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The excess free energy functional of classical density functional theory depends upon the type of fluid
model, specifically on the choice of (pair) potential. This functional is unknown in general and is
approximated reliably only in special cases. We present a machine learning scheme for training a neural
network that acts as a generic metadensity functional for truncated but otherwise arbitrary pair potentials.
Automatic differentiation and neural functional calculus then yield, for one-dimensional fluids, accurate
predictions for inhomogeneous states and immediate access to the pair distribution function. The approach
provides a means of addressing a fundamental problem in the physics of liquids and for soft matter design:
“How do we best invert structural data to obtain the pair potential?”
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Classical density functional theory (DFT) is a powerful
framework for investigating the equilibrium structure and
thermodynamics of bulk and spatially inhomogeneous
liquids and more general soft matter systems [1–5].
Rosenfeld’s fundamental measure theory for hard spheres
proved pivotal to the field, due to its high accuracy and its
beautiful and intriguing geometrical structure [6–9]. The
treatment of longer-ranged interparticle attraction, acting
on top of short-ranged repulsion, is typically based on a
simple additive mean-field contribution to the (accurate)
hard sphere free energy density functional [2,3]. Despite
its status as a workhorse of DFT, the predictions of the
“standard mean-field approach” rarely allow for direct
quantitative comparison to simulation results.
To overcome limitations of classical DFT approxima-

tions, a range of recent studies addressed the possibility to
apply machine learning techniques [10–20]. The neural
functional theory [21–28] based on representing the one-
body direct correlation functional—the first derivative of the
excess free energy functional—by a neural network has
proved very successful. The approach allows for extensive
use of functional integration and differentiation techniques
[21–28] using automatic differentiation [29,30]. Neural
functionals were trained for specific interparticle interaction
potentials, including three-dimensional hard spheres [21],
one-dimensional hard [22] and attractive rods [24,25], three-
dimensional supercritical [21,26,27] and subcritical [27]
Lennard-Jones (LJ) fluids, and ionic fluids [28].

At the core of these successful machine learning
applications [21–28] lie the formally exact functional
relationships of DFT [1]. In particular, the density profile
ρðrÞ determines the one-body direct correlation function
c1ðrÞ. Of course, the interparticle interactions and the state
point need to be known. For model fluids where particles
interact solely with a pair potential ϕðrÞ, with r denoting
the interparticle distance, Henderson’s theorem [31] states
that knowledge of the pair distribution function gðrÞ at a
single state point is sufficient to determine the pair
potential ϕðrÞ up to a constant. While being a foundational
problem [32–36], much current research is devoted to
exploring the practicalities and consequences, e.g., for
reverse Monte Carlo [35,37], variational methods [38,39],
machine learning [26,40,41], sensitivity [42,43], design
tasks [44,45], quasiuniversality [46], and microscopy in
colloidal systems [47].
Here we demonstrate the feasibility of neural functional

training based on local learning of the simultaneous
functional dependences on both the density profile ρðrÞ
and on the thermally scaled pair potential βϕðrÞ, where
β ¼ 1=ðkBTÞ, with the Boltzmann constant kB and temper-
ature T. The increase in demand of training data generated
from simulations of spatially inhomogeneous systems with
varying pair potentials is only very moderate, given the
significant increase both in functional complexity and
applicability to the general form of ϕðrÞ and the free
choice of the temperature T. As the functional dependence
on ϕðrÞ is often merely treated implicitly, we refer to
explicit and accurate functionals of both density and pair
potential as metadensity functionals. We apply and test the
framework for general one-dimensional interacting fluid
models after first describing the underlying theoretical
structure.
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We consider systems of N particles with identical
mass m, position coordinates ri, and momenta pi, where
the index i labels the particles with i ¼ 1;…; N. The
Hamiltonian H is taken to consist of a sum of an intrinsic
and an external contribution H ¼ Hint þ

