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I. LOCAL INHOMOGENEOUS ONE-BODY
LEARNING

A. Training data

Training of the neural correlation functional proceeds
as in Ref. [1] with GCMC simulation data for inhomoge-
neous randomized external potentials. We consider the
truncated (rc = 2.5σ) Lennard-Jones fluid at constant
supercritical [2] temperature kBT/ϵ = 1.5. We reuse the
training data set of Ref. [1] consisting of 500 simulation
results in a box of length 20σ in the inhomogeneous x-
direction and lateral lengths of 10σ. The inhomogeneities
in the considered training set are substantial and result
in local density maxima of up to ρ(x)σ3 ≲ 6, which nev-
ertheless poses no difficulty during sampling (in contrast
to accessing the radial distribution function g(r) for large
bulk densities, cf. Sec. III A). The data set is deposited
in Zenodo [1].

One-body direct correlation profiles are calculated
pointwise from the sampled density profiles ρ(x) accord-
ing to

cref1 (x; [ρ]) = ln ρ(x) + βVext(x)− βµ, (1)

where the external potential Vext(x), chemical potential
µ and inverse temperature β = 1/(kBT ) are known input
quantities of the simulations. The logarithm in Eq. (1) is
understood as ln(ρ(x)Λ3), where the thermal wavelength
Λ is set to the particle size σ, which defines our unit of
length.

B. Neural network and training procedure

The neural network used for the local representation of
the one-body direct correlation functional c1(x; [ρ]) pos-
sesses a straightforward multilayer perceptron (MLP) ar-
chitecture, see Fig. S5. We use three hidden layers with
512 nodes and smooth non-linear activation functions
(Gaussian error linear units, “GELU”). The input layer
consists of 701 nodes, as the density profile is provided
in a window of size 3.5σ around the location of interest
with a discretization interval of ∆x = 0.01σ.
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Training the neural network on the basis of inhomoge-
neous one-body learning amounts to minimizing the loss

Linhom =
∑
i,j

(
c1(xi; [ρj ])− cref1 (xi; [ρj ])

)2
, (2)

where the neural network prediction c1(xi; [ρj ]) is com-
pared to the reference data cref1 (xi; [ρj ]) for each dis-
cretized location xi of every inhomogeneous system j in
the training set. Code, simulation data and trained mod-
els are openly available [3].

C. Applications

For the prediction of density profiles, rearranging
Eq. (1) yields

ρ(x) = exp (−β(Vext(x)− µ) + c1(x; [ρ])) , (3)

which constitutes the standard Euler-Lagrange equation
of DFT. Given an analytical or neural representation of
c1(x; [ρ]), Eq. (3) can be solved self-consistently for ρ(x)
with a standard Picard iteration [1].

Accessing structural information on the pair-
correlation level is facilitated by functional differ-
entiation of c1(x; [ρ]), which yields the two-body direct
correlation functional

c2(x, x
′; [ρ]) =

δc1(x; [ρ])

δρ(x′)
. (4)

The functional derivative can be evaluated efficiently for
general density input ρ(x) by automatic differentiation
and normalization with the discretization interval ∆x.
Using automatic differentiation is particularly suitable
and natural in case of a neural-network-based represen-
tation of c1(x; [ρ]).

II. BULK PAIR-CORRELATIONS

The considered neural functionals operate on the level
of direct correlations in planar geometry. In the follow-
ing, we lay out conversions between radial and planar ge-
ometry in direct and Fourier space. The Ornstein-Zernike
equation is utilized to obtain total correlation functions
from neural predictions and, inversely, to convert radial
distribution functions g(r) from direct measurement in
simulation to corresponding direct correlation functions
for use in the pair-correlation matching, see Sec. III A.
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FIG. S1. Comparison of predictions of neural functionals for the truncated Lennard-Jones fluid at temperature kBT/ϵ = 1.5
and bulk densities ρbσ

3 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. Results are shown for training with purely inhomogeneous reference
data (I, left column), with additional pair-correlation regularization (II, middle column) as well as with pure pair-correlation
matching (III, right column). We depict the planar two-body direct correlation function c̄2(x; ρb) and its radial representation
c2(r; ρb) (first row), the direct and total correlation functions c̃2(k; ρb) and h̃(k; ρb) in Fourier space (second row), as well as
the static structure factor S(k; ρb) and the radial distribution function g(r; ρb) (third row).

