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We reexamine results obtained with the recently proposed density functional theory framework based on
forces (force-DFT) [S. M. Tschopp et al., Phys. Rev. E 106, 014115 (2022)]. We compare inhomogeneous
density profiles for hard sphere fluids to results from both standard density functional theory and from computer
simulations. Test situations include the equilibrium hard sphere fluid adsorbed against a planar hard wall and the
dynamical relaxation of hard spheres in a switched harmonic potential. The comparison to grand canonical Monte
Carlo simulation profiles shows that equilibrium force-DFT alone does not improve upon results obtained with
the standard Rosenfeld functional. Similar behavior holds for the relaxation dynamics, where we use our event-
driven Brownian dynamics data as benchmark. Based on an appropriate linear combination of standard and force-
DFT results, we investigate a simple hybrid scheme which rectifies these deficiencies in both the equilibrium and
the dynamical case. We explicitly demonstrate that although the hybrid method is based on the original Rosenfeld
fundamental measure functional, its performance is comparable to that of the more advanced White Bear theory.
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I. INTRODUCTION

Whether any theoretical approach is useful in practice of-
ten stems from the accuracy and reliability of its predictions
versus the analytical and computational effort it requires.
Classical density functional theory (DFT) [1,2] fares very
well, ranging from simple local density and square gradi-
ent approximations [1,2], which are sufficiently accurate in
appropriate circumstances (see, e.g., Refs. [3-5] for studies
of colloidal sedimentation) to the nonlocal and nonlinear
prowess of Rosenfeld’s fundamental measure theory (FMT)
[6,7] to capture hard sphere correlations.

Applying DFT in practice involves solving a variational
(minimization) problem, which typically requires the
numerical treatment of an implicit integral equation. One
obtains static quantities or performs adiabatic time evolution
within dynamical DFT (DDFT). The latter task is often done
with a simple time-forward integrator, but more advanced
methods [8,9] allow to address dynamical optimization
problems. Similarly, computational grids in real space range
from simple and often very relevant effective one-dimensional
geometries [10] to full three-dimensional resolution [11] and
pseudospectral methods [8]. Increasing the complexity of
the underlying microscopic model trades off well with the
achieved broader physical scope, as is the case in including
orientational degrees of freedom in liquid crystal formation
[12,13] and molecular DFT [14-16] for realistic modeling of
molecular liquids.

DFT offers a complete theoretical framework for address-
ing static problems in many-body statistical physics. The
theory is founded on the concept of potentials, including the
chemical potential u as a control parameter, an external poten-
tial that adds local variation to u, and an intrinsic part, which
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arises from the interparticle interactions and which induces
the coupling of the microscopic degrees of freedom.

In contrast to this basis in potentials, the concept of forces
seems almost alien to the framework, or at least redundant.
Nevertheless, in a variety of very different fields there ap-
pears to be new interest in this old workhorse. We mention
the recent and unexpected advances in simulation methodol-
ogy based on force sampling [17-20] and in the related but
different realm of quantum DFT [21-25], as well as in the
power functional approach to nonequilibrium many-body dy-
namics [26]. Both the classical and the quantal force balance
were proven to be direct consequences of a thermal Noether
symmetry of the system [27,28]. Forces are also central in
the recent treatment of motility-induced phase separation by
Brady and coworkers [29].

Recently, Tschopp et al. [27] developed a force-based al-
ternative to implement density functional theory. Their “force-
DFT” comes at an increased computational cost, as two-body
functions appear explicitly and need to be manipulated. Nev-
ertheless, the framework still retains formal one-body purity
with the two-body density playing the role of an auxiliary
variable. The difference between the standard approach to
DFT and the force-DFT appears similar to the difference
between the virial and compressibility route to determine the
equation of state in bulk fluids [2], e.g., on basis of the cele-
brated Percus-Yevick approximation for the hard sphere fluid.
Actually, as could be shown by Tschopp et al. [27] via an
investigation of the hard wall contact theorem, standard DFT
corresponds in this case to the compressibility equation of
state while force-DFT satisfies the virial equation of state.

Here we address the question of where the balance of
complexity and accuracy tips for the force-DFT. We com-
pare the theoretical results of Ref. [27] against new computer
simulation data, involving canonical, grand canonical, and
event-driven methods, as is appropriate for carrying out a
systematic comparison, as we detail below. We find that the
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force-DFT per se does not improve on standard DFT in the
considered cases, but that an appropriate linear combination
of results from the two approaches, which constitutes a simple
hybrid scheme, gives much improved results as compared
to the standard framework. We hence follow the suggestion
raised in the outlook of Ref. [27] that “the virial and com-
pressibility routes could be mixed in the spirit of liquid-state
integral-equation theories, using approximations analogous to
the Rogers-Young or Carnahan-Starling theories.”