P
N
i¼1 VextðriÞ,

where VextðrÞ is an external potential that acts at (generic)
position r. The intrinsic part Hint of the Hamiltonian is the
sum of kinetic and interparticle interaction energy, which
we restrict to pair contributions only, such that

Hint ¼
XN
i¼1

p2
i

2m
þ 1

2

XN
i¼1

XN
j¼1;j≠i

ϕðjri − rjjÞ; ð1Þ

and we comment on more general forms of interparticle
potentials uðr1;…; rNÞ below.
The definition of the intrinsic free energy functional can

be based on Levy’s constrained search [48,49] or on the
standard Mermin argument [1,3,50]. The intrinsic free
energy functional consists of an ideal and an excess part
according to

F½ρ; βϕ� ¼ Fid½ρ� þ Fexc½ρ; βϕ�; ð2Þ

where βFid½ρ� ¼
R
drρðrÞfln½ρðrÞΛd� − 1g with dimen-

sionality d and thermal de Broglie wavelength Λ; for
convenience, we set Λ ¼ 1 in the following. The excess
free energy functional Fexc½ρ; βϕ� accounts for the effects
of the interparticle interactions via its functional depend-
ence on βϕðrÞ. Thermal scaling incorporates fully the
dependence on temperature T, such that there remains no
hidden temperature dependence in βF½ρ; βϕ�, as follows,
e.g., from the definition via the Levy search βF½ρ; βϕ� ¼
minf→ρTrfðβHint þ ln fÞ, where Tr denotes the grand
canonical trace, and f the many-body trial distribution
function [48,49]. The one-body direct correlation func-
tional follows via functional differentiation [1–5]:

c1ðr; ½ρ; βϕ�Þ ¼ −
δβFexc½ρ; βϕ�

δρðrÞ : ð3Þ

We aim to transcend existing neural functional
methods [21–23,26–28] and base our supervised local
machine learning on simulation data not only generated
by varying the form of the external potential VextðrÞ, but
also by varying the pair potential ϕðrÞ. For any given
training system [given ϕðrÞ], sampling in grand canonical
Monte Carlo simulations yields the equilibrium density
profile ρðrÞ at prescribed T and chemical potential μ. The
resulting form of the one-body direct correlation function
intended to serve as a reference for the neural training then
follows as

cref1 ðrÞ ¼ ln ρðrÞ þ βVextðrÞ − βμ: ð4Þ

Note that each term on the right-hand side is known, as was
exploited in previous work [21–28], and that Eq. (4) is valid
for all interparticle potentials.
This data acquisition process is repeated several thousand

times for different randomized forms of the scaled external
potential βVextðrÞ, randomized values of the scaled chemi-
cal potential βμ, and, crucially, also randomized forms of
the scaled pair potential βϕðrÞ. Apart from the last ingre-
dient, the training follows that in Refs. [21–23,26–28].
Now we have training data for the construction of the
neural metadensity functional c1ðr; ½ρ; βϕ�Þ, which depends
on both the density profile ρðrÞ and on the form of the
scaled pair interaction potential βϕðrÞ. Specifically, the
training aims to achieve equality across the entire training
dataset:

c1ðr; ½ρ; βϕ�Þ ¼ cref1 ðrÞ; ð5Þ

where the left-hand side indicates the neural network output
and the right-hand side the training reference (4). We
represent c1ðr; ½ρ; βϕ�Þ by a simple multilayer perceptron
with five hidden layers; see Fig. 1 for an illustration in

