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Neural density functionals: Local learning and pair-correlation matching
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Recently, Dijkman et al. [arXiv:2403.15007] proposed training classical neural density functionals via bulk
pair-correlation matching. We show their method to be an efficient regularizer for neural functionals based on
local learning of inhomogeneous one-body direct correlations [Sammüller et al., Proc. Natl. Acad. Sci. USA
120, e2312484120 (2023)]. While Dijkman et al. demonstrated pair-correlation matching of a global neural
free-energy functional, we argue in favor of local one-body learning for flexible neural modeling of the full
Mermin-Evans density-functional map. Using spatial localization gives access to accurate neural free-energy
functionals, including convolutional neural networks, that transcend the training box.
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As machine learning and density-functional theory [1–4]
share high computational efficiency, it is natural to use neural
networks to construct workable and accurate approximations
for the required density-functional relationships in the classi-
cal [5–16] and quantum realms [17–24]. This common goal to
make progress is nevertheless approached from quite differ-
ent directions and a considerable range of different machine
learning strategies have been put forward [5–25]. The task
is both important and challenging. Overcoming the limited
availability of flexible classical density-functional approxima-
tions would open up the study of a much broader class of
soft matter systems than is currently accessible via, e.g., the
hard-sphere perturbation paradigm of fundamental-measure
theory [26–28] combined with mean-field attraction, as used
in recent work [29–31].

In the classical context, typically the excess free-energy
functional Fexc[ρ] is the object chosen to be approximated
[1,2]. We recall that Fexc[ρ] is the nontrivial contribution to
the total grand potential functional �[ρ] = Fid[ρ] + Fexc[ρ] +∫

dr ρ(r)[Vext (r) − μ], where the ideal gas free-energy func-
tional Fid[ρ] is known explicitly, Vext (r) is the external
potential that generates spatial inhomogeneity, and μ is the
chemical potential that together with absolute temperature
T determines the thermodynamic conditions. The Mermin-
Evans variational principle [1,32] ascertains that �[ρ] is
minimized by the true equilibrium density profile ρ(r), as a
function of position r across the system, and that the minimum
gives the equilibrium value of the grand potential.

The effects of the interparticle interactions are contained in
Fexc[ρ], which per se is not easily accessible and requires the
development of careful modeling strategies. Neural networks
suit this task very well, due to the clear-cut correspondence
between the spatially resolved input density profile ρ(r) and
the excess free energy Fexc[ρ] as a global output value. Ref-
erence data for supervised machine learning are provided
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by many-body simulations [33–35], which hence offer the
perspective of making theoretical predictions with simulation
precision.

Two very recent implementations use neural networks to
represent the functional relationship of either the global ex-
cess free energy Fexc[ρ] [10] or the closely related one-body
direct correlation functional c1(r; [ρ]) [12,13]. The training
strategy in Ref. [10] employs bulk pair-correlation matching,
while Refs. [12,13] utilize a local learning approach involving
inhomogeneous one-body profiles. An appeal of the former
[10] is the sole requirement of simulation input in the form
of bulk radial distribution functions g(r) at different densities
for the particular model under investigation. Local learning
[12,13] rather requires inhomogeneous density profiles as
training data. Going beyond mere interpolation tasks, the re-
sulting neural functionals [12,13] were however shown to be
fit for carrying out deep functional calculus based on exact
sum rules and on functional identities. Both methods were
argued to be numerically highly accurate [10,12,13].

In this Letter we contrast and cross-fertilize the underlying
concepts of pair-correlation matching [10] and of inhomoge-
neous one-body learning [12,13]. We show how to incorporate
pair-correlation matching in a local learning strategy, which
then retains the ability of transcending the box size of the
training simulations. In keeping with statistical mechanics,
pair-correlation matching constitutes a physics-based regular-
izer for the training loss, thereby avoiding potential problems
of more generic regularization methods [36].