The paper is organized as follows. In Sec. II, a brief
summary of the core concepts of DFT is given. Particularly,
we highlight the conceptual differences of the force-DFT ap-
proach and describe how both routes can be used to formulate
a dynamical DFT. In Sec. III, we conduct a thorough reinves-
tigation of the force-DFT results for the model applications
of Ref. [27], thereby comparing these data to results from
standard DFT and from simulation. Throughout this work,
the hard sphere fluid is considered and the force-DFT results
are those that were obtained with the Rosenfeld [6] FMT
functional in Ref. [27]. We first turn to the case of imposing a
planar hard wall in Sec. IIl A where the respective connec-
tion of standard and force-DFT to the compressibility and
virial route is established via the hard wall contact theorem.
To obtain numerically accurate results for this equilibrium
situation, we perform grand canonical Monte Carlo (GCMC)
[30] simulations which are systematically adjusted to enable a
comparison with both DFT routes. In Sec. III B, the dynamical
behavior of the hard sphere fluid in a switched harmonic
potential is considered. For the numerical reproduction of
the exact time evolution, we employ event-driven Brownian
dynamics simulations (EDBD) [31] that are initialized with
particle configurations from canonical Monte Carlo (MC)
simulation. The time-dependent density profile obtained with
this procedure is compared to results from standard and from
force-DDFT. Based on the observations of Secs. III A and
III B, we investigate a hybrid scheme in Sec. IV as a means to
substantially improve the resulting density profiles via a linear
combination of results from the standard and force route. This
is illustrated both for the equilibrium and for the dynamical
case, where we find much better agreement with simulation
results. In particular, we show that hybrid Rosenfeld DFT can
compete with standard DFT on the basis of the high-accuracy
White Bear [32,33] functionals for the hard wall test case. We
conclude in Sec. V and give an outlook to further possible
applications of force-DFT and the hybrid scheme.

II. CONCEPTS OF STANDARD DFT AND FORCE-DFT

One of the main goals and motivations behind the de-
velopment of force-DFT is the possibility to improve upon
the results from standard DFT calculations. Usually improve-
ments of DFT involve refinements of the assumed free energy
density functional. Two prominent examples are the advanced
White Bear versions of FMT [7,32,33]. In contrast, the imple-
mentation of force-DFT acknowledges the fact that the exact
density functional is not within reach for relevant physical
systems and that intoducing approximations leads to a theory
that is not entirely self-consistent. Starting from the same
functional but using different routes to calculate a physical

variable will yield different results except in the formal case
of an exactly known functional.

The starting point of both the standard DFT and the
force-DFT approach is determining the density p(r) self-
consistently from solving the Euler-Lagrange equation

Inp(r) — Blp — Vex(r)] — c1(r) =0, ey

where B = (kgT)~! denotes the inverse temperature with kg
being Boltzmann’s constant, and w is the chemical potential.
While the thermodynamic state point as well as the external
potential V4, (r) act as control parameters, the one-body direct
correlation function ¢ (r) arises from internal interactions and
it has to be approximated in practice.

Given a suitable approximation for the excess free en-
ergy density functional Fi[p], where the brackets indicate
functional dependence, one determines the one-body direct
correlation function via functional differentiation according to

8Fexc[p]
$p(r)

In force-DFT one retains Eq. (1) but calculates the direct
correlation function from the force integral

ci(r)=—p @)
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p(r)
where V™! = 1/(4n) [dr'(r —1')/|r — r’|? indicates an inte-
gral operator (see, e.g., Refs. [17,18]) and ¢(r) is the pair in-
teraction potential as a function of the interparticle distance r.
At face value the expression (3) is based on the two-body level
as it depends on the two-body density p,(r, r'; [p]). However,
starting from an approximative excess free energy functional
Fexc[p], the two-body density p,(r, r'; [p]) is determined by
functionally differentiating twice to get the two-body di-
rect correlation function ¢, (r, ') = —B8Fexc[p]/8p(r)Sp(r")
and then solving the inhomogeneous Ornstein-Zernike (OZ)
equation self-consistently [27]. The last step can be done nu-
merically in planar and spherical geometry (see Refs. [34-36]

for the technical details).