FIG. 1. Training strategy of the neural metadensity functional.
Grand canonical Monte Carlo simulations yield training data for
supervised machine learning. The simulations are carried out with
randomized scaled external potentials βVextðxÞ and randomized
scaled chemical potentials βμ. Results for the density profiles
ρðxÞ are obtained for randomized scaled interparticle potentials
βϕðrÞ. These datasets are used to train a neural one-body direct
correlation metadensity functional c1ðx; ½ρ; βϕ�Þ that renders the
simultaneous functional dependence on both fields ρðxÞ and
βϕðrÞ operational. Here, x is the one-dimensional position
coordinate and r is the interparticle distance. We have used
12 089 simulation runs and truncated ρðxÞ symmetrically around
each grid point at �2σ. We restrict ourselves to βϕðrÞ that vanish
beyond the length rc ¼ 1.5σ of its input grid, where σ is the
length scale and 0.01σ is the grid spacing [51].
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one-dimensional geometry and Refs. [18,26] for possible
further architectures.
Ready access to c1ðr; ½ρ; βϕ�Þ allows one to obtain the

excess free energy functional via functional line integra-
tion −βFexc½ρ; βϕ� ¼

R
D½ρ�c1ðr; ½ρ; βϕ�Þ. In practice, a

parametrization with simple scaling aρðrÞ by a param-
eter 0 ≤ a ≤ 1 allows one to numerically integrate accord-
ing to −βFexc½ρ; βϕ� ¼

R
drρðrÞ R 1

0 dac1ðr; ½aρ; βϕ�Þ. The
required equilibrium density profile ρðrÞ is obtained from a
self-consistent solution of the standard Euler-Lagrange
equation of DFT [1–5], as follows formally from combin-
ing Eqs. (4) and (5): c1ðr; ½ρ;βϕ�Þ ¼ lnρðrÞþβVextðrÞ−
βμ, where we have kept the functional dependence on the
scaled pair potential βϕðrÞ explicit in the notation.
Exponentiating and rearranging yields

ρðrÞ ¼ expfc1ðr; ½ρ; βϕ�Þ − βVextðrÞ þ βμg; ð6Þ

which suits the application of iterative solution methods.
We specialize first to bulk fluids where VextðrÞ ¼ 0 and

where we expect a spatially homogeneous bulk fluid with
constant density ρðrÞ ¼ ρb ¼ const. The one-body direct
correlation functional is then independent of position r and
directly related to the excess chemical potential μexc:

c1ðr; ½ρb; βϕ�Þ ¼ −βμexc ¼ ln ρb − βμ; ð7Þ

which follows directly from Eq. (6).
Percus test particle limit [52] allows one to access the

bulk pair structure. The external potential is chosen to be
identical to the pair potential of the fluid VextðrÞ ¼ ϕðrÞ.
The corresponding test particle density profile is
ρðrÞ ¼ ρbgðrÞ, where gðrÞ is the standard pair distribution
function [3,52]. The general Euler-Lagrange equation (6)
then attains test particle form,

ρbgðrÞ ¼ expfc1(r; ½ρbg; βϕ�) − βϕðrÞ þ βμg; ð8Þ

which applies to any form of ϕðrÞ.
We describe the results for four very different one-

dimensional fluids; see Fig. 2, second row. Note that r is
then replaced by x in Eq. (8). The models are represen-
tative: hard rods [22,53,54], square-shoulder particles [55],
random penetrable repulsive particles, and LJ particles.
Predicting pair structure: gðrÞ—We first take the

Hamiltonian (1) to be known. The given ϕðrÞ can then
be used explicitly in the test particle equation (8). A self-
consistent solution is efficiently obtained for given values
of β; μ via Picard iteration, which delivers results directly
for the pair distribution function gðrÞ. This density
functional setup of Percus test particle limit applies to
any ϕðrÞ using the same universal metadensity functional
c1ðr; ½ρ; βϕ�Þ, as is demonstrated in Fig. 2 for the four

one-dimensional model fluids. Note the pronounced effect
of interparticle attraction (fourth column) on the degree of
structuring in gðrÞ. The neural equation of state ρbðμÞ
follows from Eq. (7); see insets in Fig. 2. The results are
numerically identical to reference data obtained from grand
canonical Monte Carlo simulations and, for hard rods, to
the exact solution [53,56] βμexc ¼ − lnð1 − ηÞ þ η=ð1 − ηÞ
with η ¼ ρbσ.
Henderson inversion yields pair potential ϕðrÞ—