We also demonstrate, based on comparison to reference
simulation data and on violation of internal sum rule consis-
tency, that training the density-functional dependence solely
with bulk densities and pair-correlation matching can yield
unreliable neural performance in general inhomogeneous sit-
uations. We rationalize this behavior in terms of the structure
of the underlying exact functional dependences. We show
that local learning does not suffer from such deficiencies and
that the concept also generalizes beyond constructing neural
one-body direct correlations, laying out two explicit strategies
that make Fexc[ρ] directly accessible.
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We first describe key ideas of pair-correlation matching as
proposed by Dijkman et al. [10] to construct a neural network
that represents the functional Fexc[ρ]. Their method exploits
that Fexc[ρ] is a generating functional for the hierarchy of
direct correlation functionals. Specifically, at second order the
two-body direct correlation functional is obtained [1,2],

c2(r, r′; [ρ]) = − δ2βFexc[ρ]

δρ(r)δρ(r′)
, (1)

where δ/δρ(r) indicates the functional derivative with respect
to ρ(r) and β = 1/(kBT ) with Boltzmann constant kB. When
specializing to the important, yet restricted, case of bulk flu-
ids, the density profile is constant, ρ(r) = ρb = const, and the
bulk pair direct correlation function c2(r; ρb) of liquid state
theory is recovered [2]. This constitutes a functional reduction

c2(r; ρb) = c2(r, r′; [ρ = ρb]), (2)

where the spatial dependence on r and r′ simplifies to the
dependence on radial distance r = |r − r′| on the left-hand
side. Also, the general functional dependence on the entirety
of the density profile ρ(r) in Eq. (1) is reduced to a mere
parametric dependence on the value of the bulk density ρb in
Eq. (2).

Pair-correlation matching [10] exploits that results for pair-
correlation (or radial distribution) functions g(r) are readily
accessible via simulations. Using the total correlation function
h(r) = g(r) − 1, the bulk Ornstein-Zernike equation ascer-
tains that h(r) = cref

2 (r) + ρbcref
2 (r) � h(r), where the star

indicates spatial convolution. We have denoted the bulk two-
body direct correlation function from this route by cref

2 (r),
as originating from the simulation data for g(r). Numerical
solution of the Ornstein-Zernike equation yields quasiexact
reference results for cref

2 (r); details are given in our Supple-
mental Material [37]. Pair-correlation matching [10] trains
Fexc[ρ] as a convolutional neural network by minimizing the
difference of c2(r; ρb), as obtained via Eq. (1) and functional
reduction (2), against the quasiexact reference data for cref

2 (r)
from simulations and Ornstein-Zernike inversion. Thereby,
the functional derivative in Eq. (1) is performed via automatic
differentiation [10,12–14,39]. The aim is to achieve equality,

c2(r; ρb) = cref
2 (r; ρb). (3)

Crucially, during training the neural functional is only eval-
uated via its Hessian with respect to the input in Eq. (2) at
constant density profiles ρ(r) = ρb with varying values of ρb.
No inhomogeneous density profiles are encountered during
training.

By contrast, local direct correlation learning [12,13] starts
with the standard liquid state relationship

cref
1 (r) = ln ρ(r) + βVext (r) − βμ, (4)

where cref
1 (r) is the one-body direct correlation function that

forms the reference. One exploits that all quantities on the
right-hand side of Eq. (4) are either known [β,μ,Vext (r)]
or are directly accessible in simulations [ρ(r), potentially
via force sampling [40]]. Hence one can construct data for
cref

1 (r) to act as a reference. The one-body direct correlation
function is then transcended to a density functional; recall
c1(r; [ρ]) = −δβFexc[ρ]/δρ(r). The direct correlation learn-
ing [12,13] represents c1(r; [ρ]) at a considered position r

directly as a neural network, with a simple yet very general
multilayer perceptron architecture. Supervised training is used
to approach

c1(r; [ρ]) = cref
1 (r; [ρ]), (5)

where the left-hand side is the output of the neural func-
tional and the right-hand side is the reference obtained via
Eq. (4) with simulation input for ρ(r). Training to optimize
the matching condition (5) is performed across a range of
(several hundred) training systems and hence differing shapes
of the density profile ρ(r). The resulting functional can then
be applied independently of the system size of the original
simulations, thus enabling one to make predictions “beyond
the box” [12,13].