A. Planar and radial geometry

The planar projection of a generic radially symmetric
function f(r) = f(|r|) = f(r) is given by

f̄(x) =

∫
dy

∫
dz f(

√
x2 + y2 + z2) = 2π

∫ ∞

x

dr rf(r),

(5)
where we indicate quantities in the reduced planar ge-
ometry by an overbar. By differentiating Eq. (5), one
arrives at the inverse transformation from planar to ra-
dial geometry via

f(r) = − 1

2πr

∂f̄(x)

∂x

∣∣∣∣
x=r

, (6)

where we have assumed radial symmetry for f(r). Ap-
plying a one-dimensional Fourier transform to the planar
projection of a radially symmetric function yields directly
the radially symmetric representation in Fourier space
(indicated by a tilde),∫

dx f̄(x) exp(ikxx) =

∫
dr f(r) exp(ik · r)

= f̃(|k|) = f̃(k),

(7)

where
∫
dr denotes a volume integral over the entire do-

main.
Transforming a radially symmetric function f(r) in

real space to its radially symmetric Fourier representa-
tion f̃(k) is facilitated by a radial Fourier(-Hankel) trans-
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form,

f̃(k) =
4π

k

∫ ∞

0

dr rf(r) sin(kr). (8)

The inverse transform of Eq. (8) is identical up to a pref-
actor,

f(r) =
1

2π2r

∫ ∞

0

dk kf̃(k) sin(kr). (9)

The numerical evaluation of Eqs. (8) and (9) can be facil-
itated either via a fast Fourier transform (FFT) or via a
discrete sine transform (DST). In both cases, particular
care must be taken to account correctly for the discretiza-
tion and the implied periodicity of the radially symmetric
function to be transformed.

B. Direct and total correlation functions

For the considered two-body direct correlation function
c̄2(x; ρb), as obtained from the neural functional by au-
todifferentiation (4) and network evaluation in bulk with
constant density input ρ(x) = ρb, Eq. (6) gives access
to the more common radial representation c2(r; ρb), as
shown in Figs. 1 and S1. Due to the required numerical
differentiation and the division by r in Eq. (6), the results
for c2(r; ρb) are prone to numerical artifacts in particular
for small values of r.

Commencing with a neural functional prediction for
c̄2(x; ρb), a one-dimensional Fourier transform yields the
one-body direct correlation function c̃2(k; ρb) in radial
geometry according to Eq. (7). The total correlation
function h̃(k; ρb) can then be calculated algebraically in
Fourier space via the Ornstein-Zernike equation

h̃(k; ρb) =
c̃2(k; ρb)

1− ρbc̃2(k; ρb)
. (10)

From h̃(k; ρb), one obtains the static structure factor

S(k; ρb) = 1 + ρbh̃(k; ρb), (11)

and the transformation (9) back to direct space gives
access to the radial distribution function

g(r; ρb) = h(r; ρb) + 1. (12)

Neural functional predictions of the quantities in
Eqs. (10)–(12) are shown in Fig. S1 at different bulk den-
sities ρbσ

3 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7.

III. PAIR-CORRELATION MATCHING AND
REGULARIZATION

A. Preparation of simulation data

We have performed 500 simulations of the Lennard-
Jones fluid in a cubic box of size (20σ)3 at different

chemical potentials chosen uniformly in the range −7 <
µ/ϵ < 0. This yields accurately sampled radial distri-
bution functions g(r; ρb) in 0 ≤ r/σ ≤ 10 for bulk den-
sities 0.01 ≲ ρbσ

3 ≲ 0.72. Accessing larger bulk densi-
ties is hindered by the fact that g(r) still displays non-
negligible oscillations for ρbσ

3 ≳ 0.72 for the maximal
radial distance r = 10σ in the considered simulation box.
This stands in contrast to the sampling of inhomogeneous
density profiles, where much larger local density maxima
pose no substantial difficulty, see Sec. I A.