Second, we consider the situation where gðrÞ is known.
We take ρb; β as the control parameters and obtain μ from
Eq. (7). The task is to find ϕðrÞ that generates this given
gðrÞ, which constitutes Henderson’s inversion problem
[31]; see Refs. [18,26,32–47]. We render the formal
inversion operational by taking the logarithm of Eq. (8)
and solving for the explicit occurrence of the pair potential:

βϕðrÞ ¼ c1ðr; ½ρbg; βϕ�Þ þ βμ − ln½ρbgðrÞ�: ð9Þ

Equation (9) constitutes a self-consistency relation for
determining ϕðrÞ. Using Picard iteration, we obtain remark-
ably consistent results, as demonstrated in Fig. 2. On the
scale of the figure it is hardly possible to find differences
from the (original) pair potential.
Inhomogeneous metadensity functional application—

Our method is designed for general density functional
setups, where an external potential VextðrÞ is specified, and
one aims to calculate the emerging inhomogeneous density
profile ρðrÞ for a given model fluid. This implies the
standard solution of the Euler-Lagrange equation (6),
keeping ϕðrÞ fixed. Figure 3 illustrates the application
of this strategy to confinement between two hard walls;
this situation was not part of the training set. Note the
highly structured density profiles for the LJ fluid in the
fourth column. We emphasize that the four fluid models
are mere representative examples and that all results stem
from the same neural metadensity functional c1ðr; ½ρ; βϕ�Þ.
In situations where the full functional dependence is not
required, one can work with parametric dependence on
pair potential parameters; see Appendix A for an appli-
cation to square-shoulder particles and for a discussion of
many-body interparticle potentials.
Soft matter inverse design—The flexible dependence on

the pair potential inherent in Eq. (6) allows one to go
beyond standard density functional tasks and address
design problems, similar to Henderson inversion. We
hence set the target as the inhomogeneous one-body
density profile. This introduces the following intriguing
problem: Suppose we have prescribed forms of both
VextðrÞ and of ρðrÞ, at given μ; β. How do we find the
specific pair potential ϕðrÞ that realizes the target, assum-
ing the interparticle potential is described solely by two-
body contributions? To accomplish this task, we use
Newton’s method to solve the Euler-Lagrange equation (6)
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in the form c1ðr; ½ρ; βϕ�Þ − ln ρðrÞ − βVextðrÞ þ βμ ¼ 0.
The required “slope” is the metadirect correlation func-
tional obtained by automatic differentiation keeping ρðrÞ
fixed: cϕðr; r0; ½ρ; βϕ�Þ ¼ δc1ðr; ½ρ; βϕ�Þ=δβϕðr0Þ; see
Appendix B for its relevance in analyzing fluctuations
via the meta-Ornstein-Zernike route. The results for βϕðrÞ
in Fig. 3 demonstrate that the true pair potential can be
reconstructed reliably. Some weak noise is visible in the
four βϕðrÞ. Such artifacts tend to increase for more
extreme cases of βϕðrÞ. Overall, the quality of the results
is remarkable.
While Henderson’s uniqueness theorem is formulated

canonically [31,42], here we worked in the grand ensemble

and provided a corresponding proof in Appendix C. Using
the neural metafunctional, we validated uniqueness in test
particle situations (Fig. 2). We also found empirically
unique solutions in a much wider class of inhomogeneous
systems: The hard-wall pore (Fig. 3) is a representative
example. Future work should address this generalized
inversion problem formally. Regarding higher-dimensional
systems, when working with planar symmetry and random-
izing the external potential βVextðxÞ [21–28] as well as
βϕðrÞ to generate training data, our setup remains appli-
cable. Henderson inversion is then formally guaranteed via
conversion from planar to radial symmetry [18,21,26,27].