Using automatic differentiation to functionally differenti-
ate the one-body direct correlation functional c1(r; [ρ]) yields
the two-body direct correlation functional

c2(r, r′; [ρ]) = δc1(r; [ρ])

δρ(r′)
, (6)

which is now expressed as a first derivative rather than (and
formally consistent with) the second functional derivative
in Eq. (1). This implies a significant reduction in terms of
computational complexity for the case of short-ranged (trun-
cated) interparticle interactions. Performing the functional
reduction (2) then gives results for c2(r; ρb) with genuine pre-
dictive status as no information about cref

2 (r; ρb) has entered
the local learning scheme. Hence the bulk direct correlation
matching (3) can be used as an a posteriori quality check
of the neural functional c1(r; [ρ]). Similarly, the exchange
symmetry c2(r, r′; [ρ]) = c2(r′, r; [ρ]), which follows from
interchanging the order of derivatives in Eq. (1), is a nontrivial
consistency test.

We have kept the presentation general, but in line with
Refs. [10–13], we train all neural functionals in planar geom-
etry. We use the supercritical Lennard-Jones fluid at reduced
temperature kBT/ε = 1.5 as a generic model system. Pla-
nar geometry offers computational benefits and it constitutes
arguably the most important type of inhomogeneity due to
a multitude of relevant interfacial and substrate applications
(including phase transitions). The technical details of the
conversion from radial to planar geometry are described
in our Supplemental Material [37] and all data are openly
available [41].

To combine the virtues of the different approaches, we first
incorporate the pair-correlation matching (3) into the local
learning method by using Eq. (6) to express c2(r, r′; [ρ])
and then proceed to the functional reduction (2). The loss
that is optimized in the supervised machine learning remains
based on the one-body direct correlation matching (5) but it
is supplemented by a regularizer based on Eq. (3). We find
that using the regularizer improves the training dynamics and
the overall quality of the results achieved, as is desired and
expected when supplying additional information about bulk
correlations; details are given in our Supplemental Material
[37]. Note the inhomogeneous training data is reused from
Ref. [12]. As a test, we display results for the predicted
bulk structure from both unregularized one-body learning and
pair-matching-regularized one-body learning in Fig. 1. The
results with regularization are smoother and the predicted
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FIG. 1. Neural functional results for bulk pair structure and planar inhomogeneous density profiles. We show bulk results from neural
functionals obtained via one-body inhomogeneous training (first column), adding the bulk pair-correlation regularization (second column), and
from pure pair-correlation matching (third column). The supercritical Lennard-Jones fluid is investigated at reduced temperature kBT/ε = 1.5
and different scaled bulk densities ρbσ

3 (color bar). Shown is the bulk pair direct correlation function c̄2(x; ρb) in planar geometry as a
function of scaled planar distance x/σ obtained via automatic differentiation (6) (top panels) and c2(r; ρb) as a function of radial distance
r/σ (insets in top panels). The Ornstein-Zernike relation yields the corresponding pair correlation function g(r) (bottom panels) and bulk
structure factor S(k) (insets in bottom panels). Also shown are predictions from the same three neural functionals for planar inhomogeneities
(fourth column) as induced by an external potential Vext (x) (gray lines) at μ/ε = 0. Results from the pure pair-correlation matched functional
deviate increasingly from those with inhomogeneous training, which remain almost identical to the simulation reference (thin dotted lines)
upon increasing inhomogeneity (from top to bottom) even for confinement between parallel hard walls (bottom panel).

radial distribution functions g(r) are closer to zero inside the
core, consistent with the expectation based on the supply of
bulk information into the scheme.

