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ABSTRACT

We formulate gauge invariance for the equilibrium statistical mechanics of classical multi-component systems. Species-resolved phase space
shifting constitutes a gauge transformation, which we analyze using Noether’s theorem and shifting differential operators that encapsulate the
gauge invariance. The approach yields exact equilibrium sum rules for general mixtures. Species-resolved gauge correlation functions for the
force—force and force-gradient pair correlation structure emerge on the two-body level. Exact 3g-sum rules relate these correlation functions
to the spatial Hessian of the partial pair distribution functions. General observables are associated with hyperforce densities that measure
the covariance of the given observable with the interparticle, external, and diffusive partial force density observables. Exact hyperforce and
Lie algebra sum rules interrelate these correlation functions with each other. The practical accessibility of the framework is demonstrated
for binary Lennard-Jones mixtures using both adaptive Brownian dynamics and grand canonical Monte Carlo simulations. In particular,
we investigate the force—force pair correlation structure of the Kob—Andersen bulk liquid and we show results for representative hyperforce
correlation functions in the symmetrical mixture of Wilding et al. confined between two asymmetric planar parallel walls.
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I. INTRODUCTION

Soft matter consists naturally of several different microscopic
components,”” with ions in electrolytes’ '’ and differently sized
colloids in glass forming mixtures being prominent examples for
the diverse range of systems that display a wide variety of phys-
ical effects. Targeting specific phenomena often requires bespoke
treatment. In particular, the glass formation phenomenon has been
studied on the basis of a plethora of order parameters, including
measures of non-ergodicity'! and point-to-set length scales,'” as well
as via machine learning'’ and analyzing structural motifs.'* A com-
mon observation in this realm is the similarity of the liquid and glass
states when analyzed on the pair correlation level, as expressed suc-
cinctly by the authors of Ref. 15 who note that “structural changes
appear to be minor when looking at two-point measures, such as
the structure factor, while higher-order measures reveal a richer
behavior.” A comparison of results for pair distribution functions of

N

different microscopic glass forming models is presented in Ref. 12.
Going beyond the pair distribution function, and its species-labeled
generalization to partial pair distribution functions that characterize
mixtures, is often useful.

Noether’s theorem'®'” was applied in a variety of different set-
tings in statistical physics."*** The theorem provides the basis for
the recent thermal invariance theory.” " This approach is based
on a rigorous invariance of equilibrium averages and of thermo-
dynamic potentials against specific shifting and rotation operations,
as described in the following in detail. Force and torque correlation
functions emerge systematically within the framework and these are
interrelated by exact statistical mechanical identities (“sum rules”).
The sum rules take on the role that conservation laws play in conven-
tional uses of the Noether theorem, where typically the invariances
within a dynamical description are analyzed.

The statistical mechanical gauge invariance gives rise to
force—force and force-gradient two-body correlation functions that
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reveal much insight into the bulk structure of liquids and more
general soft matter systems.””’' Thereby, the spatially resolved
force-force correlation function is crucial and distinct from the tem-
poral force autocorrelation function of tagged particle motion;*®
see, e.g., Ref. 39 for a study of the effects of shear. Here, the
force—force correlation function rather measures the covariance of
the forces that act on each particle in an interacting pair. Similarly,
the force-gradient correlation function represents the mean gradi-
ent of the force that acts on one of the particles upon displacing the
second particle. The quantitative analysis of these gauge correlation
functions allows one to trace a broad range of microscopic structur-
ing effects, from clear signatures of interparticle attraction to chain
formation in gels and orientational order in liquid crystals.’””’

The theoretical structure emerges from an inherent gauge
invariance of statistical mechanics against phase space shifting.”
Popular accounts have been given’®” and a dynamical generaliza-
tion was presented very recently.”” Statistical mechanical sum rules
were shown to play an important practical role in assessing the qual-
ity of neural functionals obtained with simulation-based supervised
machine learning.”’ °' That the machine-learning approach entails
significant potential for carrying out efficient computational work
was demonstrated in the study of charged systems” ' on the basis of
classical density functional theory.>

Here, we present the generalization of the gauge correlation
framework’ " to multi-component systems in thermal equilib-
rium. The emerging species-resolved forms of the sum rules possess
similar mathematical form as in the analogous one-component case.
The species-resolved sum rules carry species labels in a systematic
way. The relative simplicity is important for the practical applica-
tions in both theoretical and simulation work. As a representative
model, we consider the iconic binary Lennard-Jones fluid,” which is
a popular starting point for investigating complex (fluid) bulk phase
behavior and associated interfacial phenomena,” ** as addressed
via classical density functional theory”” " and in simulations.”
A particular symmetrical parameterization investigated by Wilding
et al.”" ** provides a simple case that features only a single common
lengthscale. Furthermore, we consider the popular Kob—Andersen
model'"*’ as a prototypical asymmetrical binary mixture. Recent
work was addressed at its phase diagram®* and locally favored struc-
tures,® devitrification processes,® a crystallization instability,*
many-body correlations,*® ultrastability,’” and aging.”’

We use these two Lennard-Jones systems to exemplify our
approach, but we stay away from questions of glass formation
(Kob-Andersen model) and the topics of capillary and interfacial
phase behavior (symmetrical mixture of Wilding et al.). Although
our simulation work is carried out for pairwise interparticle poten-
tials, the theoretical framework is general and hence also applies to
multi-body interparticle interaction potentials.

This paper is organized as follows: In Sec. II, we present
the species-resolved gauge theory, including the description of
the microscopic model Hamiltonian (Sec. II A), the thermal
ensemble (Sec. II B), the sum rules that emerge from invariance
against species-resolved phase space shifting (Sec. II C), and the
gauge invariance for statistical mechanical microstates (Sec. 11 D).
In Sec. 11, we describe the sum rules for the force-force and
force-gradient correlation functions in general inhomogeneous sit-
uations (Sec. III A), the reduction to species-resolved “3g-sum
rules” for bulk states (Sec. III B), and exact global and local
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identities (Sec. III C). We present the hyperforce correlation the-
ory for mixtures in Sec. IV, including the general locally resolved
framework for general observables (Sec. IV A), the associated
global sum rules (Sec. IV B), and the application to several spe-
cific choices both within the locally resolved (Sec. IV C) and the
global (Sec. IV D) cases. In Sec. V, we present our simulation results
for the bulk force-force correlation structure of the Kob-Andersen
liquid (Sec. V' A) and for the confined symmetric Lennard-Jones sys-
tem (Sec. V B). In Sec. VI, we present our conclusions and give an
outlook on possible future work.

Il. SHIFTING GAUGE TRANSFORMATION

Our treatment of multi-component mixtures is based on
the statistical mechanical invariance theory for one-component
systems.”” " We give a brief account of this prior work and refer
the reader for a discussion of the relationship to the classical liquid
state literature to Refs. 25 and 34. For homogeneous displacements,
Noether’s theorem was shown to yield a range of classical and novel
exact sum rules for equilibrium and nonequilibrium many-body
systems.”” The application to one-dimensional systems is given in
Ref. 26, together with a description of elementary statistical mechan-
ical background. Global sum rules for the force variance (second
moment) follow from considering shifting at second order in the
displacement vector.””

