
Thomas Geenan (in yesterdays poster session)
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Schur complement (S): ???
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• Based on previous ideas... 

• Scaled mass matrix 

Scaled BFBt for stabilised systems (compressible)

i) For constant viscosity, the scaled mass matrix is spectrally equivalent to S.

ii) There is a proof that the same result holds for variable viscosity.

We examine these ideas numerically.

where q = ( 1
4 , 1

4 , 1
4 , 1

4 )T and Me is the element mass matrix,

M e = [mij ], mij =
∫

!
Mi(ξ)Mj(ξ)‖Je‖ dV.

4 Block preconditioners for A

5 Preconditioners for S

5.1 Mass matrix

For isoviscous Stokes flow with η = 1, the Schur complement associated with non-stabilised finite
element models (C = 0), is spectrally equivalent to the pressure mass matrix,

S ∼ M =
∑

!∈Th

M e; M e = [mij ], mij =
∫

!
MiMj‖Je‖ dV

ŜM =
∑

!∈Th

Ŝ
e

M ; Ŝ
e

M = [ŝij ], ŝij = − 1
η̄e

∫
!

MiMj‖Je‖ dV (25)

5.2 Discrete algebraic commutator

6 Numerical examples

6.1 Test problems

To study the performance of the

6.2 Convergence of the discretisation

In order to examine and performance of the iterative methods,

6.3 Preconditioning A

6.4 Performance of S

5

For continuous pressure elements, if the scaled mass matrix is spectrally 
equivalent to S, then the diagonal of the scaled mass matrix is also spectrally 
equivalent to S (Elman, 2005).

Thanks Thomas :)
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Results: ridge
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Results: diapir
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Results: layer
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Finding 3

30

• The diagonal of the scaled mass matrix is a surprisingly robust 
preconditioner, with little dependence on the viscosity contrast.

• The number of iterations required to solve the pressure Schur 
complement was ≈ 20 for all viscosity structures (ridge, diapir, 
layer). 
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Preconditioning strategies
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• Putting it all together

• Schur complement reduction versus fully coupled approaches?

• Combinations of the two maybe the answer, but the optimal 
setup seems to be problem dependent.
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Summary
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• Stabilised Q1-Q1 discretisation is a robust element for studying 
Stokes flow with large variations in viscosity (smooth or 
discontinuous).

• Optimal error estimates are preserved for continuous viscosities.

• Velocity component decomposition (VCD) preconditioner is shown 
to be optimal & robust for variable viscosity Stokes flow.

• The simple diagonal mass matrix preconditioner is a robust and 
opimal choice for preconditioning the Schur complement when 
using Q1-Q1 stabilised elements.
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Thank-you.... Questions???
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