Solving the inhomogeneous OZ equations has relevant ap-
plications in the study of the structure factor of thin films [37],
of capillary waves, and of the wave-number-dependent sur-
face tension [38,39] in lateral systems. Due to this additional
self-consistency step and by working on the two-body level,
the force-DFT is technically and computationally more com-
plex than standard implementations of DFT based on Eq. (2).

The alternative force route also transfers directly to DDFT,
which is then called force-DDFT. Standard DDFT provides
a statistical mechanical approach to describe inhomogeneous
fluids in nonequilibrium, including the dynamics of adsorp-
tion [40,41], lane formation [42,43], or the motion of active
microswimmers [44,45] (see the review [46] for a recent and
broad overview). This theory is the dynamic extension of
DFT and it is intrinsically based on the adiabatic approxima-
tion. Efforts to improve the implied approaches [47] include
the in principle exact power functional theory, which goes
beyond the adiabatic approximation by taking all superadi-
abatic (above adiabatic) contributions into account [26,48].
Recently, a concrete implementation of a two-body DDFT
[49], which is deeply founded on the force route investigated

034109-2



COMPARATIVE STUDY OF FORCE-BASED CLASSICAL ...

PHYSICAL REVIEW E 107, 034109 (2023)

in this work, has been shown to incorporate superadiabatic
effects on the one-body level, thus providing a way to improve
upon standard DDFT. Reference [50] discusses the shortcom-
ings of standard DDFT and describes possible ways forward.

The transition from the equilibrium DFT to the nonequi-
librium DDFT is in both cases simply based on the continuity
equation

dpr, 1) o
= V- J(r,1). 4)

The current J(r,t) is equal (up to the friction constant) to
the force density and takes into account its internal, exter-
nal, and diffusive ideal gas contribution. The internal force
finc(r, 7) is then assumed, as in equilibrium, to be obtained
by the gradient of the one-body direct correlation function
finc(r, 1) = kgT Ve (r, t), which neglects superadiabatic force
contributions [26]. Evaluation of ¢|(r,#) can proceed via
Eq. (2) for the DDFT route and via Eq. (3) in case of the
force-DDFT approach, and differences are expected to occur
for approximate forms of the excess free energy functional.

III. COMPARISON TO SIMULATION RESULTS

A. Equilibrium: Hard sphere fluid at a hard wall

We proceed with a comparison of results from both DFT
routes to simulation data for the standard case of an equilib-
rium hard sphere fluid at a hard wall as previously investigated
by Tschopp et al. [27]. For the DFT treatment of the hard
sphere fluid, these authors resorted to the Rosenfeld [6] funda-
mental measure theory (FMT) functional for modeling Fex.[0]
in both standard and force-DFT. As this functional is an ap-
proximation, we showcase in the following the deviation to
numerically exact grand canonical Monte Carlo [30] (GCMC)
data.

Imposing a planar hard wall is a conceptually important
test case for two reasons. First, large density inhomogeneities
are induced in the vicinity of the wall, which reveal deviations
of approximative theories very clearly [10]. Second, for arbi-
trary fluids at a hard wall, the contact theorem

p(07) = BP ®)

establishes a connection of the bulk pressure P of the fluid
to the contact value p(0") of the density profile. This holds
beyond simple fluids as governed by a pair potential because
DFT is formally valid for many-body interparticle interac-
tions. As was shown in Ref. [27], standard and force-DFT can
be associated respectively in this regard to the compressibility
and virial route of liquid integral equation theory [2]. More
precisely, it could be proven [27] that

ps(07) = BP., (6)

pr(0%) = BP,, (7

where p,(z) indicates the density profile as obtained from
standard DFT, whereas py(z) is the density profile obtained
with force-DFT as a function of the distance z from the wall.
Equations (6) and (7) can be derived by explicit analytical
calculation and they connect the respective contact densities
(z =07") to the compressibility (P.) and virial (P,) forms of
the pressure which are well-known bulk results from liquid

TABLE 1. The values of the chemical potential gy, for the
GCMC simulations that yield matching bulk densities p, with the
DFT results (cf. Fig. 1). The reference chemical potentials . that
were used in the standard DFT calculations (corresponding to the
compressibility route) are listed as well.

050> 0.4890 0.6032 0.6908
Bire 3 5 7
Bibsim 29572 4.8930 6.7983

integral equation theory. The two DFT routes thus make these
differences accessible locally and away from the wall on the
level of the inhomogeneous density profile. As the force-DFT
is inherently tailored to simple fluids that are governed by
pairwise interparticle interactions [recall Eq. (3)], the force-
DFT contact theorem (7) also only holds for simple fluids,
whereas Eq. (6) is general. For details of the respective proofs
we refer the reader to Ref. [27].