From the simulation data for g(r; ρb), we calculate:

• h(r; ρb) via the definition (12) of the total pair-
correlation function,

• h̃(k; ρb) via the radial Fourier transform (8),

• c̃2(k; ρb) via the Ornstein-Zernike equation (10),

• c2(r; ρb) via the inverse radial Fourier transform
(9),

• c̄2(x; ρb) via the planar projection (5).

The planar bulk two-body direct correlation function
c̄2(x; ρb) can be compared directly to the functional
derivative (4) of the one-body direct correlation func-
tional in planar geometry,

c̄2(x; ρb) =
δc1(0; [ρ])

δρ(x)

∣∣∣∣
ρ=ρb

. (13)

Automatic differentiation is used to evaluate the func-
tional derivative of the neural-network-based representa-
tion of c1(x; [ρ]) in Eq. (13).

B. Loss functions and training procedure

Pair-correlation matching is implemented via the loss

Lpc =
∑
i,j

(
c̄2(xi; ρb,j)− c̄ref2 (xi; ρb,j)

)2
+
∑
j

(
µexc(ρb,j)− µref

exc(ρb,j)
)2

,
(14)

where c̄2(xi; ρb,j) is calculated for the given bulk den-
sity input ρb,j of bulk simulation j according to Eq. (13).
The result is compared directly to the pre-calculated sim-
ulation reference c̄ref2 (xi; ρb,j), see Sec. III A, for each
discretized spatial coordinate xi. To fix the remain-
ing integration constant, the excess chemical potential
µexc(ρb) = −kBTc1(x; ρb) of the neural network predic-
tion is compared to the simulation reference µref

exc, which
serves as an additive contribution to Lpc.

In general, we consider a linear combination of both
loss functions,

L = αinhomLinhom + αpcLpc, (15)
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FIG. S2. Training dynamics with pair-correlation regulariza-
tion (II, green) results in lower loss values Linhom and Lpc as
compared to pure inhomogeneous one-body learning without
regularization (I, orange). We show the Linhom and Lpc as a
function of the training epoch.

which is used for the backpropagation and for the adap-
tation of the trainable parameters of the neural network.
The constant factors αinhom and αpc control the relative
influence of inhomogeneous one-body matching (2) and
pair-correlation matching (14) by weighting the respec-
tive loss terms. Three choices are considered:

(I) αinhom = 1, αpc = 0:
purely inhomogeneous one-body learning as in
Ref. [1],

(II) αinhom = 1, αpc = 0.01:
inhomogeneous one-body learning with pair-
correlation regularization as introduced in this
work,

(III) αinhom = 0, αpc = 1:
pure pair-correlation matching inspired by Ref. [4].

C. Training dynamics and bulk results

Fig. S2 shows a comparison of the training dynamics
for the individual loss terms Linhom and Lpc for inhomo-
geneous one-body learning with (II) and without (I) pair-
correlation regularization. The magnitude of both loss
terms is decreased for the case of added pair-correlation
regularization.

In Fig. S1, we depict results for bulk pair-correlation
functions for each training strategy (I)–(III). Purely in-
homogeneous one-body training (I) yields slightly noisy
derivatives c̄2(x; ρb), which hamper the performance of
challenging numerical transformations, e.g. to obtain the
two-body direct correlation function c2(r; ρb) in radial
geometry or the radial distribution function g(r). This
problem is resolved both with the added pair-correlation
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FIG. S3. Two-body direct correlation functional c2(x, x′; [ρ])
for an exemplary inhomogeneous density profile ρ(x) as in-
put. We show results for neural functionals that have been
trained via inhomogeneous one-body learning (I) and with
pure pair-correlation matching (III). The results of the pair-
correlation-matched neural functional violate the expected ex-
change symmetry c2(x, x

′; [ρ]) = c2(x
′, x; [ρ]).

regularization (II) as well as with pure pair-correlation
matching (III). Although the latter strategy enables ac-
curate bulk predictions due to the supply of bulk data
during training, it provides no reasonable extrapolation
to inhomogeneous scenarios, as seen e.g. in inaccurate
predictions of density profiles (Fig. 1) and of inhomoge-
neous two-body correlations (Fig. S3).

