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We use supervised machine learning together with the concepts of classical density functional theory to
investigate the effects of interparticle attraction on the pair structure, thermodynamics, bulk liquid-gas
coexistence, and associated interfacial phenomena in many-body systems. Local learning of the one-body
direct correlation functional is based on Monte Carlo simulations of inhomogeneous systems with
randomized thermodynamic conditions, randomized planar shapes of the external potential, and
randomized box sizes. Focusing on the prototypical Lennard-Jones system, we test predictions of the
resulting neural attractive density functional across a broad spectrum of physical behavior associated with
liquid-gas phase coexistence in bulk and at interfaces. We analyze the bulk radial distribution function gðrÞ
obtained from automatic differentiation and the Ornstein-Zernike route and determine (i) the Fisher-Widom
line, i.e., the crossover of the asymptotic (large distance) decay of gðrÞ from monotonic to oscillatory,
(ii) the (Widom) line of maximal correlation length, (iii) the line of maximal isothermal compressibility,
and (iv) the spinodal by calculating the poles of the structure factor in the complex plane. The bulk
binodal and the density profile of the free liquid-gas interface are obtained from density functional
minimization and the corresponding surface tension from functional line integration. We also show that the
neural functional describes accurately the phenomena of drying at a hard wall and of capillary evaporation
for a liquid confined in a slit pore. Our neural framework yields results that improve significantly upon
standard mean-field treatments of interparticle attraction. Comparison with independent simulation results
demonstrates a consistent picture of phase separation even when restricting the training to supercritical
states only. We argue that phase coexistence and its associated signatures can be discovered as emerging
phenomena via functional mappings and educated extrapolation.
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I. INTRODUCTION

The emergence of two or more distinct thermodynamic
stable phases on varying thermodynamic conditions is
arguably one of the most striking phenomena in statistical
mechanics, whether this occurs in bulk or at interfaces, in
pure or in multicomponent systems. Unsurprisingly, the
recent surge in the use of machine-learning techniques in
physics [1,2] has focused on the prototypical (lattice-
based) Ising model for developing appropriate techniques
and strategies to investigate phase-separating systems.
Such work includes the finite-size analysis in neural
network classification of critical phenomena [3] and

mapping out phase diagrams with generative classifiers
[4]. Detecting the approach to a critical point also
constitutes a central task in more general dynamical
systems, which commonly requires the application of
advanced computational methods [5–7].
In this paper we focus on using machine learning to

investigate liquid-gas phase separation and related phe-
nomena in a continuum model fluid, namely the Lennard-
Jones (LJ) system, arguing that understanding the physics
in such a simple model, which encompasses both repulsive
and attractive interparticle interactions, provides a basis for
understanding the occurrence of the same phenomena that
arise in more complex fluids [8,9].
We choose to employ the formal techniques of classical

density functional theory (DFT) [8,10–12] to investigate
both bulk and inhomogeneous (interfacial) properties.
Going from a bulk (homogeneous) system with constant
density to the locally resolved one-body density profile
ρðrÞ of an inhomogeneous fluid, where r indicates position,
allows one to formulate the statistical mechanics based
on functional relationships, as described briefly below.
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Although the DFT framework is formally exact, approx-
imations are required in implementations. The conventional
approach is to treat short-ranged repulsion in terms of a
hard-sphere free-energy functional, e.g., via fundamental-
measure theory [13,14], and the attractive interaction via a
simple mean-field factorization ansatz; see Ref. [11] and
recent papers [15–17]. Such a treatment, which is in the
spirit of van der Waals, generates an explicit (analytical)
formula for the excess (over ideal gas) intrinsic Helmholtz
free-energy functional that incorporates information about
the effects of repulsion and attraction.
As DFT is an exact formulation of the many-body

statistical mechanics, the choice of the excess free-energy
functional is the only approximation that enters a given
study. Once it is specified consistent and complete inves-
tigation of a wide variety of properties can be made.
Computational limitations, leaving aside some intricacies
of implementing nonlocal treatments for hard spheres
[13,14], are minor, certainly for systems which exhibit
planar or spherical symmetry. Hence wide parameter
sweeps and close monitoring of the effects of small changes
in control parameters, especially near phase coexistence,
are readily carried out, enabling the investigation of subtle
phenomena such as phase transitions at substrates and in
confinement.
However, despite these virtues, making direct quantita-