Spatially inhomogeneous phase space shifting yields locally
resolved force sum rules.”””’ At second order in the displace-
ment field, one finds a “3g”-sum rule that relates the pair distri-
bution function to the force—force and force-gradient two-body
correlation functions; the latter were shown to give deep insight
into the spatial structure of liquids, networks, and liquid crys-
tal phases.”””' Addressing general observables of interest’” yields
generalized forces, which were dubbed hyperforces in line with
Hirschfelder’s generalization of the standard virial theorem” to his
hypervirial theorem.”" To clarify intent, an observable that is sub-
ject to the treatment is referred to as a hyperobservable. The phase
space shifting transformation was identified as a gauge transforma-
tion for equilibrium statistical mechanics.”” The shifting vector field
plays the role of the gauge function; see Ref. 34 for a description
of the analogy with classical electrodynamics. The theory features
nontrivial Lie algebra structure. A dynamical version was presented
recently” and we refer the reader to Refs. 36 and 37 for popular
accounts.

A. Microscopic multi-component model

We consider systems with M distinct species of particles. Each
species & = 1,...,M consists of N, particles that possess identical
properties. To implement the book-keeping of the different com-
ponents, we group all particle indices i that constitute the species «
together into an index set A/. Summing over all particles of species
« can then be written succinctly as 3, . Further summation over
all species is expressed as the sum Y, where the summation index
« runs over all species 1,. .., M. An example for this mechanism is
the total number of particles N = 3. Na. As a special (and admit-
tedly extreme) case, this labeling allows one to address all particles
individually, via setting M = N and N, =1 for all a. Each index
set then contains a single element, Ny = {a}, and the sum over
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particles of this species collapses to the single contribution « = i,
hence effectively rendering « the particle index.

The microscopic model in d spatial dimensions is described
on the basis of its position coordinates ri,...,ry = r"¥ and the lin-
ear momenta p,,...,py = p". The Hamiltonian H contains kinetic,
interparticle, and external energy contributions according to the
following standard form:

H=3 % 5 "‘ )+ Y 3 vE (), )

a ie€EN, a €N,

where m, denotes the mass of particles of species &, u(r") is the
interparticle interaction potential, and the one-body external poten-

tial Ve()f? (r) acts on species « at position r. That different particles
of the same species behave in the same way is encoded in the per-
mutation symmetry of the interparticle interaction potential u(r"),
such that the value of u(r" ) remains unchanged upon interchanging
the positions of two particles of the same species. A common form
of u(r") is generated by pair potentials ¢ (r) that act between two
particles of species a and & that are separated by a center—center dis-
tance r. The total interparticle potential can then be written explicitly
as u(r") = 2y T Tier. Do, fue (15— 1))/2, where the primed
sum indicates that the case i = j has been omitted, the factor 1/2
corrects for double counting, the species-swap symmetry ¢, ()
= ¢, (r) is implied, and the sums over particle indices « and o’ each
run over all species 1,. .., M. Our theoretical framework is general,
though, and applies to multi-body interparticle potentials, as does its

. 30,31
one-component version. ‘

B. Equilibrium ensemble and one-body observables

The statistical mechanics of the mixture is formulated in the
standard way and we work specifically in the grand ensemble. For-
mally analogous derivations in the canonical ensemble yield, for
fixed number of particles, sum rules that are identical in form to
the grand canonical versions. In Sec. V, we exemplify explicitly the
validity, both with adaptive Brownian dynamics, as representing the
canonical ensemble, as well as with grand canonical Monte Carlo
simulations, as representing the coupling to a particle bath.

At temperature T and species-resolved chemical potentials
Yy> - - - sty the grand potential Q) and the grand partition sum E are
given, respectively, by

Q=—kpT InE, (2)

=

re_ﬁ(H_Z“ HaNu)’ (3)

where kg denotes the Boltzmann constant and =1/(kgT). The
classical trace operation in the grand ensemble is given by
Tro= Yy, - Sy, (N1 Nyth®™) ™" far™ [dp"-, where the sums
over particle numbers Ni,...,Ny each range from 0 to oo, the
symbol h indicates the Planck constant, and the phase space inte-
gral is abbreviated as [ dr" [dp"N-= [dri...dey[ dp,...dpy-.
The corresponding grand ensemble probability distribution (Gibbs
measure) is

Y= e’ﬁ(H*Za I‘aNu)/E’ (4)
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where the normalization factor E is the grand partition sum (3)
and thermal averages can then be written in the compact form
(y=Tr-V¥

We give a summary of several relevant averages that character-
ize the mixture. The partial density profile p_(r) of species « is the
average of the corresponding one-body density “operator” (phase
space function), pa(r) = (pa(r)), where the microscopic density
observable of species a is given as pa(r) = Y,c , 0(r — 17), with 8(-)
denoting the Dirac distribution. Correspondingly, the mean inter-
particle force density that acts on species « is F(“)(r) (F(“)(r))
where the species-resolved interparticle force density observable is
defined as

EO(r) ==Y 8(r 1) vau(r"), 5)

€N,

where V; denotes the derivative with respect to r;. Similarly, the
species-resolved average kinetic stress is 7o(r) = (#«(r)), with the
kinetic stress observable being defined as

TOEE S(r—r)PP’ )

i€eN,

where p,p; indicates the dyadic product of the momentum of
particle i with itself. These observables can be combined into
a species-resolved total force operator (phase space function),
given as

Fo(r) = V- #a(r) + B (1), @)

where V denotes the derivative with respect to r and the poten-

tial force density observable for species « is F(“)(r) Fl(:t)(r)

- pa(r)VVe(f? (r). The averaged total force density acting on
species « then follows as the average Fo(r) = (F4(r)). The species-
resolved potential-only force density is FEJa)(r) = (lﬁgx)(r)). The
thermal average of the divergence of the kinetic stress (6) simpli-
fiesas V - (#a(r)) = —kpTVpa(r), as follows straightforwardly from
calculating the second moments of the Maxwell distribution.