We have also trained a one-body correlation functional
based on pair-correlation matching alone with no information
about inhomogeneous systems entering. This is potentially
important as it would remove the need to generate inho-
mogeneous training data, as is argued in Ref. [10]. Within
our scheme the method is straightforward to implement by
basing the loss solely on the bulk direct correlation matching
(3). Similar to Ref. [10], we provide the required integration
constants by noting from Eq. (4) that βμexc ≡ βμ − ln ρb =
−c1(r; [ρ]), which the neural functional delivers with constant
density input, ρ(r) = ρb. Results for the excess chemical po-
tential μexc are obtained from simulating bulk systems with
Vext (r) = 0. We find, despite apparently successful perfor-
mance in training metrics, that the pair-correlation-matched
neural functional c1(r; [ρ]) is of significantly poorer quality
than those from the two local one-body learning methods,
which rely on inhomogeneous training data. This becomes
clear in predictions for inhomogeneous systems, where the
results of the former neural functional fall short of those
from the inhomogeneously trained networks, as shown in
Fig. 1, column 4. Also the exchange symmetry c2(r, r′; [ρ]) =

c2(r′, r; [ρ]), which is a necessary Cauchy-Riemann-like inte-
grability condition for the existence of a generating functional
Fexc[ρ] according to Eq. (1), is violated, as shown in the
Supplemental Material [37]. The method of Ref. [10] satisfies
the exchange symmetry by construction via the neural repre-
sentation of Fexc[ρ] and the interchangeability of the order of
the two derivatives in Eq. (1).

We next describe two variants of inhomogeneous one-
body learning for modeling directly the generating functional
Fexc[ρ]. We work with a localized excess free-energy inte-
grand fexc(r; [ρ]) such that

Fexc[ρ] =
∫

dr ρ(r) fexc(r; [ρ]), (7)

where the spatial integration domain is the entire sys-
tem volume. The general functional integral βFexc[ρ] =
− ∫

D[ρ]c1(r; [ρ]) is parametrized by Eq. (7) when choosing
[3,13]

−β fexc(r; [ρ]) =
∫ 1

0
da c1(r; [aρ]), (8)

where aρ(r) is a scaled version of the density profile. The
integrals in Eqs. (7) and (8) can be performed numerically
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FIG. 2. Illustration of the three different network architectures for neural functionals. Shown are the multilayer perceptrons (MLP) for
local learning of c1(r; [ρ]) (first column) and for fexc(r; [ρ]) (second column) and the convolutional neural network (CNN) for Fexc[ρ].
Corresponding predictions for the scaled density profiles ρ(x)σ 3 (fourth column) are shown for the supercritical Lennard-Jones fluid with
μ/ε = 1 and kBT/ε = 1.5 confined between two hard walls at x/σ = 2 and 18. Results for ρ(x) are shown from density-functional
minimization using c1(x; [ρ]) obtained from local learning according to Eq. (5), from local learning of fexc(x; [ρ]) via Eq. (9), and from
inhomogeneous one-body training of the convolutional neural network representation of Fexc[ρ]. The predictions from the three different
neural functionals are identical to the simulation reference (thin dotted line) on the scale of the plot.

with high efficiency to obtain the value of the excess free
energy [12,13].

We obtain the corresponding one-body direct correlation
functional by recalling that c1(r; [ρ]) = −δβFexc[ρ]/δρ(r)
and inserting Fexc[ρ] in the form (7), which gives

c1(r; [ρ]) = −β fexc(r; [ρ]) −
∫

dr′ρ(r′)
δβ fexc(r; [ρ])

δρ(r′)
.

(9)

We have exchanged r and r′ according to the symmetry
δ fexc(r′; [ρ])/δρ(r) = δ fexc(r; [ρ])/δρ(r′); this identity fol-
lows from differentiating Eq. (8) and from the exchange
symmetry of c2(r, r′; [ρ]). The form (9) is suitable for the
application to local learning.