tive comparisons with data from many-body simulations is
often not straightforward. Using the concept of correspond-
ing states, i.e., scaling the bare thermodynamic parameters
by their corresponding values at the bulk critical point, can
enable meaningful comparisons, but this is a pragmatic
approach. In essence, one often performs separate simu-
lations and theoretical calculations and from their combi-
nation attempts to gather, a posteriori, a complete picture of
the physics. Finding an accurate, versatile, and computa-
tionally manageable improvement on the standard mean-
field treatment of attraction continues to pose a significant
challenge in classical DFT.
Machine learning provides a very different perspective

for addressing the limitations of analytical approaches
(meaning writing down explicit free-energy functionals)
by incorporating quasiexact simulation reference data
for the construction of functional relationships, as was
pursued for the classical [18–34] and quantum
(electronic) worlds [35–42]. The review by Simon and
Oettel [31] gives a valuable overview of very recent
applications of machine-learning techniques within
classical DFT and addresses methodological connections
to electronic DFT and to nonequilibrium systems.
Amongst the different approaches [18–43] that were
put forward, the neural functional theory based on
local one-body learning [24–29,33] in inhomogeneous
training systems has proved to be a versatile and highly
accurate tool, both in equilibrium [25–28,33] as well
as for microscopically resolved nonequilibrium flow

problems [24,29]. In the latter case the required func-
tional relationships are those of power functional
theory [44,45].
The initial appeal of the local learning approach stems

from its simplicity. In equilibrium, sampling the one-body
density profile in spatially inhomogeneous systems is all
that is required for the generation of a training dataset.
A neural network with a simple multilayer perceptron
architecture is then trained to represent the functional
relationship from the density profile to the one-body direct
correlation function. The latter object is directly acces-
sible from the input simulation data. Moreover, it also
arises as a central functional mapping in DFT; further
details and comments on its significance are given below.
In particular, the short-ranged nature of direct correlation
functions permits one to consider the functional mapping
locally, thereby aiding the training procedure and making
efficient use of the input data. Although applications of the
resulting neural functional are rather straightforward in
practical terms, these are powerful and provide access to
a multitude of physical properties by making use of the
underlying formal structure of DFT and liquid state theory.
These include the prediction of density profiles, also in
multiscale settings [25], employing automatic differentiation
[26,32,46] and numerical functional integration to determine
correlation functions and thermodynamical properties, and
using exact statistical mechanical sum rules [47–49], spe-
cifically those that follow from Noether’s theorem [50–55],
to examine self-consistency.
The neural functional approach was investigated in great

detail for models with purely repulsive (hard core) poten-
tials. It provides an excellent approximation for Percus’s
exact free-energy functional for hard rods in one dimension
[26] and was shown to constitute a clear improvement [25]
over the already highly accurate White Bear mark II version
of fundamental-measure theory [14,56] for hard spheres in
three dimensions. Importantly, the neural functional
method is not restricted to hard cores; it applies to general
interatomic potentials which may also include attraction.
That the neural functional can treat attraction successfully
was illustrated in determinations of the structure of the LJ
fluid at a fixed supercritical temperature [25,28]; this
constitutes an important test case [23].
These recent investigations did not address the funda-

mental issue of how the presence of a phase transition
might be accounted for within the framework of a neural
density functional. Here we focus on the liquid-gas
transition which is a basic manifestation of the presence
of interparticle attraction and seek to assess whether the
neural functional can describe (i) phase coexistence and the
approach to the associated critical point, (ii) surface tension
and density profiles of the liquid-gas interface, (iii) drying
and capillary evaporation transitions that occur at subcriti-
cal temperatures, and (iv) how accurately the approach
performs for both bulk and interfacial properties. To the
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best of our knowledge, none of these issues were addressed
in previous machine-learning investigations. Specifically,
we extend the neural methodology [25,26] by introducing
thermal training and investigate whether neural functionals
can describe physical phenomena that occur in the three-
dimensional LJ system in subcritical as well as supercritical
regions of the phase diagram. The answer is emphati-
cally yes.
The paper is organized as follows. We describe our