FIG. 2. Pair structure and Henderson design via the neural metadensity functional. Results are shown for the pair distribution function
gðrÞ (first row) and corresponding scaled pair potential βϕðrÞ (second row) for different values of scaled bulk density ρbσ (color bar) and
for four different pair potentials βϕðrÞ in one dimension: (i) hard rods (first column), (ii) square-shoulder repulsion (second column),
(iii) random penetrable repulsion (third column), and (iv) LJ particles (fourth column). Results for gðrÞ from test particle minimization
(8) with βϕðrÞ fixed and βμ ¼ −2;−1.5; 1;−0.5; 0; 0.5; 1 (yellow to green lines) are numerically identical to the simulation reference
(black dots, shown for βμ ¼ 1). The variable r denotes one-dimensional relative distance. Insets: the neural equations of state ρbσ versus
βμ (red lines) agree with reference simulation data (black dots) and for hard rods with the exact solution (dashed violet line, first panel);
we set the de Broglie wavelength Λ ¼ σ in the ideal gas contribution. Using solely gðrÞ; ρb; β as input, Henderson density functional
inversion (9) allows one to reconstruct βϕðrÞ consistently (overlapping dashed colored lines) and with high accuracy across the entire
range of densities considered (color bar); we take values βϕðrÞ ≥ 7 to represent numerically hard cores.
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Instead of the test particle route to gðrÞ, one could use the
Ornstein-Zernike equation together with the neural bulk
pair direct correlation function [18,21,26–28]. It would
also be interesting to relate to exact solutions for bulk
one-dimensional systems [55,57–59], test particle sum rules
[60], quantum test particle concepts [61], liquid integral
equation theory [62,63], entropy functionals [64,65], data-
driven approaches [66], differentiable simulations [67],
experimental work [68–70], splitting of interparticle inter-
actions [28,71,72], and self-assembly [73].
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End Matter

Appendix A: Parametric metadensity functional—
Instead of machine learning the functional dependence
on βϕðrÞ on a discretized grid, one can work with
parametric dependence on the pair interaction para-
meters. Although this restricts the general applicability
of the resulting neural metafunctional, it can be
more efficient within the range of applicability. We

demonstrate the method for square-shoulder pair
potentials with scaled shoulder range Δ=σ and height
βϵ, where both parameters are used as input nodes,
similar to thermal training [27]. Results from inhomo-
geneous and test particle DFT of the parametrized
metadensity functional c1ðr; ½ρ�; βϵ;Δ=σÞ shown in Fig. 4
demonstrate high accuracy. We expect the
parametrization method to apply to many-body
interparticle interaction potentials uðr1;…; rN ; α1;…; αmÞ
via machine learning the dependence on m interaction
parameters α1;…; αm to provide parametrized access
to c1ðr; ½ρ; βu�Þ ¼ c1ðr; ½ρ�; β; α1;…; αmÞ.
Appendix B: Fluctuations—We address the fluctuation

structure by functionally differentiating the (logarithm of
the) Euler-Lagrange equation (6) with respect to βϕðr0Þ
keeping μ, β, and VextðrÞ fixed. Rearranging the result
yields the following exact meta-Ornstein-Zernike (OZ)
equation:

cϕðr;r0; ½ρ;βϕ�Þ¼
χϕðr;r0Þ
ρðrÞ

−
Z

dr00c2ðr;r00; ½ρ;βϕ�Þχϕðr00;r0Þ; ðB1Þ

where c2ðr; r0; ½ρ; βϕ�Þ ¼ δc1ðr; ½ρ; βϕ�Þ=δρðr0Þ [1–3]
and the local metacompressibility is χϕðr; r0Þ ¼
δρðrÞ=δβϕðr0ÞjβðVext−μÞ, generalizing the local compress-
ibility χμðrÞ [74–76] and its extensions [24,25,77,78].
Equation (B1) mirrors closely the inhomogeneous two-
body [1–5], nonequilibrium [5], fluctuation [77,78], and
hyperdensity [24,25] OZ relations. Figure 5 shows rep-
resentative results for χϕðr; r0Þ and cϕðr; r0Þ for the LJ
system. The highly structured behavior in both functions
reflects the oscillations in the density profile.
One can readily show that the local metacompress-

ibility constitutes the following average: χϕðr0; rÞ ¼
−cov½ρ̂ðr0Þ; ĜðrÞ�, where the density “operator” is ρ̂ðrÞ ¼P

i δðr − riÞ, and we have defined a global measure of
mutual particle distances ĜðrÞ ¼ 1