C. Species-resolved phase space shifting

In order to identify the thermal invariance of the mixture,
we introduce shifting fields that are unique for each component
o of the mixture, in generalization of the local shifting transfor-
mation for pure systems.”” ' In particular, the species-resolved
transformations are

ri — I + €4(ri), (8)

p; = [1+ Viea(r)] ™ - pys )

where particle i is of type a, such that i€ Ay and e(r) is the d-
dimensional vector field that displaces particles of component a.
In Eq. (9), the symbol 1 denotes the d x d-unit matrix, V; is the
derivative with respect to r;, and matrix inversion is indicated by the
superscript —1. The transformations (8) and (9) retain the canonical
properties of the one-component version,”” ' as the latter already
acts merely individually on the position and the momentum of each
particle i.
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The generalized transformation (8) and (9) allows one to
address the individual species separately. The strategy of the sub-
sequent argumentation carries over straightforwardly from the one-
component case,” ' as we lay out in the following. The invariance
of the grand potential implies that Q[ {€, }] = Q, where on the right-
hand side, Q with no argument is, as before, the grand potential (2)
expressed in the original phase space variables. On the left-hand side,
{e,} indicates the set of all displacement fields {e;(r),...,em(r)},
which are used to transform the phase space variables.

The general invariance of the grand potential holds for every
order upon expansion in {€,(r)}. We consider invariance at
first order in the displacement fields and follow the arguments
for the one-component case,” ' which allow one to conclude
that 6Q[{e, }]/0ex(r) = 0. Explicitly carrying out the functional
derivative gives the following exact species-resolved force density
balance:

ks TVpa(r) + (1) = pu()VVE () =0, (10)
The derivation of Eq. (10) rests on the following operator identity,
which is obtained from expressing the Hamiltonian (1) in the new
coordinates, such that it carries an apparent functional dependence
on the set of shifting fields:

_ OH[{ex}]

Seulr) = Fy(r). (11)

{e,s=0}

The right-hand side of Eq. (11) consists of the kinetic, interparticle,
and external force densities described in Sec. II B. The thermal aver-
age of Fy(r) is generated via applying the functional derivative to
the grand potential Q; see its definition (2) and the arguments below
Eq. (7). These steps lead to Eq. (10), which can be written in more
compact form as

Fo(r) = 0. (12)

For details about specific steps, we refer the reader to the description
of the one-component case in Ref. 31.

D. Statistical mechanical gauge invariance

For the case of one-component systems, M = 1, the phase space
variable transformation (8) and (9) was shown to constitute a gauge
transformation of the statistical mechanical microstates.”””* Even
though the microstates are transformed, any equilibrium average
remains invariant under the transformation. In particular, the phase
space shifting is shown to be closely associated with a specific differ-
ential operator structure on phase space. These “shifting differential
operators” apply to general phase space functions and they perform
arole analogous to that of the explicit coordinate transformation (8)
and (9). Here, we generalize the statistical mechanical gauge invari-
ance concept to mixtures and thus define the following species- and
position-resolved phase space differential operators:

ou(r) = > [0(r—1)Vi+p,VO(r—1;) - Vp ], (13)

€N,
where V. denotes the derivative with respect to p;, and p,V is a
dyadic product.””* The crucial difference to the one-component

version o(r)**”* is the mere restriction of particle summation from
a sum over all particles to 3, ;. in Eq. (13).
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The operators (13) are anti-self-adjoint on phase space and
they satisfy nontrivial commutator structure, as, respectively,
expressed by

ol(r) = —04(r), (14)

[0a(r), 0, (1')] = 8 0a(x)[VE(x = 1) ] + 8o [VO(r — 1) Jou (1),
(15)

where §,,, denotes the Kronecker symbol and the dagger indicates
the adjoint, which, for an operator O and two general phase space
functions A(r",p") and B(r",p"), is defined in the standard way
via [deNdpNA OB = [deNdpNBOTA.

The localized shifting operators (13) can be combined together
with their respective shifting fields, e,(r), which play the role of
gauge functions, to define integrated shifting operators,

S{e}] =Y fdrea(r) - 6a(r), (16)

where on the left-hand side, the bracketed argument indi-
cates the functional dependence on the set of shifting fields
{e1(r),...,em(r)}. A given phase space function A(r", pV) is then
affected by the transformation to lowest order in the shifting fields
and their spatial gradients as

AEYp") = A" pY) +2[{eJAG", pY), 17)

where the tilde indicates the new phase space variables (8) and (9).
The operators X[ {€, }] satisfy nontrivial Lie algebra structure, such
that the commutator is [Z[{es}],Z[{€;}]] = Z[{€) (r)}], where
the difference shifting field is given by e (r) = ex(r) - [Ver(r)]
- €,(r) - [Vea(r)]. Hence, the integrated shifting operators [ { €« }]
continue to satisfy the Lie algebra structure described in Ref. 33,
including the Jacobi identity.

Applying the localized shifting operators (13) to a given phase
space function A(rV,p") is identical to carrying out the following
functional differentiation operations at first order:

trN =N
oo (r)A = SAELPT) , (18)
86,1(1') {e.=0}
and at second order:
. OCAGEYBY)
(A= 2 °F J
O'a(r)O'a (r ) é\ea(r)é\ea’(r/) (=0}

+ 8, [VO(r - 1) Joa(r)AGN,p").  (19)

The (phase space) arguments of A(r",p") are suppressed on the
above-mentioned left-hand sides for brevity. As indicated in the
notation on the right-hand sides, all partial shifting fields e,(r) are
set to zero after the functional derivatives have been taken. Equa-
tions (18) and (19) follow from argumentation that is analogous to
the corresponding one-component versions; see Ref. 34. In particu-
lar, when choosing the Hamiltonian as the hyperobservable, A = H
in Eq. (18), then comparison with Eq. (11) yields the species-resolved
force density observable as Fq(r) = —a,(r)H, as is consistent with
applying the explicit form (13) to —H.
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When applied to a specific observable, A, the species-resolved
hyperforce density is §g“)(r) = 04(r)A; see Egs. (13) and (18).
Explicitly, the resulting phase space form of the species-resolved
hyperforce density is

S:ga) (r)=> [B(r —1)Vid +p,Vo(r-1;) - prA]. (20)

€N,

For completeness, when applying Eq. (20) to the Hamiltonian, i.e.,
upon choosing A = H, one obtains the (negative) force density
observable, ${,.(r) = —F,(r).

From the commutator relationship (15), the following Lie sum
rules are obtained upon phase space averaging:

(857 (1)BE (1)) - (BEL(1)SF) (1))
= 8, {8 () [Va(r - )] + [vo(r -] (0}, D)

where the argumentation is analogous to the one-component treat-
ment.”* As a special case, when the right-hand side of (21) vanishes,
we have

(87 (1) By () - (Ea(0)$(7 (') = 0, (22)

which holds true provided that « # &’ or r # r'.
We next describe several concrete consequences of the gauge
invariance for the correlation structure of soft matter mixtures.