IV. INHOMOGENEOUS TWO-BODY
CORRELATIONS AND NOETHER SUM RULES

Autodifferentiation also gives access to c2(x, x
′; [ρ]) for

inhomogeneous density input according to Eq. (4), which
enables further quality assessments of the neural func-
tionals. As the two-body direct correlation functional
formally arises as a second-order functional derivative of
the excess free energy functional Fexc[ρ], testing the ex-
pected exchange symmetry c2(x, x

′; [ρ]) = c2(x
′, x; [ρ])

serves as a first consistency check. Additionally, testing
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FIG. S4. Test of the Noether sum rules (16) and (17) as
obtained from neural functionals trained on the basis of in-
homogeneous one-body profiles (I, orange) and via bulk pair-
correlation matching (III, blue). The respective errors e1 and
e2 of the predictions are considerably larger in the latter case.

the validity of the sum rules

∇c1(r; [ρ]) =

∫
dr′ c2(r, r

′; [ρ])∇′ρ(r′), (16)∫
dr ρ(r)

∫
dr′ ρ(r′)∇c2(r, r

′; [ρ]) = 0, (17)

which result from thermal Noether invariance [5], con-
stitutes a further valuable test of the fitness of a neural
functional [1].

We depict in Fig. S3 results for c2(x, x′; [ρ]) with inho-
mogeneous density input as obtained from neural func-
tionals that have been trained solely with inhomoge-
neous one-body data (I) and with bulk pair-correlations
(III), respectively. The results from the pair-correlation-
matched neural functional do not display the expected
symmetry of the two-body direct correlation functional
upon exchanging the spatial coordinates. We recall that
within the local learning strategy, the exchange symme-
try is not automatically enforced, unlike in Ref. [4] where
the global excess free energy acts as the output of their
neural network.

In Fig. S4, we show the discrepancy of the Noether
sum rules (16) and (17) as defined via e1 =
∥∂xc1(x; [ρ]) −

∫
dx′ c2(x, x′; [ρ])∂x′ρ(x′)∥∞ and e2 =∫

dx ρ(x)
∫
dx′ ρ(x′)∂xc2(x, x′; [ρ]). The results of the

neural functional from pure pair-correlation matching
(III) show considerable deviations from these sum rules.

V. NEURAL FREE ENERGY METHODS

As an alternative to working with one-body direct
correlations, we also consider neural networks that give
immediate access to the excess free energy functional

Fexc[ρ]. We base the construction of these neural free
energy functionals on the parametrization

Fexc[ρ] =

∫
dr ρ(r)fexc(r; [ρ]), (18)

which provides a well-defined localization of the excess
free energy via the uniquely determined quantity

fexc(r; [ρ]) = −kBT

∫ 1

0

da c1(r; [aρ]). (19)

A. Local learning of fexc(r; [ρ])

As a first approach, it is hence natural to construct a
local neural-network-based representation of fexc(r; [ρ]).
We specialize to the considered planar geometry and
reuse the MLP architecture of the neural correlation func-
tional as described in Sec. I B and shown in Fig. S5.

Training is facilitated by inhomogeneous one-body
matching (2), where one determines

c1(r; [ρ]) = −βfexc(r; [ρ])−
∫

dr′ ρ(r′)
δβfexc(r; [ρ])

δρ(r′)
,

(20)
with the functional derivative of fexc(r; [ρ]) being ob-
tained by automatic differentiation within the train-
ing loop. To be able to evaluate the integral in a
local learning scheme, the arguments r and r′ have
been swapped according to the expected symmetry
δfexc(r; [ρ])/δρ(r

′) = δfexc(r
′; [ρ])/δρ(r) that arises from

Eq. (19) and c2(r, r
′; [ρ]) = c2(r

′, r; [ρ]). Crucially, this
symmetry is not enforced intrinsically for an untrained
neural functional for fexc(r; [ρ]), but it rather arises only
after sufficient training. Utilizing the interchangeability
of r and r′ in Eq. (20) for the calculation of one-body di-
rect correlations during training is nevertheless valid, as
this leaves the true minimum of the matching condition
(2) unchanged.

Applying the local neural functional for the prediction
of free energy values is straightforward via the numerical
evaluation of Eq. (18) for the considered density profile
ρ(x). For the prediction of equilibrium density profiles,
c1(x; [ρ]) is obtained in the considered planar geometry
from Eq. (20) for use in the self-consistent solution of
Eq. (3).