In our first free-energy method we represent fexc(r; [ρ]) as
a neural functional and perform one-body direct correlation
matching via Eq. (5) on the basis of Eq. (9), where automatic
differentiation is used to carry out the functional derivative.
The second free-energy method uses a convolutional neural
network architecture similar to that of Ref. [10] to implement
via fexc(r; [ρ]) the excess free-energy functional Fexc[ρ] in the
structure of Eq. (7). We thereby perform no pooling (coarse
graining, as is common practice [36]) and design a final layer
that represents fexc(r; [ρ]), which is then multiplied by ρ(r)
and integrated according to Eq. (7) for the global value of
Fexc[ρ]; details are given in the Supplemental Material [37].
This specific convolutional neural network design extends
naturally to arbitrary system sizes, thus replicating the capa-
bility of the local correlation learning for making predictions
beyond the box [12,13]. Illustrations of the different neural
functionals together with representative results from the three
methods for planar density profiles ρ(x) of a Lennard-Jones
fluid confined between parallel hard walls are shown Fig. 2.
Having been trained with the same inhomogeneous one-body
profiles from grand canonical Monte Carlo simulations [12],
all methods give an excellent account of the highly inhomo-
geneous spatial fluid structure.

We conclude with several conceptual points related to
the inherent functional reduction (2) of bulk pair-correlation

matching [10]. The feeding of knowledge of g(r) into the
neural functional constitutes a very significant amount of in-
formation about the system under consideration. Henderson’s
uniqueness theorem [42] formally ensures that for systems
interacting solely with a pair potential φ(r), perfect knowl-
edge of g(r), at a single state point, is sufficient to determine
φ(r). Density-functional theory [1] then implies that Fexc[ρ]
is uniquely determined in principle, given the information that
no higher-body interparticle interactions are present [43].

However, it is difficult to see why a neural functional
trained through the aperture of the functional reduction
(2) would render Henderson’s theorem operational. As the
density-functional framework (1)–(3), utilized within the
pair-correlation matching, applies equally to a system with
many-body interparticle interactions, we see no mechanism
in Ref. [10] that would intrinsically reduce Fexc[ρ] to pair
interactions only (see Ref. [43] for a related discussion
in the context of simulation work). This situation cannot
be remedied by supplying g(r) in more abundance and with
higher precision. In contrast, the one-body matching condition
(5) allows for full exploration of the entire density-functional
dependence for any given form of the underlying Hamiltonian,
which gives a formal mechanism to rationalize the high
quality of our correspondingly obtained results. Our locally
trained functional c1(r; [ρ]) [41] does not suffer from the
somewhat limited extrapolation capabilities reported for the
inhomogeneous training method of Ref. [10]. We also find
robust values when evaluating c1(r; [ρ]) at positions r inside
a hard wall, where the local density vanishes, which cor-
roborates the extrapolation capability to unseen cases. Such
regions, per construction, do not contribute directly to the free
energy integral (7), due to the multiplication with ρ(r) = 0.

In future work it would be interesting to further com-
pare the different one-body learning strategies to each
other. One could also attempt to utilize test particle con-
cepts [44] to identify ρ(r) = ρbg(r) upon setting Vext (r) =
φ(r), as also explored dynamically [45–47] and quan-
tum mechanically [48]. Despite the implied restriction to
spherical symmetry, this would allow simulation results
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for pair-correlation functions g(r) to be used as genuinely
inhomogeneous one-body density profiles ρ(r). The three-
body direct correlation functional follows from (Hessian)
automatic differentiation with respect to the density profile ac-
cording to c3(r, r′, r′′; [ρ]) = δ2c1(r; [ρ])/δρ(r′)δρ(r′′) [12].
Then one could exploit Noether invariance sum rules that
relate to spatial gradients of c2(r, r′; [ρ]) [13,49]. Further-
more, the use of the force density integral ρ(r)∇c1(r; [ρ]) =

− ∫
dr′ρ2(r, r′)∇βφ(|r − r′|) [1,2,50,51] could be beneficial

for making progress despite an increase in complexity [52,53].
Localized forces are also relevant for functional treatments of
general observables [14] and for nonequilibrium flow [11,15].

We thank J. Dijkman, M. Welling, J.-W. van de Meent, B.
Ensing, K. Burke, M. Dijkstra, R. Evans, and S. M. Kampa
for useful discussions.
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