Ill. FORCE CORRELATION FUNCTIONS
A. Inhomogeneous partial pair force correlations

Addressing second-order phase space shifting, we consider the
functional Hessian with respect to the shifting fields, i.e., the species-
resolved second derivatives 8*Q[{e,}]/0es(r)de, (r') = 0. Upon
carrying out the explicit calculation on the basis of Eq. (11), one
finds the following result:

, (23)

BEa(r)Ey (r')) = <ae(r)[({s§(}r])>

where again the shifting fields are set to zero after the functional
derivatives of the Hamiltonian have been taken. We recall that
F.(r) indicates the species- and position-resolved total force den-
sity observable (7), which includes the potential forces and the
divergence of the kinetic stress contribution. The sum rule (23) gen-
eralizes the corresponding one-component identity.”’”" It is useful
to split off the potential forces in the sum rule (23) and to further-
more also discriminate between self and distinct cases according to
whether the same or two different particles contribute to the occur-
ring double sums. In the derivation, one can make use of Eq. (19),
setting A = H therein, and we refer to Ref. 31 for further details on
the corresponding reasoning.

The resulting position-dependent two-body distinct sum rule
has the following species-resolved form:

(B (RGO (), =

{e7=0}

vV (n,r)

+ < 3 3V S(r- 1)

TENGGEN

- 1) Viv;Bu(rY)),

(29)
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where the (distinct) two-body density is defined as the thermal
= (Pa(r)por () )aist = (Tien, Tjew, 0(r 1)

8(x" —1j)). We recall that the primed sum indicates the restriction
j # i, which only plays a role for the case of identical species, & = «.
The distinct average on the left-hand side of Eq. (24) correspond-
ingly excludes the case i=j in the occurring double sums over
particles when writing out the two potential force operators.

The corresponding self-part of the sum rule follows from con-
sidering double occurrences of the same particle in Eq. (23), which
leads to the following exact identity:

average pgm )(r, r')

€N,

(ﬁlﬁf/a)(r)ﬁlﬁ@“)(r))self = VVpa(r) + < Z 8(r - l'i)ViViﬁu(l'N)

+pa(r) VVBVE (r). (25)

The self-part on the left-hand side of Eq. (25) involves only the case
of the same particle occurring twice in the double sum, such that this
term constitutes the following dyadic product (8*Y. . 8(r—r;)
[v:U][v:U]), where -v;U(rY) = —=v;[u(rY) + Ve()g)(ri)] is the
potential force that acts on particle i.

B. Bulk fluid 3g-sum rule for mixtures

We can simplify the above-mentioned general two-body frame-
work by resolving only the dependence on the relative distance
between the two positions r and r’. The standard partial (species-
labeled) pair distribution function is given as

(o)
I,r
gar (1) = P2 B0, 6)
PaPo

where p! indicates the bulk density of species a, the distance is
r = |r — r'|, and we assume homogeneous and isotropic fluid states.
Analogously, the partial bulk force—force and force-gradient pair
correlation functions are defined, respectively, as

ol (r) = ﬂ o (B9 (DB (1) )i 27)

P ’

@) () _ _ bﬂh

Iyf

> Yo -r)d(r - x)Vivu(x)). (28)

aP o \iEN, JEN

For a bulk mixture, where v§;? (r) = 0 for all , we can simplify
the inhomogeneous force correlation sum rule Eq. (24) to obtain the

following homogeneous form:
V98 (1) + 95 (1) + 9 (1) =0, (29)

which reduces to the one-component 3g- sum_ rule vvg(r)
+9ys (1) + g4 (r) = 0in the case of single species.” "' We have gen-
eralized the three pair correlation functions via restriction of the
sums over all particles to sums over the appropriate index sets. Fur-
thermore, we have replaced the normalization factor p; by pf,’,pir,

where the bulk number density of species a is p&, = (Ni)/V; we recall
that N, is the number of particles of species a and V indicates the
system volume.
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As in the one-component case,”””' the two nontrivial spatial

components of the tensorial identity (29) are parallel (||) and per-
pendicular (1) to the distance vector between the two particles and
hence

G (1) + 85 (N + 857 () =0, (30)

/
7 aa’ aa’
Zaa' (1) +g(wl)(r) +g§ L)(r) =0, (31)

where Eq. (31) holds for systems with spatial dimensionality d > 2.
The primed functions in Eqgs. (30) and (31) are derivatives by the
argument, such thatg’ ,(r) and g, (r) are, respectively, the firstand
second derivatives of the partial pair distribution function g, (r)
with respect to distance r.

The above-mentioned framework is general and applies to
many-body interparticle interaction potentials u(r"). For fluid
mixtures in which the particles interact mutually solely via pair
potentials ¢, (), we have

0% (r) = g (NBV Vb (1), (32)

where VV¢,,(r) possesses one nontrivial parallel component,
¢ /(r), and two identical perpendicular components, ¢ (r)/r.
As a consequence, for such pairwise interacting mixtures, we can
express Egs. (30) and (31) in the respective forms,

Gow (1) + Zaw (B () + 8551 (1) = 0, (33)
gi““'r(r) + oot (1) L“j’(r) +gi ) (r) =0, (34)

All sum rules reduce to their one-component versions®' in the
limit of a single component. This also applies when considering
“agglomerated” correlation functions that ignore the species label-
ing, as we demonstrate in the following. For details about the
radial dependences and the occurrences of first and second radial
derivatives in Egs. (33) and (34), we refer the reader to Ref. 30.

We introduce species-resolved concentration variables ¢,
= pb/p", where the total bulk density is p’ = ¥, p4. Then, sum-
ming over species yields the following “color-blind” or “species-
agnostic” versions as linear combinations of the species-resolved
correlation functions: We obtain the agglomerated pair distribution
function, g(r) = ¥, 4CaCy g, (), the force-gradient correlation
function, gy (r) = Lo caca«g(v"}“') (r), which for pairwise interac-
tions can be written as g(vo}“/) (1) = X oa’ €aCoLues (1) VV daa(r), and

the force—force correlation function, g/ (r) = Xy cacarggﬁa’) (r).
Then, the 3g-sum rule is obtained in the “agglomerated” version,

VVg(r) +ays(r) +94(r) =0, (35)
which is formally identical to the single-component sum rule.”*?!
The two relevant spatial tensor components are parallel and
transversal to the interparticle distance vector and they satisfy,
respectively, the following sum rules:

g (r) + gy (r) + g (r) =0, (36)

ARTICLE pubs.aip.org/aipljcp
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.
U)o () + gipa () =0 )

We present results from simulation work in Sec. V to demonstrate
the accessibility of all partial two-body gauge correlation functions
together with tests of the relevant sum rules that these satisfy.

C. Global and local two-body sum rules

We have so far treated position-resolved cases where the spatial
dependence is retained. A global second-order sum rule is obtained
from either considering spatially constant displacements ex(r)
= €, = const or alternatively integrating the spatially resolved iden-
tity (23) over both position variables and summing over both species.
The result of both routes of derivation is the same and it is given by

5 et B (e YOV (7 VS ()
—ksT Y f dr pu (1) VYV (1), (38)

Here, the correlation function of density fluctuations”>>’> has the
common form HZ(““’) (r, ") = cov(pa(r), py (r')), where the covari-
ance of two operators A and B is defined in the standard way
as cov(A,B) = (AB) - (A)(B). Equation (38) is analogous to the
corresponding one-component identity of Ref. 27, which itself is
recovered for the case of a single species, M = a = o =1.

