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MODEL PROBLEM

We consider different discretizations for
Stokes flow on a 2D unit domain Ω = [0, 1]2.

−∇ · τ +∇p = f , (1)
∇ · v = 0. (2)

τ = 2µε̇(v) deviatoric stress, µ viscosity,
ε̇(v) = 1

2 (∇v +∇vT) strain rate, v velocity,
p pressure, f = (0,−ρg)T.

WEAK FORMULATION

Equations (1) and (2) are multiplied with
a test function and integrated over each ele-
ment E of the triangulated domain Ω yield-
ing the weak formulation: Find (vh, ph) ∈
Vh × Ph such that for all (w, q) ∈ Vh × Ph:

a(vh,w) + b(w, ph) =
∫

Ω
f ·w, (3)

b(vh, q) = 0. (4)

Vh, Ph: approximation spaces for velocity
and pressure, respectively,

a(v,w) =
∫

Ω
∇w : (2µε̇(v)),

b(v, q) = −
∫

Ω
q∇ · v.

In contrast, the element-wise integration
for the Discontinuous Galerkin (DG) method
yields additional edge integrals replacing a
in (3) by ã:

ã(v,w) = a(v,w) +
∑
e
σ
|e|

∫
e
[µv] · [w]

−
∑
e

∫
e
{w} · [2µε̇(v)]n

−
∑
e

∫
e
[2µε̇(w)]n · {v}.

E (e) element (edge) of grid, n unit normal,
braces {} average, brackets [] jump of a func-
tion on the edge, σ penalty parameter.

HDIV VELOCITY SPACES

The local (velocity) spaces RTk−1 [5] and
BDMk, k ≥ 1, [1] are composed of weakly
divergence-free basis functions. This ensures
local mass conservation but requires treat-
ment of jumps across mesh edges.

Remark: With a minor modification of
the weak formulation the RT0 element can
resemble the scheme obtained for staggered
grid finite differences. [3]

ELEMENT OVERVIEW

Location of Degrees of Freedom (DOF):

Figure 1: DOFs for Q1–P0, Q2–P1, RT0–P0,
BDM1–P0.

Square, X, circle denotes pressure, horizontal
and vertical velocity DOF, respectively. Ar-
rows denote pressure gradients.

For the RT0 and BDM1 elements the
horizontal (velocity) component is continu-
ous in horizontal direction and discontinuous
in vertical direction, the vertical component
vice versa.
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Figure 2: Benchmark setup with lateral viscosity jump.
Analytical velocity (arrows) and pressure (colorbar) so-
lution for µ1 = 1, µ2 = 103.
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Figure 3: L1 errors of the four elements for velocity (large
markers) and pressure (small markers) for the isoviscous
setup (left, µ1 = µ2 = 1) and the variable viscosity setup
(right, µ1 = 1, µ2 = 103).
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Figure 4: Benchmark setup for Rayleigh-Taylor instabil-
ity. The jump in density and viscosity is following a
small perturbation of amplitude A at z = 0.1. For dif-
ferent viscosity contrasts and wavelengths λ the growth
factor K has been computed. b1, b2 have been chosen
such that the plots fit into one figure.

Benchmark with lateral viscosity
jump and free-slip boundaries [6],
f = (0, sin(zπ) cos(xπ))T. It has
been computed for µ1 = µ2 = 1
and for µ1 = 1, µ2 = 103, see
Fig. 3. As the Raviart-Thomas ele-
ment does not lead to convergence
for discontinuous viscosity, its plot
is omitted for the variable viscosity
setup.

Element DOFs NNZ

Q1–P0 3202 47 830
Q2–P1 11 522 307 216
RT0–P0 3136 26 428

BDM1–P0 5248 201 456

Number of global degrees of free-
dom and number of non-zero en-
tries in the system matrix for the
four elements on a square 32-by-
32-mesh.

Rayleigh-Taylor instability bench-
mark with vertical free-slip and
horizontal no-slip boundaries [4,
2]. The flow is driven by the den-
sity difference ρ2 − ρ1 (normalized
to 1). The mesh edge at z = 0.1
is perturbed in a cosine shape with
amplitude A = 10−4. As above the
Raviart-Thomas element is omit-
ted.

CONCLUSIONS

• The discontinuous RT0–P0 approximation is a very economical element reaching its lim-
itations where viscosity jumps occur.

• The BDM1–P0 element is comparable to the (unstable) Q1–P0 element, outruns in it
some setups in terms of accuracy without getting computationally as expensive as the
Q2–P1 element.
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