In the present case, the Rosenfeld FMT functional repro-
duces by construction the Percus-Yevick bulk fluid results. In
particular, we recall [2] the compressibility equation of state

_ M 1+n+n? ®)
B d-np
and the virial equation of state
1+42n+3n?
P, = @w’ 9)

B (—np

where pj, is the bulk density and n = p,037 /6 is the packing
fraction. The standard Rosenfeld FMT when evaluated at a
constant density gives a free energy which is consistent with
P. [7].

In Ref. [27], the comparison was carried out as follows.
First, standard DFT calculations were performed for vari-
ous values of the reduced chemical potential Su = 3,5, 7,
which respectively correspond to bulk densities of p,0° =
0.4890, 0.6032, 0.6908 (cf. Table I). Then, corresponding
force-DFT calculations were carried out, which were set up to
yield identical bulk densities for providing a valid comparison
via Egs. (6)—(9). As the control parameter of force-DFT is
the mean number of particles (N), instead of the chemical
potential p as is the case in standard DFT, the results for (N)
obtained from the standard DFT calculations were taken as
input for the force-DFT. With this protocol, it could be verified
that the contact densities of standard and force-DFT indeed
correspond to the compressibility and virial pressures (8) and
(9), respectively.

For the following investigations via GCMC simulations,
we also want to ensure that the bulk densities match the
ones chosen in the DFT calculations. However, as the Percus-
Yevick result (8) deviates slightly from the true equation of
state, one cannot merely consider a GCMC simulation with
the same value of the chemical potential u as in the standard
DFT case. Instead, the value of y has to be adjusted to obtain
the same bulk density as in both DFT routes. For this, we per-
form preliminary simulation runs of the system which yield
the numerically accurate equation of state for the hard sphere
fluid; results are shown in Fig. 1. This numerical equation of
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FIG. 1. The equation of state of the hard sphere fluid is shown
as obtained from the Percus-Yevick approximation both via the com-
pressibility and the virial route as well as from GCMC simulations
(as indicated). Thereby, p, denotes the bulk density and p(0%) = BP
is the contact density at the hard wall, which can be associated with
the bulk pressure P. The upper scales illustrate differences in the
chemical potential with respect to the simulation values g, that
result from the approximative equations of state via the compress-
ibility (u.) and virial (u,) route (analytical expressions are given
in Appendix). Therefore, to yield a valid comparison of the density
profiles, u has to be tuned appropriately in the GCMC simulation to
match the considered bulk densities of the standard and force-DFT
results, which is illustrated by the gray vertical lines.

state is interpolated at the desired values for the bulk density,
which then yields the target values of chemical potential for
the actual comparison runs (the numerical values are given in
Table I).

The density profiles from the thus prepared GCMC simu-
lations and their comparison to both standard and force-DFT
results are shown in Fig. 2. It is observed that the deviation
of the contact values at the hard wall indeed reflects the inac-
curacies of the Percus-Yevick equation of state. As expected
from the bulk results shown in Fig. 1, the GCMC density
profile in the vicinity of the wall is enclosed from above and
from below by the two DFT profiles. The standard DFT result
thereby agrees better with the simulation data. At intermediate
separations from the wall, both routes are able to capture the
inhomogeneities of the density profile with quite reasonable
precision. Although the simulated density profile lies within
the two DFT profiles in most parts of the system, there are
also regions where the DFT results do not act as a respective
upper and lower bound of the true local density. This is most
clearly visible for large values of u [e.g., in Fig. 1(c)] and
close to the first density maximum, where both DFT routes
underestimate the values of p(z) locally. The shape of the

first density maximum of a hard sphere fluid at a hard wall
is particularly difficult to reproduce in DFT even when using
more elaborate free energy functionals [10,32,33,51] (we re-
turn to this point below). While providing a means to yield an
additional approximation of p(z), force-DFT is not capable to
systematically rectify this deficiency in the considered case of
the hard sphere fluid adsorbed against a planar hard wall.