methodology of working with machine learning within a
rigorous statistical mechanical framework in Sec. II. This
includes a summary of the formally exact density func-
tional foundation in Sec. II A and a description of the
simulation-based generation of training data in Sec. II B.
Details of the neural network and of the supervised training
procedures are given in Sec. II C. The resulting neural
density functional theory together with the associated
methods of functional calculus are laid out in Sec. II D.
All subsequent results originate from this neural func-

tional method and are described in Sec. III. An account of
the emerging bulk pair correlation structure is given in
Sec. III A. Results for the lines in the phase diagram where
the isothermal compressibility and the true correlation
length are maximal, together with the Fisher-Widom line
and the spinodal, are presented Sec. III B. Our results for
the liquid-gas binodal and estimate of the critical point are
described in Sec. III C. The bulk equation of state, liquid-
gas density profiles, and the corresponding surface tension
are laid out in Sec. III D. A description of the divergence of
the correlation length in the critical region and correspond-
ing Ornstein-Zernike (OZ) plots are given in Sec. III E.
Results for inhomogeneous fluids, that describe our pre-
dictions for drying at a hard wall, for capillary evaporation
in a slit pore and for the corresponding behavior of locally
resolved density fluctuations, are presented in Sec. III F.
In Sec. III G we compare with results obtained from a
neural functional trained with data from supercritical states
only. Remarkably, this procedure also predicts liquid-gas
coexistence and associated phenomena.
We conclude with a discussion in Sec. IV. This includes

an assessment of the strengths of the neural functional
methodology in Sec. IVA, an overview of the physical
phenomena that we investigated and what remains to be
ascertained in Sec. IV B, some speculations on the extent
to which the prediction and discovery of phase coexist-
ence can be based on functional mappings and their
extrapolation in Sec. IV C, and an outlook on possible
future work in Sec. IV D.

II. METHOD

A. Overview of classical density functional theory

We briefly sketch the essentials of classical DFT as a
method to treat the statistical mechanics of many-body
systems. The system itself is defined by its Hamiltonian

H ¼ P
i p

2
i =ð2mÞ þ uðr1;…; rNÞ þ

P
i VextðriÞ, where

the sums over i run over all N particles, pi and ri are
the momentum and position of particle i ¼ 1;…; N in d
dimensions, m denotes the particle mass, uðr1;…; rNÞ is
the interparticle interaction potential, and VextðrÞ is an
external one-body potential. The thermodynamic control
parameters are the temperature T and the chemical potential
μ when working in the grand ensemble. The associated
thermodynamic potential is the grand potential (or grand
canonical free energy), which is given as Ω0ðT; μÞ ¼
−kBT lnΞðT; μÞ, where ΞðT; μÞ is the grand partition
sum and kB is the Boltzmann constant. For compactness
of notation we have suppressed the dependence on the
system volume V.
Classical DFT [8,10,11] ascertains the existence and

uniqueness of the grand potential density functional
Ωð½ρ�; T; μÞ, which consists of ideal, excess (over ideal
gas), external, and chemical contributions according to the
sum

Ωð½ρ�; T; μÞ ¼ Fidð½ρ�; TÞ þ Fexcð½ρ�; TÞ

þ
Z

dr ρðrÞ½VextðrÞ − μ�; ð1Þ

where the position integrals run over the system
volume V. Here and throughout we indicate functional
relationships by square brackets. The ideal gas free-
energy functional is known exactly as Fidð½ρ�; TÞ ¼
kBT