A species-resolved version of Eq. (38), which involves also
interparticle contributions, is given by

Beov (B2, 12(4)) = < D v,-vju(rN)>

PENGJEN v
to [drp VOV @, 69
where the species-resolved global force operator is

B 2 f b (r)=-3 vl (40)

€N,

Summing over both species labels a and o’ in Eq. (39) and observing
[LEVDIND I Viu(r™) = 0 recovers Eq. (38).

Furthermore, the density—force correlation sum rule’’ for the
case of mixtures is

(BEa(r)py (') = 8, V' P\ (21), (41)

where the self two-body density distribution is defined as
pgizlf(r, ') = (Tien, 0(r—1i)8(r' - r;)) and the right-hand side
of Eq. (41) can alternatively be written as &,,/p(r)V'8(r-1").
The derivation of Eq. (41) can be based on the mixed second-
order invariance 0= 620/[8ea(r)6Ve(;’)(r')] = 8py (r')/Sen(r)
= —0F,(r) /6Ve(,z’)(r'). Here, the two alternative resulting expres-
sions are obtained from exchanging the order of the two functional

derivatives, re-writing via using that p(r') = 8(2/6Ve()f{)(r') and

Fa(r) = —0Q/8€q(r), and setting the species-resolved displacement
fields to zero.
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IV. HYPERFORCE SUM RULES FOR MIXTURES
A. Local hyperforce sum rules

We consider general observables A(r",p") and their corre-
sponding equilibrium average A = (A(r",p")). Following the argu-
mentation of Ref. 32, the value of A is invariant under the species-
resolved shifting transformation (8) and (9). Hence, the functional
derivative of the thermal average with respect to each shifting field
vanishes,

0A[{ex }]

Secls) 0. (42)

Using the explicit form of the equilibrium average as a phase space
integral, one can rewrite Eq. (42) in the following more explicit form:

) ) (] )l
{ey=0}

Seq(r) deq(r)
where all partial shifting fields {€, (r)} have been set to zero after
the derivative is taken. Making the first term in Eq. (43) more explicit
via its relationship to the partial force density operator (11) and also
calculating the second term explicitly leads to the following species-
resolved hyperforce sum rule:

() (2 ot rmywi) o7 5 ot

€N, ieN,

{e,s=0}

(44)
where the observable A(r", p) can have general phase space depen-
dence on r",p". Using the definition (20) of the species-resolved

hyperforce observable SAy)(r), we can put Eq. (44) into the more
compact form

84 (r) + (BEa(r)A) = 0, (45)

where the partial mean hyperforce density is ${* (r) = (${ (r)).

For cases where A is independent of the degrees of freedom
of species a, as denoted by A({ri,p,}icx, ), the right-hand side of
the species-resolved hyperforce density balance (44) vanishes, which
leads to the remarkably simple result,

(BE«(r)A({ri,p}ien,)) = 0. (46)

Hence, the total force density that acts on species « is uncor-
related with all observables that only depend on the degrees of
freedom of the species that are different from a. As the average
partial force density vanishes in equilibrium, Fu(r) =0 accord-
ing to Eq. (12), the relationship (46) implies trivially that also
cov(Fa(r), A({ri, p;}iex.)) = 0.

In case that the considered observable is independent of
momenta and hence is a function of only the positions, i.e., A(r"),
the last, momentum-dependent term on the left-hand side of
Eq. (44) vanishes and we obtain

(BE(A(N)) + 25(r—ri)ViA(rN))=0. )

i€EN,

Using the standard splitting (7) of the position-dependent total force
operator into interparticle, external, and kinetic contributions allows
one to rewrite Eq. (47) in the following more explicit form:
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(BESY MAGY)) - (pa(0AG™)) VBV (r)
—V([)a(r)A(r ) (Z 8(r — 1) ViA(r ))— . (48)

€N,

For cases where the observable of interest depends only on
the position variables of an individual species o', as denoted by
A({ri}iex ), we can particularize Eq. (47) further,

(B ()A({ri}iex, ) + 0 (2 8<r—rz>VA<{r,},eN,))= ,

i€N,
(49)
such that the second term is only non-vanishing in the intraspecies
!
case, @ = a'.

B. Global hyperforce sum rules

Integrating Eq. (48) over position r and exploiting that the dif-
fusive gradient terms vanish in systems enclosed by walls allows one
to obtain the following global hyperforce sum rule:

(BB A) + (pEe(VA) + (Z VA> (50)

ieN,

Here, the global external force operator for species « is defined
as the sum over all external forces that act on this species, i.e.,
FO("‘)

ext

~Yien, ViV, ext (r,) and correspondingly for the species-
resolved global interparticle force pol) - ~Yien, vu(r"). Building

int

the sum of both contributions allows one to relate to the species-
resolved global potential force operator (40) as FO(“) f(“) + F°(“)

This allows one to rewrite Eq. (50) in a more compact form,

(B2 4) + < 5 v,—A) o (s1)
i€EN,
Note that the partial interparticle forces need not vanish individu-

ally, yet when summed over, all species Y, FO(“) 0, as follows from
Newton’s third law or, analogously, from the global translational
invariance of the interparticle potential u(r").>

Summing the identity (50) over all species yields

(BEA) + <Z va) =0, (52)

where we have defined the global external force operator as

Fou =2, F:x(t“) and have exploited that the global interparticle
force operator vanishes, 3, E2{*) = 0, as described above. We have

simplified the summation over particles in Eq. (52) according to
i = Xa Liew, Where the sum on the left-hand side runs over all
particles in the system. The form of the sum rule (52) is identical to
the corresponding result for one-component systems.*

C. Local sum rules for specific observables

We apply the general sum rules described in Sec. IV A above
to several exemplary choices for the “hyperobservable” A, follow-
ing the outline of the single-component treatment in Ref. 32. As an
initial consistency check, the trivial choice A = 1 leads via Eq. (49)
[or alternatively via the simple Eq. (46)] directly to the partial force
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balance relationship (10). Choosing the partial density operator
A=py(t') = Yin, 8(r — 1) and applying Eq. (49) yields

(BEa(r)py (1)) = 8,0 V'pS2(x,1"), (53)

which is the density—force correlation sum rule (41). Taking the
interparticle potential energy A = u(r™) leads via Eq. (47) to

(BBa(r)u(r")) = B (). (54)

Furthermore, t}le (scaled) center of mass of all particles of
species a, given by A = ¥, -, i, leads via Eq. (49) to the following
identity:

—(/sﬁa<r> 5 ) b Tpa(e), (55)

PE€N

where we recall 1 as the d x d-unit matrix, with d indicating the
spatial dimensionality.

D. Global sum rules for specific observables

We formulate several global sum rules that arise from making
specific choices of hyperobservables. Our aim in Sec. V will be to
demonstrate in simulations the validity of these sum rules and to
show the accessibility of the correlation functions that are involved.