B. Dynamics: Hard sphere fluid in a switched harmonic trap

Tschopp et al. [27] extended their force-DFT method to
out-of-equilibrium situations by replacing the standard form
of the one-body direct correlation function ¢ (r) by the force
integral (3) in the DDFT equation of motion. This yields
a dynamical description that is still purely adiabatic, i.e., it
approximates the time evolution of the system as a series of
equilibrium states. Nevertheless, due to the discrepancies of
the two forms of ¢ (r) for a given approximate Helmholtz
free energy functional, the two routes will in general lead
to different dynamical behavior. This has been exemplified
in Ref. [27] for the model situation of a hard sphere fluid
in a harmonic external potential V. (z) = A(z — 50)%, where
the strength of the harmonic trap is switched from A =
0.75kgT /o? to A = 0.5kpT /o? at the initial time t = 0.

For a precise numerical investigation of the true time
evolution of the system, we employ event-driven Brownian
dynamics (EDBD) simulations [31]. Unlike in the equilibrium
hard wall comparisons, where the bulk densities of the sim-
ulations and the DFT routes were matched to focus solely
on structural differences, we now set the total number of
particles per lateral system area equal to the corresponding
values of the DDFT calculations. Therefore, differences that
arise solely from inaccuracies of the associated equations of
state are expected and will be most prominent at the center
of the trap, where the local density is large. To achieve an
accurate and fast initialization of each EDBD run, a prelimi-
nary canonical Monte Carlo simulation with identical system
parameters is carried out, by which appropriately distributed
particle configurations of the initial equilibrium state are
obtained. In total, 10* EDBD runs are initialized with the
above configurations, and the relaxation dynamics after the
switching of the harmonic trap is simulated for 0 < ¢/7 < 1
with the Brownian timescale t = o2y /kgT where y is the
friction coefficient. The time evolution of the density profile,
attained as an average over all runs, is shown in Fig. 3 for
t/t =0,0.05,0.1,0.2,0.5, 1. Additionally, density profiles
for the initial and for the final equilibrium states as obtained
via canonical Monte Carlo simulations are depicted.

It is apparent that discrepancies which stem from the ap-
proximative form of Fi.[po] emerge for the two DDFT routes.
In the considered system, force-DDFT generally yields larger
densities at the center of the harmonic trap. For the initial
and final equilibrium states, standard DFT provides more
accurate results in this region. After toggling the strength
of the harmonic potential, both DDFT methods yield simi-
lar relaxation dynamics towards their respective equilibrium
state. Compared to the simulation results, the density re-
laxation is marginally too fast in both routes, as is visible
especially shortly after switching the potential (cf. Fig. 3,
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FIG. 2. Density profiles p(z) of a hard sphere fluid at a planar
hard wall are shown for values p, = 0.48900 3 (a), p, = 0.60320 3
(b), and p, = 0.69080 2 (c) of the bulk density. We compare the
results of standard (orange) and force-DFT (blue) to numerically
exact density profiles from GCMC simulations (gray). For each value
of w, the absolute error Ap(z) of the density profiles compared to
the simulation result is shown in the respective bottom panel, and
the inset plot zooms in on the differences of the two DFT routes
close to the hard wall. The simulations were set up to yield the
same bulk density as in the DFT results via an appropriate choice
of the chemical potential (cf. Fig. 1 and Table I) for a systematic
comparison of the resulting contact densities.

t/t =0.05,0.1,0.2). This is indicative of nonequilibrium
forces that go beyond the adiabatic approximation [26,52] and
that are neither captured in standard nor in force-DDFT.
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FIG. 3. Time evolution of the density profile p(z) of a hard
sphere fluid in a harmonic external potential Vi (z) = A(z —
50)? after switching its strength from A = 0.75kzT /0> to A =
0.5kgT /o? at time t = 0. The relaxation dynamics calculated with
standard (orange) and force-DDFT (blue) are shown for 7/7 =
0,0.05,0.1,0.2,0.5, 1 and are compared to EDBD simulation re-
sults (gray). The initial and final equilibrium profiles (silver) as
obtained via MC simulations for both values of A are indicated in
each panel for reference.

IV. HYBRID SCHEME

The above comparison of the force-DFT route to stan-
dard DFT and simulations reveals that there is no systematic
improvement in the resulting density profiles neither in
equilibrium (DFT) nor for the dynamical problem (DDFT)
considered. Instead, force-DFT and force-DDFT can be
viewed as an alternative to the standard formalism for calcu-
lating the density profile from a given Helmholtz free energy
functional. If this functional is not exact, as is the case for
the Rosenfeld FMT functional for the hard sphere fluid, the
results of both routes will in general differ, as we have
exemplified above. The comparison also uncovers that the
numerically exact simulation results are commonly bracketed
by standard and force results for the considered hard sphere
fluids.

