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MODEL PROBLEM

We consider different discretizations for
Stokes flow on a 2D unit domain Q = [0, 1]°.

(1)
(2)

—V -7+ Vp=T1,
V-v=0.

T = 2u€(v) deviatoric stress, p viscosity,
e(v) = 2(Vv + Vv') strain rate, v velocity,
p pressure, f = (0, —pg)".

WEAK FORMULATION

Equations (1) and (2) are multiplied with
a test function and integrated over each ele-
ment E of the triangulated domain (2 yield-
ing the weak formulation: Find (v, pp) €
V1, x Py such that for all (w,q) € Vi, x Pp:

(3)
(4)

V,,, P: approximation spaces for velocity
and pressure, respectively,

a(v,w) = [, Vw: (2u€(V)),

b(V,(]) _fQ qv V.

In contrast, the element-wise integration
for the Discontinuous Galerkin (DG) method

yields additional edge integrals replacing a
in (3) by a:

CL(Vh, W) + b(vah) — fQ f- W,
b(Vh,q) = 0.

i(v,w) = a(v,w) + Y, & [ [uv] - [w
~ Y, [ AW} - [2ué(v)]n
-3, L 2ne(w)ln - {v}.

E (e) element (edge) of grid, n unit normal,
braces { } average, brackets || jump of a func-
tion on the edge, o penalty parameter.

H,,v VELOCITY SPACES

The local (velocity) spaces R1j_1 [5] and
BDMy, k > 1, [1] are composed of weakly
divergence-free basis functions. This ensures
local mass conservation but requires treat-
ment of jumps across mesh edges.

Remark: With a minor modification of
the weak formulation the RT; element can
resemble the scheme obtained for staggered
grid finite differences. [3]
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ELEMENT OVERVIEW

Square, X, circle denotes pressure, horizontal
and vertical velocity DOF, respectively. Ar-
rows denote pressure gradients.

For the RT, and BDM; elements the
horizontal (velocity) component is continu-
ous in horizontal direction and discontinuous
in vertical direction, the vertical component
vice versa.

Location of Degrees of Freedom (DOF):

Figure 1: DOFs for Ql—P(), QQ—Pl, RTO—PO,
BDM,-F,.

RESULTS

free-slip Benchmark with lateral viscosity

jump and free-slip boundaries [6],
f (0,sin(zm) cos(xm))'. It has
been computed for pu; = po 1
and for ju; 1, o 103, see
Fig. 3. As the Raviart-Thomas ele-
ment does not lead to convergence

for discontinuous viscosity, its plot
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B : is omitted for the variable viscosity
setup.
Figure 2: Benchmark setup with lateral viscosity jump.
Analytical velocity (arrows) and pressure (colorbar) so-
lution for p; =1, uy = 10°.
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Figure 3: L errors of the four elements for velocity (large
markers) and pressure (small markers) for the isoviscous
setup (left, 11 = po = 1) and the variable viscosity setup

(rlght/ M1 — 1, 2 = 103)

Number of global degrees of free-
dom and number of non-zero en-
tries in the system matrix for the
four elements on a square 32-by-

: ose g ot 32-mesh.
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i T A e oo o o | mark with vertical free-slip and
17 1 )/e/e/ﬁj/l-b:lo_z, b,=10, b,=—.08 &
dijs-ou 0

horizontal no-slip boundaries [4,
2]. The flow is driven by the den-
sity difference p, — p; (normalized
to 1). The mesh edge at z = 0.1
is perturbed in a cosine shape with
amplitude A = 10~*. As above the
Raviart-Thomas element is omit-
ted.
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Figure 4: Benchmark setup for Rayleigh-Taylor instabil-
ity. The jump in density and viscosity is following a
small perturbation of amplitude A at z = 0.1. For dif-
ferent viscosity contrasts and wavelengths ) the growth
factor K has been computed. b;, bs have been chosen
such that the plots fit into one figure.

CONCLUSIONS

e The discontinuous R1y—F, approximation is a very economical element reaching its lim-
itations where viscosity jumps occur.

e The BDM;—-F, element is comparable to the (unstable) ()1—Fy element, outruns in it
some setups in terms of accuracy without getting computationally as expensive as the
()o—P; element.