We first address the partial density operator. In the gen-
eral sum rule (51), we set A = p(r) and use the simplification
(Tien, Vipy (r)) = =0, Vpa(r), where we recall that no summa-
tion over double species indices is implied in our notation. Then,
one obtains the following sum rule:

(BE (1)) = 00 palr) = 0, (56)

which applies to all combinations of a, &’. Summing Eq. (56) over all
pairs of species yields

(BE& p(r)) = Vp(r) =0, (57)

which is analogous in form to the one-component hyperforce sum
rule for the density operator.’” The agglomerated density operator is
obtained by summing over all species according to p(r) = ¥, pa(r)
and we recall FS,, as the agglomerated external force.

Specializing Eq. (56) to the case a = &’ and summing over the
remaining species index gives the following alternative form:

(52 685p.(0)) - 7ote) -0 (58

where the first (correlation) term differs from that in Eq. (57): (i)
interparticle interactions contribute and (ii) only intraspecies corre-
lations between forces and densities occur. Equations (57) and (58)
are both suitable for situations where one is interested in the behav-
ior of the agglomerated density profile p(r) rather than its partial
variants p_(r), as can be advantageous in situations of demixing
phase separation.

We next consider the species-resolved interparticle force

density operator, A = ﬁlﬁi(ri’)(r), of which we recall the explicit

ARTICLE pubs.aip.org/aipl/jcp

form ﬁlﬁi(:‘t’) (1) = ~Tiew, 0(r - 1) ViBu(r"). Then, specializing the
global sum rule (51) yields

(B0 0) [ 3 v ) -0 6
€N,

Note that Iﬁi(lﬁ')(r) will in general also depend on further species
o’ # a, such that the gradient in the second term in Eq. (59) will in
general be nonzero; this situation is different from the mechanism
in Eq. (49) where A({r;}ic,) depends solely on the positions of
species o'

Furthermore, we address the thermally scaled agglomerated
interparticle force density A = BFinc(r) = ¥, /§F.(“)(r). Then, from

int

Eq. (52) and Newton’s third law, one obtains the following global
sum rule:

(ﬁﬁgxtﬁﬁint(r)) — VBFin(r) = 0. (60)

One obtains an alternative to Eq. (60) by first specializing
Eq. (59) to the case of equal species, & = &', and then building the
sum over the remaining joint species index. Simplifying the result
yields

5 (O 0) - X ( 5 o= mwmpuce)

« i €Ny

— VBFint(r) = 0. (61)

Hence, both sum rules (60) and (61) feature the thermally scaled
negative gradient of the agglomerated interparticle force density
—VBFint(r) as the last term on the left-hand sides.

We test the sum rules (57), (58), (60), and (61) in simulations,
as described in the following.

V. SIMULATION RESULTS

To illustrate the gauge correlation theory, we apply it to
a concrete system and hence consider the prototypical binary
Lennard-Jones mixture in three spatial dimensions. The system is
characterized by pair potentials ¢, (r) that act between particles
of species & and «’. The species-labeled Lennard-Jones potential is
thereby given by

Poa (1) = 4%[(%)12 - (07)6] (62)

where r is the separation distance between the two particles, €,/
represent energy parameters, and o, represent length scales, with
the species indices taking on values a, a'=1,2ina two-component
system; the symmetry ¢, (r) = ¢,;(r) is implied.

A. Bulk force-force correlation structure

We first address the pair gauge correlation structure of a bulk
liquid using the Lennard-Jones parameterization due to Kob and
Andersen.'"*’ The fundamental length scale ¢ and energy scale e
are taken to be those of the first component « = 1, such that 1, = ¢
and €11 = €. The intraspecies interactions among particles of species
o = 2 are characterized by a smaller length scale, 02, = 0.880, and
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FIG. 1. Two-body gauge correlation functions of the Kob—Andersen liquid at reduced temperature kgT/e = 1.1 and scaled partial bulk densities p‘1’03 =0.591 and
p'z’a3 = 0.253. The results are shown as a function of the scaled interparticle distance r/o for species aa’ = 11 (first column), 12 (second column), 22 (third column),
and for the agglomerated quantities (fourth column). Top row: partial pair distribution functions g, (). Second row: the parallel component of the force-gradient correla-
tion function gg"?”)(r) agrees numerically with g, (r)B¢”’, (r), cf. Eq. (32). Third row: the corresponding perpendicular component gg"‘;‘ l) (r) agrees numerically with

o

I
expected from the sum rules (30) (first to third column) and (36) (last column). Bottom row: the corresponding perpendicular component g(f

Gow (N)BY. ., (r)/r, cf. Eq. (32). Fourth row: the parallel component of the force-force correlation function g(f"f‘ ')(r) agrees numerically with —g”" , (r) - g(v"‘f"")(r), as

|
‘,’f’i ) (r) agrees numerically with
(e

—g"m, (ry/r- gm) (r), as expected from sum rules (31) (first to third column) and (37) (last column).
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weakened energy scale, ex; = 0.5e. The cross species length scale
is reduced, 012 = 0.80, and the cross interactions are strengthened,
€12 = 1.5¢, compared to both intraspecies pair potentials.

We use adaptive Brownian dynamics” to sample the gauge
correlation functions of the bulk liquid at thermal equilibrium in
the canonical ensemble. We use a cubic simulation box with lat-
eral size 100 and total particle number N = 844. Hence, the total
bulk density is p, = N/V = 0.8440~> and the partial bulk densities

are p’o® = 0.591 and pYo° = 0.253, and we choose the temperature
as kgT/e = 1.1. We truncate all pair potentials at a cutoff distance
re =2.50 and potential shifts are applied, such that each ¢, (r)
is continuous at r.. We have used an initial simulation period of
temporal length 573 for equilibration, with Brownian time scale
p = 0°kpT/(Doe), where Dy is the single-particle diffusion con-
stant. The data are collected over 25 runs, which amounts to an over-
all time 400073 that consists of ~6.5 - 10” adaptive time steps.”’ The
parameters for the adaptive Brownian dynamics tolerance criterium
are set as 0.1 (relative tolerance) and 0.01 (absolute tolerance); see
Ref. 73 for details.

In Fig. 1, we display results for the partial pair distribution
functions, for the force-gradient correlation functions, and for the
force-force correlation functions. The partial pair distribution func-
tions g, (r) display pronounced spatial structuring that is typical of
the liquid state; see the first row in Fig. 1. Both g;,(r) and g, ()
possess pronounced first peaks, which are indicative of the forma-
tion of nearest neighbor coordination shells. The subsequent decay
for increasing distance /o is damped oscillatory, on the linear scale
considered here. The first peak of g,, () is less strongly pronounced
than for the 11- and 12-pairs, but the decay toward larger values of
r/o is also damped oscillatory, as is expected from the general theory
of asymptotic decay of correlations in liquids,””* " which ascertains
common type of decay for all partial pair distribution functions. The
agglomerated pair distribution function g(r) displays rich oscilla-
tory structure. This structuring arises from the linear combination
of the underlying partial contributions; see the fourth panel in the
first row of Fig. 1.