In this spirit, a systematic improvement of the density
profile both in equilibrium and in the dynamical scenario is
conceivable by an appropriate combination of the two routes,
which constitutes a hybrid implementation of DFT. For this,
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we construct an approximation of the density profile accord-
ing to

pn=aps+ (1 —a)py, (10)

where the subscripts indicate the results from the hybrid
scheme (%), from the standard DFT (s), and from the force-
DFT (f). The interpolation parameter « can be tuned to favor
standard (o = 1) or force-DFT (x = 0).

To arrive at an appropriate choice of « for the considered
hard sphere fluids, we recall the Carnahan-Starling [53] equa-
tion of state

Pcs:&1+’7+n2—n3

B (1—n)
as a superior alternative to the Percus-Yevick results (8) and
(9). In particular, similar to the combination in Eq. (10),
Eq. (11) can be obtained from the compressibility (PCP YY) and

virial (PPY) Percus-Yevick equations of state via the linear
combination [2]

(1)

P =2p™ 4 1pPY. (12)

Due to Eq. (12) and the connection of standard and force-
DFT to the compressibility and virial pressure [cf. Egs. (6)
and (7)], we choose o = % in the following considerations
as a means to obtain improved estimates pj(r) of the density
profile via Eq. (10).

The result of this combination of both DFT methods is
shown for the hard sphere fluid in equilibrium at the hard wall
in Fig. 4. Note that we do not alter the utilized functional,
as the hybrid density profile is obtained consistently from a
combination of standard and force results (cf. Fig. 2), which
were both acquired with the Rosenfeld functional. The local
error of the hybrid Rosenfeld density profile decreases in large
parts of the system and particularly in the vicinity of the
hard wall as compared to the error of the density profiles
obtained via the individual routes. Hence, hybrid DFT can
be considered as a viable means to improve resulting density
profiles while avoiding the often difficult task of refining
the Helmholtz excess free energy functional. We further ex-
emplify this in Fig. 4 by depicting additionally the density
profiles obtained from standard DFT when using the more
advanced White Bear [32] and White Bear MKII [33] func-
tionals, which serve as a benchmark to a common (and the
current de facto standard) DFT treatment of the hard sphere
fluid. Notably, the hybrid scheme yields similar accuracy as
compared to these results, albeit being obtained with the in-
ferior Rosenfeld approximation for Fix.[p]. In the vicinity of
the first density maximum, the hybrid route is still not capa-
ble of mitigating the well-known shortcomings of standard
FMT completely. Surprisingly, however, the density profile
calculated via Eq. (10) match the numerical density profile
equally well as both the White Bear and the White Bear MKkII
functionals employed in standard DFT, in particular for small
distances to the hard wall. Close to the first maximum, the
agreement to simulation is even better for the former than
in the standard White Bear and White Bear MKII treatment.
This shows that an appropriate combination of standard and
force-DFT via Eq. (10) to yield a hybrid method is a viable
means to improve deficiencies of an approximate excess free
energy functional, and that its impact on the density profile

standard DFT (Rosenfeld)
—— hybrid DFT (Rosenfeld)
standard DFT (White-Bear)
==+ standard DFT (White-Bear MKII)

...... GCMC
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FIG. 4. Hybrid DFT density profiles p(z) (purple) for a hard
sphere fluid at a hard wall are compared to simulation results as
in Fig. 2 (the standard Rosenfeld DFT is replotted in orange).
In most parts of the system, this combination of standard and
force-DFT via Eq. (10) enables a systematic improvement of the
resulting density profile while retaining the Rosenfeld FMT treat-
ment of Fi.[p]. The largest discrepancy to the numerical GCMC
density profiles (gray) still occurs in the vicinity of the first density
maximum. For comparison, standard DFT results for the supe-
rior White Bear (olive) and White Bear MKII (cyan) functionals
are depicted, and an error comparable to hybrid Rosenfeld DFT
is found.
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= hybrid DDFT MC

4.0 4.5 5.0 5.9 6.0
z/o

FIG. 5. Hybrid DDFT density profiles p(z) (purple) via Eq. (10)
for the relaxation of a hard sphere fluid in a harmonic potential as
in Fig. 3. The time evolution is again compared to EDBD simulation
results (gray) and the initial and final equilibrium profiles are indi-
cated for reference (silver). As in Fig. 4, the combination procedure
(10) of standard and force-DDFT yields much better results than the
individual routes alone.

may be as significant as when using a superior functional.
A tangible choice of the interpolation parameter in Eq. (10)
may be obtained via known results for bulk fluids, e.g., by
comparison of associated equations of state. While this choice
was made analytically with Eq. (12) for the hard sphere
fluid above, bulk simulation results might provide guidance
to go beyond Carnahan-Starling results or to apply the hybrid
scheme to other particle models.