2

P0
ij δðr − jri − rjjÞ,

where the primed double sum is over distinct pairs
i ≠ j. Then, Eq. (B1) can be viewed as a special case of
the hyper-OZ relation [24,25] for the observable
Â ¼ −ĜðrÞ.
The test particle situation requires functionally differ-

entiating the corresponding Euler-Lagrange equation (8)

FIG. 4. Parametric metadensity functional applications. The
scaled range (Δ=σ) and depth (βϵ) parameters of the square-
shoulder potential are treated as neural network input nodes that
control the form of βϕðrÞ (first row). Percus test particle
minimization (8) yields results for gðrÞ (second row) for the
fluids described by the different ϕðrÞ for βμ ¼ 0. Inhomogeneous
density functional minimization (6) yields corresponding results
for ρðxÞσ under confinement between two hard walls at x=σ ¼
0.5 and 4.5 (third row). Representative simulation results (dotted
lines) are shown for the largest values of Δ=σ and βϵ considered.
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with respect to βϕðr0Þ, yielding the test particle meta-OZ
relation:

cϕðr; r0; ½ρg; βϕ�Þ − δðr − r0Þ ¼ χgðr; r0Þ
ρgðrÞ

−
Z

dr00c2ðr; r00; ½ρg; βϕ�Þχgðjr00j; r0Þ; ðB2Þ

where ρgðrÞ ¼ ρbgðrÞ and the scaled bulk pair metacom-
pressibility is βχgðr; r0Þ ¼ δρgðrÞ=δϕðr0Þ, which is closely
related to δgðrÞ=δϕðr0Þ, as identified and highlighted as
important by Wang et al. in their introduction [42].

Appendix C: Functional relationships—As is pertinent
to the treatment in the main text, we give a grand cano-
nical version of Henderson’s theorem. The equilibrium
probability density is given by f0 ¼ e−βðH−μNÞ=Ξ, where
the Hamiltonian H ¼ K þΦþ Vext, with kinetic energy

K ¼ P
N
i¼1 p

2
i =ð2mÞ, interparticle potential energy

Φ ¼ P
i≠j ϕðri − rjÞ=2, and external potential energy

Vext ¼
P

N
i¼1 VextðrÞ. We keep only the pair potential

ϕðrÞ. Wang et al. [42] generalize Φ to include higher-
body potentials but work in the canonical ensemble.
Following Appendix B in Ref. [3], we introduce the
functional

Ω½f� ¼ Tr fðH − μN þ β−1 ln fÞ: ðC1Þ

In equilibrium: Ω½f0� ¼ −β−1 ln Ξ, where Ξ ¼
Tre−βðH−μNÞ is the grand partition function, and therefore,
Ω½f0� ¼ Ω is the grand potential. One can prove

Ω½f� ≥ Ω½f0� ðC2Þ

using a Gibbs-Bogoliubov inequality.
To derive Henderson’s theorem, consider two different

Hamiltonians—the original H and H0 ¼ K þΦ0 þ V 0.
Now Φ0 is a sum of pair potentials ϕ0, and V 0

ext corresponds
to the external potential V 0

extðrÞ. The chemical potential μ0
might also be different. Associated with H0 is the equilib-
rium f00 and Ω0