The results for the force-gradient correlation functions

(o
9vr
we display, respectively, the parallel and the perpendicular ten-
sor components. Simulation results are obtained by sampling the
force gradients via finite differences, which are built by perform-
ing virtual particle displacements.”’ This “direct” method is of
universal applicability to general many-body interparticle interac-
tions, such as the monatomic water model’® and the three-body
gel former,” " both of which are special parameter choices of
the general Stillinger-Weber model.*” The finite difference method
also circumvents the need to implement Hessians of interparticle
potentials explicitly.

For the present pairwise-interacting mixture, each partial
force-gradient pair correlation function is related to the correspond-
ing partial pair distribution function g,/ (r) and the Hessian of the
pair potential VV¢,, (r); see Eq. (32) and the dotted lines in the
second and third row of Fig. 1. The identity (32) is verified numer-
ically; see Fig. 1. The parallel and perpendicular tensor components
display, respectively, a strong positive and negative first peak, as
can be expected from the underlying second and first derivatives
of the respective pair potential with respect to distance. Both tensor

) (r) are shown in the second and third row of Fig. 1, where

ARTICLE pubs.aip.org/aipl/jcp

components strictly vanish beyond the potential truncation distance
rc. The perpendicular component displays a positive overshoot for
each pair of species. We attribute the effect to the presence of inter-
particle attraction; see Ref. 81 for a comparison of results for the
one-component Lennard-Jones fluid and for the purely repulsive
(also one-component) Weeks—Chandler-Andersen fluid, where in
the latter model the effect is absent.

The results for the partial force—force pair correlation func-
tions g};“’)(r) are shown in the fourth and fifth row of Fig. 1.
We recall that these functions measure the correlation of the sum

of all interparticle forces acting on each particle of the consid-
ered pair. No simplification arises that would be similar to that for

the above-mentioned force gradient correlation functions g(vo}“ )(r).

Performing the sampling of the force-force gradient correlation
functions is straightforward, in particular when using methods that
already provide direct access to forces, as is the case for the present
adaptive Brownian dynamics or, similarly, in molecular dynamics.
A description of a suitable choice of coordinate system that facili-
tates straightforward access to the parallel and perpendicular tensor
components is given in Ref. 30.

The partial force—force correlation functions again display rich
spatial structuring. The parallel component has a strong first nega-
tive peak, as is indicative of anti-correlated forces on two mutually
interacting particles. Note that the negative sign reflects anticorrela-
tion both for repulsion in the core region and for the longer-ranged
attraction. The perpendicular tensor component has smaller ampli-
tude and smoother variation with distance. The two tensor compo-
nents, Egs. (33) and (34), of the species-resolved 3g-sum rule (29)
as well as the species-agglomerated sum rules, Egs. (36) and (37),
are satisfied to excellent accuracy. We hence conclude that the gauge
correlation framework offers significant and physically meaningful
insight into the spatial structure of bulk liquid mixtures.

B. Confinement between parallel walls

To consider a second model fluid, we follow Wilding et al.,”*
who investigated a symmetrical Lennard-Jones mixture with a single
common lengthscale 611 = 022 = 012 = 0. The two intraspecies inter-
action strengths are identical, €1 = €22 = ¢, and the cross-species
interaction strength is weakened by comparison, €1 = 0.7¢. The
cutoff radius is again chosen as r. = 2.5¢ and no potential shift
is applied. We use grand canonical Monte Carlo simulations™ *’
to generate equilibrium data. The system exhibits intricate phase
behavior, including gas-liquid and liquid-liquid phase coexistence
phenomena, which were recently re-addressed using neural density
functional learning.”!

We demonstrate the applicability of the hyperforce sum rules
to spatially inhomogeneous systems by considering confinement in
a planar asymmetric slit pore. The left wall is thereby taken to be
of Lennard-Jones 9-3 type:"* Vew1(2) = €[(2/15) (0/2)° - (0/2)*],
where z measures the distance from the wall and we recall € as the
common energy scale. The right wall is purely repulsive, Vex,r(2)
= 4e,[(0/2)"? — (0/2)® + 1/4], where the wall potential strength is
taken to be €, = 10¢, and the cutoff is at z. = 2"°c. The total exter-
nal potential is then given by the combination Vex(z) = Vex,(2)
+ Vextr(Lz — z), with simulation box size L, in the z-direction. We
choose L; = 200 + 2°¢ = 21.1220 and take the box size in the two
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kpT/e=0.98, /e = —3.05  kpT/e=0.98, pje=—2.85

ARTICLE pubs.aip.org/aipl/jcp

kpT/e =0.98, p/e = —2.65

FIG. 2. Specific hyperforce correlation
functions of the symmetrical Lennard-
Jones mixture of Wilding et al.*®% at
scaled temperature kgT/e =0.98 in
the gas phase at chemical potential

/e = —3.05 (left column), in the mixed
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liquid phase at u/e=-2.85 (middle
column), and in the demixed liquid
phase at u/e =-2.65 (right column).
The system is asymmetrically confined
between an attractive wall (left) and
a purely repulsive wall (right) and it
is translationally invariant in the x
and y directions. Top row: the total

density profile p(r) = p,(r) + p,(r)

|/
’ distance  z/o

h{‘;uu-—-—-—"""""‘a is shown as a function of the scaled
across the pore.

Middle row: the gradient of the den-

sity  profile,  Vp(r) = 9p(2)/0z,
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coincides numerically with the z-
component of (BES,p(r)), according

ﬁ to Eq. (57), and with the z-component

of ¥, (BEp.), according to
Eq. (58). Bottom row: the zz-component
of the gradient of the agglomer-
ated local interparticle force density,

VPBFine(r), coincides  numerically
with the zz-component of the cor-
relation  function  (BES,Fin(r)),

according to Eq. (60), and with the zz-

lateral directions to be 50. For each of the three statepoints con-
sidered, we have carried out 2 - 10° (gas) and 3 - 10° (mixed and
demixed liquid) grand canonical Monte Carlo single particle moves.
Each move consists of either a position displacement with maxi-
mal length 0.20 or particle insertion/deletion attempt, performed
with probability 0.1. We collect data after an equilibration period
of 3 - 10° Monte Carlo steps.

Figure 2 shows our simulation results for the specific hyperforce
correlation functions laid out in Sec. IV D. These correlation func-
tions are chosen specifically to facilitate access both to the gradient
of the density profile and to the gradient of the localized interparti-
cle force density. We hence consider the sum rules (57) and (58) for
the gradient of the total density profile and the identities (60) and
(61) for the gradient of the agglomerated interparticle force density.
We choose three statepoints, as is typical for the gas, the mixed lig-
uid, and the demixed liquid phase. The comparisons shown in Fig. 2
demonstrate that in all cases considered, we find the sum rules to be
satisfied.

