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The analysis of seismic anisotropy has become the most conventional tool for characterizing flow
in the Earth’s upper mantle [1]. Thus, it is crucial for geodynamic models to include predictions
of anisotropy so that their relevance for the Earth can be easily evaluated. Rigorous fabric de-
velopment models, which rely on deforming and rotating a large number of discrete grains, have
already been created for the purpose of analyzing flow model [2,3]. However, most lack the flexi-
bility to examine all known fabric types and the results from different methods are not always in
agreement with one another [4,5]. Therefore, it is important to have a simpler tool that provides
rapid, approximate predictions of mantle fabric and anisotropy for hypothesis testing.

The simplest proxy for anisotropy is provided by the instantaneous flow field. It is acceptable if
the strain rate field varies along a particle trajectory more slowly than anisotropy develops [6,7].
More generally, anisotropy may be associated with the finite strain ellipsoid with the a-axis of
olivine tending to rotate toward the direction of maximum extension [8,9]. However, various slip
systems are activated under different conditions. Therefore, one may expect that for a differ-
ent fabric type, a different olivine axis will rotate toward the extension direction [10]. We have
generalized the calculation of finite strain to produce an ellipsoid associated with the most likely
orientation of the a-, b-, and c-axes of olivine, called a fabric ellipsoid. To compute the fabric
evolution tensor, we perform an eigen-decomposition of the strain rate tensor, symmetric part of
the velocity gradient tensor. We retain the eigenvectors but rearrange the eigenvalues according to
he active deformation mechanism. In that way, the fabric ellipsoid evolves in such a way that the
desired olivine axes rotate toward the instantaneous maximum elongation and maximum short-
ening directions. We developed algorithms for each kind of fabric identified by Karato et al. [2008].

We incorporate two additional mechanisms of fabric development: fabric healing and dynamic
recrystallization. We simulate fabric healing by averaging the fabric ellipsoid with an isotropic
sphere. For recrystallization, we average the developing fabric ellipsoid with an ellipsoid whose
principal axes are already oriented along the principle directions of strain rate. The relative contri-
bution of each mechanism can be adjusted. A comparison between model results and naturally and
experimentally deformed olivine aggregates shows that fabric healing and recrystallization play a
major role in fabric orientation and magnitude. In some cases, especially in natural samples [11],
recrystallization and healing play a stronger role than grain rotation.
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