R
dr ρðrÞ½lnðρðrÞΛdÞ − 1�, where Λ is the thermal

de Broglie wavelength (which we will set to the particle
size below). The excess free-energy functional
Fexcð½ρ�; TÞ accounts for the effects of the nonvanishing
interparticle interactions. Crucially, instead of operating
only on the true equilibrium density profile ρ0ðrÞ, the
grand potential density functional Eq. (1) accepts any
general “test” function profile ρðrÞ that does not need to
have particular physical significance for the system at
hand. Identifying the true equilibrium density profile
ρ0ðrÞ is ensured by the formally exact minimization
principle Ωð½ρ0�; T; μÞ ≤ Ωð½ρ�; T; μÞ and, hence,

δΩð½ρ�; T; μÞ
δρðrÞ

����
ρ¼ρ0

¼ 0 ðminÞ: ð2Þ

Here δ=δρðrÞ indicates the functional derivative with
respect to the test function ρðrÞ, and the result of
the differentiation is evaluated at the equilibrium
density profile, ρðrÞ ¼ ρ0ðrÞ, as indicated in the notation
(brief accounts of functional differentiation are
available [26,45]). Furthermore, the value of the grand
potential is obtained by evaluating the grand potential
density functional at the equilibrium density profile:

Ω0ðT; μÞ ¼ Ωð½ρ0�; T; μÞ: ð3Þ
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Access to Ω0ðT; μÞ provides, in principle, full thermo-
dynamic information, including knowledge of the phase
diagram. (In the subsequent sections, for notational
simplicity, we drop the label 0 as an indicator for
equilibrium.) Despite operating entirely on the one-body
level of correlation functions, in principle all higher-body
correlation functions are accessible. While this informa-
tion can come from the test-particle limit [57] and
hyperdensity functional concepts [27], the standard route
is via functional differentiation and the OZ relation, as we
sketch and use below.
The above framework is formally exact. Having an exact

form of the excess free-energy functional Fexcð½ρ�; TÞ in
Eq. (1), as is available for very few one-dimensional
systems [26,58], then merely requires solution of the
minimization problem (2), which is typically performed
numerically (as described below in the current neural
context). No approximation has entered at this point, and
in principle the exact statistical mechanics is retained.
In practice, approximations are required in order to treat

the nontrivial effects of interparticle interactions. For the
common case of liquid-gas phase-separating systems where
particles interact via a pair potential ϕðrÞ with interparticle
distance r, such that the total interparticle interaction
energy is given by uðr1;…; rNÞ ¼

P
ijði≠jÞ ϕðjri − rjjÞ=2,

the standard mean-field approximation consists of assum-
ing the splitting:

Fexcð½ρ�; TÞ ¼ Fhsð½ρ�; TÞ

þ 1

2

Z
dr

Z
dr0ρðrÞρðr0Þϕattrðjr − r0jÞ: ð4Þ

The repulsive part of the interparticle potential, which gives
rise to packing effects, is treated in terms of the hard-sphere
reference functional Fhsð½ρ�; TÞ in Eq. (4). This depends
linearly on temperature and is typically represented by
fundamental-measure theory (FMT) [13,14]. The longer-
ranged, attractive part of the potential ϕattrðrÞ needs to be
split off from (and continued into the core of) the full pair
potential ϕðrÞ. The approximation (4) provides the essen-
tial ingredients for successful competition of entropy (first
term) and energy (second term) to drive bulk liquid-gas and
certain surface phase transitions. The dependence on
temperature T remains simplistic: linear variation (first
term) on top of a constant (second term). In bulk, Eq. (4)
yields a generalization of the van der Waals equation
of state.
Instead of working with the mean-field approximation

(4) here we rather use machine-learning methods
[25,26] to represent simultaneously both the packing and
the attraction effects of the interparticle interactions. While
the excess free-energy functional Fexcð½ρ�; TÞ itself can be
trained on the basis of inhomogeneous local learning [28],
we choose to start with the one-body direct correlation
functional,

c1ðr; ½ρ�; TÞ ¼ −
δβFexcð½ρ�; TÞ

δρðrÞ ; ð5Þ

where β ¼ 1=ðkBTÞ is the inverse temperature. As we show
in Sec. II D, c1ðr; ½ρ�; TÞ is directly relevant for solving the
minimization problem Eq. (2), but it also provides access to
further physical quantities by utilization of functional
calculus, in particular, implemented via automatic differ-
entiation [26,32,46]. The nontrivial information for training
c1ðr; ½ρ�; TÞ is straightforward to access in many-body
simulations, as we lay out in the following.