The total density profile, p(z) = p,(z) + p,(z), as shown in the
first row of Fig. 2, is indicative of capillary structuring in the low-
density phase (left column), in the mixed liquid (middle column),
and in the demixed liquid (right column). The respective simula-
tion snapshots illustrate these different capillary states. The gradient

component of ¥, (BE; BB (r))
- Ya (Zijen, 8(x = 1) Viv;pu(e)),
according to Eq. (61). The bottom
row displays corresponding simulation
snapshots of the gas (left), mixed liquid
(middle), and demixed liquid (right)
states.

of the total density profile, Vp(z), shows pronounced oscillations at
the (left) attractive wall, where molecular packing effects are appar-
ent. This feature increases upon increasing values of y/e (from left
to right in Fig. 2). The gradient of the interparticle force density
(third row in Fig. 2) shows even more pronounced structuring than
the density gradient for the densest system considered. The cap-
tion of Fig. 2 gives details about the specific sum rules that are
demonstrated.

VI. CONCLUSIONS

In summary, we have explored the consequences of gauge
invariance with respect to species-resolved phase space shifting in
multi-component classical many-body systems. The gauge transfor-
mation constitutes a species-specific canonical transformation that
acts on the fundamental position and momentum degrees of free-
dom. The transformation is represented by differential operators
that act on general phase space observables and that feature Lie
algebra commutator structure. The geometric nature of the gauge
transformation, see Ref. 34 for an in-depth description, renders the
framework generally applicable to arbitrary phase space functions
A as the “hyperobservable” of interest. The hyperobservable can be
a bespoke order parameter that is relevant for the physics of the
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system under consideration or, alternatively, it can be chosen as
a more standard observable, such as the partial one-body density
and force density observables, as we have considered here in our
simulation work.

We have described the rich formal gauge correlation structure
that emerges in mixtures, where the hyperobservable, in analogy to
the Hamiltonian itself,** generates corresponding spatially resolved
hyperforce density observables via phase space differentiation. Upon
building the thermal equilibrium average, the mean partial one-body
hyperforce density is related, in a formally exact way, via equilib-
rium sum rules to the correlation of the hyperobservable with the
spatially localized force density. We have described in detail several
relevant special cases of these sum rules that are relevant for mix-
tures, such as, e.g., arising from the absence of the dependence on
specific species, which leads to formal simplification.

Turning to the two-body level of the gauge correlation func-
tions, we have generalized the emerging two-body force-force and
force-gradient correlation framework, as were formulated originally
for pure systemsf” “Ito multi-component systems. Our correspond-
ing simulation work for the Kob-Andersen model, in its liquid
phase, has shown that deep insights into the liquid structure can be
gained specifically from the partial force-force and force-gradient
correlation functions. We found all corresponding sum rules to be
satisfied numerically. We recall that their validity hinges on ther-
mal equilibrium. Hence, our present investigation could serve as
a platform to shed new light on the rich topic of the nonequilib-
rium nature of glasses that arise from performing a temperature
quench of the liquid. We refer to Ref. 35 for the formulation of
dynamical hypercurrent sum rules that arise from the dynamical
generalization of phase space shifting. In future work, it would be
interesting to explore possible connections of the present framework
with mode-coupling theory.*® We also leave the investigation of the
gauge correlation sum rules for systems interacting with multi-body
interparticle interactions to future work.

We have demonstrated the applicability of the gauge corre-
lation framework to spatially inhomogeneous systems by carrying
out simulations for a symmetrical Lennard-Jones system previously
investigated by Wilding et al.”* " in the context of bulk phase behav-
ior and associated interfacial physics. We have ascertained that both
the gradient of the density profile and the gradient of the one-body
force density distribution are accessible via corresponding hyper-
force correlation functions; see Fig. 2 and the description given in
Sec. V B.

Concerning phase-separating systems, it could be relevant to
consider specific hyperobservables that relate to near-coexistence
conditions, such as the local compressibilities reflecting density
fluctuations. Note that local fluctuation profiles are closely con-
nected with a corresponding local compressibility when choosing
the hyperobservable as A = N,. However, due to the significant flex-
ibility in choosing A, we can envisage much potential for shedding
new light on phase-separating systems as well as on the nature of
ordered phases, such as crystalline solids.

We have used two specific parameterizations of the binary
Lennard-Jones systems to exemplify our framework. For similar
and related parameter choices, a wealth of relevant research ques-
tions has been addressed. This includes transport phenomena in
mixtures,” critical dynamics and finite-size scaling,” ” phase sep-
aration inside of nanopores,”’ the structure and dynamics near
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demixing,”” sub-system analysis,”” the study of hydrodynamic
effects,” spinodal decomposition,” as well as critical surface
adsorption.” A further important class of models consists of
depletion-based binary mixtures, where an added secondary (deple-
tion) agent generates an effective interaction between the primary
(colloidal) component.”

The fact that the hyperobservable can be of very general nature
allows one to address concrete applications in flexible ways. For
further specific examples, we refer to Refs. 43 and 44 for inves-
tigations of the hyperfluctuation profile that is associated with a
clustering order parameter and to Refs. 98-100 for the local ther-
mal susceptibility, which arises from addressing the entropy. We
re-iterate that choosing the species-resolved number of particles,
A = N,, leads to partial versions of the local compressibili‘[y.m“’mI
In future work, it would be interesting to investigate connec-
tions to the reduced-variance (force-sampling)'”” ' and mapped
averaging'””''" schemes. In particular, the two-body framework of
Sec. I11 B offers potential for such use; note that Eqs. (33) and (34)
can be viewed as differential equations for the partial pair distri-
bution functions, provided that (simulation) results for the partial
force-force correlation functions are available.

The present theory can form an important role in neural func-
tional construction,” ' as the sum rules carry significant potential
for serving as diagnostic tools to assess the self-consistency of
numerical predictions. The hyperforce gauge correlation identities
tie in particularly well with the hyperdensity functional framework
for the behavior of general observables in spatially inhomoge-
neous systems,“‘“ as follows from the fundamental Mermin-Evans
density functional map.”*'"

Sum rules are of significant importance in first-principle-based
machine learning in soft matter physics,"’ "' as also applied to
charged® '’ and further'"”''° relevant model systems. The basis for
the neural functional learning method'""* are the formally exact
functional relationships provided by classical density functional®
and power functional theory.”” Statistical mechanical sum rules can
serve as systematic means to assess the quality of the neural predic-
tions and as regularizers during training. In particular, the method
of local learning, which applies to either the one-body direct cor-
relation functional, to the excess free energy functional,” or the
local nonequilibrium force density,”*® incorporates the effects of
the interparticle interactions in a highly efficient, functional form.
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