0.
Equation (C2) asserts Ω0 ¼ Tr f00ðH0 − μ0Nþ

β−1 ln f00Þ ≤ Tr f0ðH0 − μ0N þ β−1 ln f0Þ. The right-hand
side is Trf0ðH−μNþΦ0−ΦþV 0

ext−VextþμN−μ0N þ
β−1 ln f0Þ. Thus,

Ω0 ≤ Ω½f0� þTrf0½Φ0 −Φþ ðV 0
ext − μ0NÞ− ðVext − μNÞ�:

ðC3Þ

Note that Vext − μN ¼ P
N
i¼1ðVextðriÞ − μÞ ¼

−
R

drρ̂ðrÞψðrÞ with “intrinsic” chemical potential
ψðrÞ ¼ μ − VextðrÞ. Then, Eq. (C3) reads

Ω0 ≤ ΩþTrf0ðΦ0 −ΦÞ−
Z

drρðrÞ½ψ 0ðrÞ− ψðrÞ�: ðC4Þ

Swapping primed and unprimed variables, i.e., usingH and
f0, one finds

Ω≤Ω0 þTrf00ðΦ−Φ0Þ−
Z

drρ0ðrÞ½ψðrÞ−ψ 0ðrÞ�; ðC5Þ

where ρðrÞ is the equilibrium one-body density correspond-
ing to f0 and ρ0ðrÞ that for f00. (i) Suppose the pair
potentials are identical: ϕ0ðrÞ ¼ ϕðrÞ; i.e., we are consid-
ering identical fluids in a reservoir at given μ0 ¼ μ, but
exposed to different external potentials V 0

extðrÞ and VextðrÞ.

FIG. 5. Meta-OZ results. The density profile for βμ ¼ 1 for the
truncated LJ system, with rc ¼ 1.5σ, in hard-wall confinement is
shown (first panel). Corresponding results are shown as a
function of the scaled position x=σ and interparticle distance
r=σ, for the local metacompressibility χϕðx; rÞ from simulations
(second panel) and from the neural functional (third panel), and
for the metadirect correlation function cϕðx; rÞ (fourth panel).
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What occurs if one requires ρ0ðrÞ ¼ ρðrÞ? Adding
Eqs. (C4) and (C5):

Ω0 þ Ω ≤ Ωþ Ω0; ðC6Þ

a clear contradiction as equality holds only in the trivial
case of the primed and unprimed systems being identical;
i.e., there is a unique VextðrÞ [or ψðrÞ] that gives rise to a
given ρðrÞ, a key result in the foundation of DFT [1,3,50].
(ii) Suppose now ψ 0ðrÞ ¼ ψðrÞ; i.e., the intrinsic chemical
potentials are identical, but the pair potentials can be
different. The final terms in Eqs. (C4) and (C5) vanish,
and one can write Eqs. (C4) and (C5), respectively, as

Ω0 ≤ Ωþ 1

2

Z
dr1dr2ρð2Þðr1; r2Þ½ϕ0ðr12Þ − ϕðr12Þ�; ðC7Þ

Ω ≤ Ω0 þ 1

2

Z
dr1dr2ρð2Þ

0 ðr1; r2Þ½ϕðr12Þ − ϕ0ðr12Þ�; ðC8Þ

where r12 ¼ r1 − r2 and ρð2Þðr1; r2Þ is the two-body dis-
tribution function corresponding to f0 and ρð2Þ0 ðr1; r2Þ that
for f00. Suppose now ρð2Þðr1; r2Þ ¼ ρð2Þ0 ðr1; r2Þ, then adding
Eqs. (C7) and (C8) one finds again Eq. (C6). The contra-
diction implies that there is a unique ϕðrÞ that gives rise to a
given ρð2Þðr1; r2Þ.
This argument is equivalent to that of Henderson [31]

who worked in the canonical ensemble; see his Eqs. (4)
and (5). For the uniform fluid ρð2Þðr1; r2Þ ¼ ρ2bgðr12; ρbÞ
where ρb is the uniform density at specified μ, T, and
gðr12; ρbÞ is the radial distribution function. It follows that
the latter determines uniquely ϕðrÞ.
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