B. Generation of training data

Throughout this work, we consider the truncated LJ fluid
as specified by the pairwise interaction potential

ϕðrÞ ¼
(
4ε
�ðσrÞ12 − ðσrÞ6

�
r ≤ rc

0 r > rc;
ð6Þ

for separation distance r. The LJ well depth ε and particle
diameter σ set the energy and length scales, respectively.
We choose a typical truncation distance of rc ¼ 2.5σ,
which allows for the direct comparison of our subsequent
findings to numerous simulation studies [59–64]. Note that
we do not apply an energy shift in the pair potential Eq. (6).
Training data are acquired in grand canonical

Monte Carlo (MC) simulation runs [9] with randomly
generated inhomogeneous potential energy landscapes in
planar geometry, i.e., VextðrÞ ¼ VextðxÞ [25]. We further
randomize the thermodynamic state point as specified
by the chemical potential μ and the temperature T, which
are chosen uniformly within the ranges −7 < μ=ε < 4 and
1 < kBT=ε < 2. For ease of sampling and histogram
construction, the system length in the (inhomogeneous)
x direction is kept fixed at a value of Lx ¼ 20σ. To alleviate
finite-size effects, at least to some extent, we also vary the
lateral system lengths Ly ¼ Lz ¼ L uniformly within the
interval 5 < L=σ < 20. The advantages and limitations of
this procedure, in particular regarding the resulting
behavior in the vicinity of the critical point, are described
in Sec. III E.
In each simulation run, the density profile ρðxÞ is

measured via straightforward sampling of microstates into
a position-resolved histogram with bin width Δx ¼ 0.01σ.
The one-body direct correlation function then follows
pointwise according to

c1ðxÞ ¼ ln ρðxÞ þ β½VextðxÞ − μ� ð7Þ

for all x where ρðxÞ > 0. In total, 880 individual simu-
lations have been performed to gather training data for ρðxÞ
and c1ðxÞ profiles at different temperatures, chemical
potentials, lateral system sizes, and for varying shapes of
the imposed inhomogeneities in the external potential.
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The total computation time of ∼104 CPU hours for the
generation of the entire dataset is moderate owing to the
relative ease of determining the one-body profile ρðxÞ in
simulations.
Figure 1 (left-hand panel) shows the thermodynamic

state points of all training simulations. Note that we
also show the coexistence curve (gray line) in the ðμ; TÞ
plane, obtained in grand canonical MC simulations by
Wilding [59]. This ends at the critical temperature
kBTc=ε ¼ 1.188 which provides an important indication
of where we might hope to find phase separation using our
present neural functional. As an example of a simulation
within the training set, namely at μ=ε ≈ −0.17 and
kBT=ε ≈ 1.76, we show the relevant inhomogeneous
one-body profiles ρðxÞ and c1ðxÞ for a particular shape
of VextðxÞ. In the right-hand panel of Fig. 1, we show a
schematic illustration of the neural density functional
mapping, which we describe in the following.

C. Neural network and training procedures

We proceed analogously to Ref. [25] and aim at
representing the direct correlation functional c1ðx; ½ρ�; TÞ
locally via a neural network. That is, for a given position
x0, one considers the functional mapping from a section
of the density profile in the vicinity of x0 to the scalar

value c1ðx0Þ of the direct correlation functional at that
location; see Fig. 1 (right-hand panel). Hence, for each x0,
the density profile ρðxÞ is given only within a cutoff range
jx − x0j ≤ xc as input to the neural network. We deem
xc ¼ 3.5σ sufficient, which leads to 701 neural input
nodes for the resulting density window with the given
discretization Δx of the histograms. The local learning of
one-body direct correlations implies a quick decay of
their functional dependence on the surrounding density
profile, which should be valid for short-ranged interpar-
ticle interactions, provided that one stays clear of the
critical region [8]. Considering such a local functional
mapping is beneficial both during training and in pre-
dictive tasks. In particular, the neural functional remains
applicable to virtually arbitrary system sizes, enabling
efficient multiscale investigations [25,26]. This proves to
be crucial for the prediction of phase coexistence and
interfacial profiles, see Secs. III C and III D, where the
system size Lx must be increased substantially to yield an
accurate account of liquid-gas phase separation.
To incorporate the parametric dependence of one-body