For the dynamical case, the evolution of p(z,t) in the
switched harmonic potential is shown in Fig. 5. We observe
that the initial state is captured via the hybrid method much
more accurately than by the individual DFT routes. This trend
transfers to the relaxation dynamics, where arguably better
results can be achieved than with standard and force-DDFT
alone. Still, hybrid DDFT remains adiabatic, such that effects
beyond the adiabatic assumption are not incorporated by con-
struction. In the considered case, however, this approximation
turns out to be reasonable, and the resulting density evolution
calculated within DDFT can hence be improved by the combi-
nation procedure (10) as we had shown before for equilibrium
DFT.

V. CONCLUSIONS AND OUTLOOK

In this work, the recent force-DFT method developed
by Tschopp et al. [27] was compared in depth to standard
DFT and simulation results. For this, we have reexamined
the results of Ref. [27] for a hard sphere fluid both in

equilibrium at a hard wall as well as for its relaxation
dynamics in a switched harmonic trap. Numerically exact
many-body simulations have been carried out to enable the
comparison of density profiles from standard and force-DFT
calculations with reference data.

We first turned to the prototypical case of subjecting the
hard sphere fluid to a hard wall, thereby inducing large density
modulations. As shown by Tschopp et al. [27] standard and
force-DFT are connected via the hard wall contact theorems
(6) and (7) to the compressibility and virial expression of the
pressure, respectively, which was exemplified in their work
with the Rosenfeld FMT functional and the corresponding
Percus-Yevick equation of state. Here, we have augmented
this investigation with numerically accurate density profiles
from GCMC simulations, which have been adjusted to repli-
cate the same bulk density as used in both DFT methods. As
expected from the theoretical results of Ref. [27], the numer-
ical contact density is enclosed by the results from standard
and from force-DFT and fits more accurately to the former.
More importantly, however, with the GCMC data being avail-
able, the comparison could be carried out in this work for the
complete inhomogeneous structure of the density profile. For
intermediate distances from the wall, the numerical density
profile shows discrepancies to the results of both DFT routes.
In large parts of the system, the GCMC density profile is
bracketed by standard and force-DFT results. In the vicinity
of the first density maximum, which is difficult to repro-
duce in standard DFT [10], force-DFT yields no systematic
improvement.

We next considered the dynamical relaxation of the hard
sphere fluid in a harmonic potential when its strength is instan-
taneously decreased. In order to complement the force-DDFT
results of Ref. [27] with numerical data, we have employed
EDBD as an accurate dynamical simulation method for hard
sphere fluids under nonequilibrium conditions. Hence, we
have initialized 10* EDBD runs with particle configurations
obtained via canonical MC simulations and have reproduced
the relaxation dynamics after the switching of the harmonic
trap. The total number of particles as given by the integrated
density profile has been matched to the DDFT calculations.
We observed that the inaccuracies of the Rosenfeld FMT
functional transfer to the dynamical case, such that the numer-
ical density profile lies in-between the results of both DDFT
routes. At the center of the trap, force-DDFT overestimates
the local value of the density while standard DDFT yields
values that are slightly too low. As the dynamical description
with force-DDFT is still adiabatic by construction, the relative
relaxation dynamics differs only marginally to that in standard
DDFT.

With the previous observations for both routes in equi-
librium and in the dynamical case, we have investigated
a hybrid method via an appropriate linear interpolation of
standard and force results as was suggested in Ref. [27].
For the hard sphere fluid modeled with the Rosenfeld FMT
functional, an interpolation parameter could be found by con-
sidering the associated Percus-Yevick results (8) and (9) and
their well-known combination (12) to yield the improved
Carnahan-Starling equation of state. We have shown that
the application of an analog combination procedure to stan-
dard and force results yields substantially improved density
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profiles both in equilibrium and in the dynamical scenario. In
equilibrium at the hard wall, we have compared the hybrid
method with the Rosenfeld functional both to GCMC data
and to density profiles calculated with standard DFT when
using the highly accurate White Bear and White Bear MkII
functionals. It was shown that the hybrid Rosenfeld scheme
mitigates many deficiencies of the individual DFT routes. Its
deviations from the GCMC data are comparable to those of the
standard White Bear and White Bear MkII DFT treatments.