B. Convolutional neural network for Fexc[ρ]

As an alternative to the local learning of fexc(r; [ρ]),
we use a convolutional neural network (CNN) to repre-
sent the global quantity Fexc[ρ] while retaining the spe-
cific structure of Eq. (18). This approach bears similarity
to the neural network construction in Ref. [4], but cru-
cially differs in the utilization of a specific parametriza-
tion, Eq. (18), and in the chosen architecture, which is
described in the following and illustrated in Fig. S6.
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The CNN consists of 8 convolutional layers with kernel
size 11, [16, 16, 32, 32, 64, 64, 16, 1] filters and dilation
rates of [1, 2, 4, 8, 16, 32, 64, 1]. These hyperparameters
are chosen to enable the propagation of non-local den-
sity information in a range that is similar to the window
widths of the MLPs used in the previous local learning
methods. We use cyclic padding for the convolutions,
as is appropriate for the periodic boundary conditions of
the considered systems, and employ no pooling or other
coarse-graining layers, thus keeping full spatial resolution
throughout the network. As a consequence of this fully
convolutional architecture, the network remains applica-
ble to virtually arbitrary system sizes and hence facili-

tates predictions “beyond-the-box” [1], as is also the case
for the local learning approaches.

To arrive at the value of Fexc[ρ] in the spirit of Eq. (18),
the last layer is multiplied pointwise with the input den-
sity profile ρ(r) and integrated over the whole domain.
In particular, this implies that this last convolutional
layer acts as a representation of the one-body profile
fexc(r; [ρ]).

For application in the self-consistent calculation of den-
sity profiles, automatic differentiation of the Fexc[ρ]-CNN
with respect to the input density ρ(r) yields the complete
one-body direct correlation profile c1(r; [ρ]) to be used in
Eq. (3).
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rho (InputLayer)

Output shape: (None, 701)

dense (Dense)

Activation: gelu

Input shape: (None, 701) Output shape: (None, 512)

dense_1 (Dense)

Activation: gelu

Input shape: (None, 512) Output shape: (None, 512)

dense_2 (Dense)

Activation: gelu
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Activation: linear

Input shape: (None, 512) Output shape: (None, 1)

FIG. S5. Architecture of the MLP for local learning of
c1(x; [ρ]), cf. Sec. I B, and fexc(x; [ρ]), cf. Sec. V A. The input
and output shapes indicate the variable batch size (“None”)
and the number of nodes for each layer.

rho (InputLayer)

Output shape: (None, None)

reshape (Reshape)

Input shape: (None, None) Output shape: (None, None, 1)

rho_fexc (Multiply)

Input shape: [(None, None), (None, None)] Output shape: (None, None)

cyclic_conv1d (CyclicConv1D)

Activation: gelu

Input shape: (None, None, 1) Output shape: (None, None, 16)

cyclic_conv1d_1 (CyclicConv1D)

Activation: gelu

Input shape: (None, None, 16) Output shape: (None, None, 16)

cyclic_conv1d_2 (CyclicConv1D)

Activation: gelu

Input shape: (None, None, 16) Output shape: (None, None, 32)

cyclic_conv1d_3 (CyclicConv1D)

Activation: gelu

Input shape: (None, None, 32) Output shape: (None, None, 32)

cyclic_conv1d_4 (CyclicConv1D)

Activation: gelu

Input shape: (None, None, 32) Output shape: (None, None, 64)

cyclic_conv1d_5 (CyclicConv1D)

Activation: gelu

Input shape: (None, None, 64) Output shape: (None, None, 64)

cyclic_conv1d_6 (CyclicConv1D)

Activation: gelu

Input shape: (None, None, 64) Output shape: (None, None, 16)

cyclic_conv1d_7 (CyclicConv1D)

Input shape: (None, None, 16) Output shape: (None, None, 1)

fexc (Flatten)

Input shape: (None, None, 1) Output shape: (None, None)

Fexc (Integrate1D)

Input shape: (None, None) Output shape: (None, 1)

FIG. S6. Architecture of the CNN for Fexc[ρ], cf. Sec. V B.
The input and output shapes indicate the batch size, the num-
ber of spatial bins (“None” for variable size) and the number
of channels.
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