In the time-dependent problem, the hybrid implementation
of DDFT captures the relaxation of the hard sphere fluid
much better than standard and force-DDFT alone, which
we attribute to the more accurate reproduction of the equa-
tion of state. Still, the hybrid scheme is purely adiabatic
by construction. This is an acceptable approximation in the
presented case, but will be inappropriate in other dynamical
systems.

In the future, it would be interesting to use more accu-
rate functionals such as White Bear and White Bear MKkII
in force-DFT and in the hybrid method. As hybrid Rosenfeld
DFT already significantly improves upon the individual DFT
routes, it is conceivable that a hybrid White Bear (MkII) DFT
will lead to a further systematic gain in the accuracy of the re-
sulting density profiles. Moreover, the method could be useful
in other systems that may consist of different particle types
than the hard sphere fluid, where the derivation of accurate
Helmholtz excess free energy functionals poses an even more
difficult problem. On the other hand, both standard DFT and
force-DFT are equivalent if one can start with the exact free
energy functional. Hence, carrying out explicitly an investi-
gation for the one-dimensional hard core (“hard rod”) system
using Percus’ exact functional [54] as a practical verification
of the formal equivalence of both DFT routes could be a
worthwhile future research task. This could be augmented by
a force-DFT investigation of the two-dimensional hard disk
system, where both highly accurate FMT functionals [55]
as well as highly reliable simulation results [56] have been
reported.

From a conceptual point of view, force-DFT opens up the
possibility to gain further insight into the inner workings of
DFT, especially by making the two-body density correlation
function directly accessible. This could be used, e.g., in an
investigation of the hard sphere pair correlations at the con-
tact shell. Furthermore, one could obtain one-body fluctuation
profiles [57] such as the local compressibility [58,59] from
integrating over the two-body pair correlation function. This
offers an alternative way to access this information besides
the common parametric differentiation of the density pro-
file. Of course, standard DFT also allows to compute the
pair structure via the inhomogeneous OZ equation (see, e.g.,
the work carried out by Dietrich and coworkers [34,37,38]).
We further point out that higher densities than showcased in
this work could be investigated, which becomes a concep-
tually demanding test case when approaching the freezing
transition. Additionally, more advanced hybrid schemes are
conceivable, e.g., by using a local mixing parameter «(r), and
from a theoretical perspective, self-consistency of standard
and force-DFT could be a useful prerequisite in the derivation
of accurate excess free energy functionals. This is especially
interesting from the viewpoint of FMT, where the construction

and choice of appropriate nonlocal measures is an ongoing
research task [60—62]. One could hope that force- and hybrid
DFT shed light on the clearly noticeable deficiencies of FMT
and provide aid in the derivation of improved hard sphere
functionals.

When dynamics are considered, the prospects arising from
the force route are even more promising than in equilibrium.
A fundamental advantage of the force-DDFT formalism is
the possibility to include higher orders in the many-body
hierarchy. Recently, Tschopp and Brader [49] exploited this
idea by considering the dynamics of the two-body density
explicitly via its continuity equation. Applying the adiabatic
approximation only at this higher order then yields a system-
atic extension of standard DDFT that is no longer adiabatic
on the one-body level. Further possibilities to break free of
the inherent restrictions of standard DDFT are discussed in
Ref. [50].
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APPENDIX: CHEMICAL POTENTIAL
FROM THE PERCUS-YEVICK EQUATION OF STATE

We briefly give some classical results and point out
Ref. [64] for an extensive and well-accessible collection of an-
alytical relations for the hard sphere fluid. The Percus-Yevick
equation of state

Pb
P., = Efcv(n)
can be obtained either via the compressibility (subscript ¢)
or the virial (subscript v) route. The explicit forms of the
functions f. ,(n) are given in Egs. (8) and (9) in the main text.

We consider the Helmholtz free energy F and insert
Eq. (A1), which yields

F:-/ﬁvpzﬁ/ﬁmﬁﬂﬁﬂ
B Ob

The chemical potential is then obtained via

aF  3F/V 1 / f(n(m)))
K=3N " am B (f(n) + [ dop o (A3)

(AL)

(A2)

Thus,

Bue = 1n(pp) + fe(n) + 3 (A4)

3
(1—n)

6
Biey = In(py) + fo(n) + ﬁ +2In(l—n)—1. (A5

5 —In(l—m - 2.
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