direct correlation functions on temperature T and lateral
system size L, additional nodes in the input layer are
provided, which accept the respective scalar values as
indicated in Fig. 1. As a technical detail, we input 1=L
instead of L, which allows us to set 1=L ¼ 0 during

FIG. 1. Left: training data are acquired via grand canonical MC simulations of the truncated LJ fluid in inhomogeneous planar
environments at randomized chemical potential μ and temperature T. We show the thermodynamic state points of all contributing
simulations. The symbol size indicates the lateral system length L, which is also varied randomly. Small symbols refer to values of L
closer to 5σ and big symbols to values where L is closer to 20σ. The binodal and critical point taken from Ref. [59] are shown in gray.
The critical temperature kBTc=ε ≈ 1.188 provides an indicator of where we might “expect” to find liquid-gas phase separation. Note that
the systems are inhomogeneous, thus rendering the value of μ inconclusive for determining the emerging phases. Middle: an example
from the training set. The randomly generated planar external potential VextðxÞ (black curve, hard walls indicated in gray) creates an
inhomogeneous density profile ρðxÞ (blue curve), which is sampled in the simulation. The one-body direct correlation function c1ðxÞ
(orange curve) follows pointwise from Eq. (7). Right: a neural network is trained to extract and represent the underlying functional
relationship c1ðx; ½ρ�; TÞ in a local manner [25]. The parametric temperature dependence and the finite-size scaling are taken into
account via additional nodes in the input layer. We also indicate in the left-hand panel the temperature cutoff of kBT=ε ¼ 1.3 (horizontal
dotted pink line) for the case of purely supercritical training, where only simulations with higher temperature contribute; see text.
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inference to extrapolate to large lateral system sizes. We
argue that the variability in L has advantages over training
with fixed lateral system size, although it may not account
for the true finite-size scaling behavior due to insufficient
information in the training data (see also Sec. III E for
limitations in the critical region). Nevertheless, one may
hope to avoid ingraining the specific finite-size effects of a
particular choice of L via this procedure.
Investigating the extrapolation capabilities of the neural

network is important for practical applications but also
from a conceptual point of view. Recall that the neural
functional framework relies upon extracting a functional
mapping from reference data obtained for inhomogeneous
equilibrium fluids, which satisfy the minimization
principle (2) by definition. However, the underlying func-
tional relationship might be much more general; it is not
restricted a priori to true equilibrium density profiles,
thereby raising profound mathematical questions about
the existence of a unique continuation. In order to scrutinize
this problem from a data-driven perspective, and in
particular to show how much can be learned in the absence
of any possible input information about coexistence, we
train a second neural functional on the basis of supercritical
data only by excluding simulations where kBT=ε < 1.3—
see the horizontal pink line in Fig. 1.
The training routines are implemented in KERAS and

TENSORFLOW [65] following the methodology laid out in
Ref. [25]. The neural network possesses a simple multilayer
perceptron architecture and consists of four hidden layers
with 512 nodes each; we employ softplus activation
functions [25,66]. Training takes approximately 30 min
on a recent workstation graphics processing unit.
Evaluating the trained neural functional is fast (∼ milli-
seconds) and can be performed on the graphics processing
unit in parallel for batches of input densities and param-
eters. Hence, all numerical calculations presented below are
computationally inexpensive, which, e.g., facilitates map-
ping out whole fluid phase diagrams in seconds to minutes.
Crucially, after having trained the neural network, no
further simulation results are required. Predictions rely
solely on evaluating and analyzing the resulting neural
representation of the one-body direct correlation functional
c1ðx; ½ρ�; TÞ, for which we elucidate common techniques in
the following.

D. Neural density functional theory
and functional calculus

From a fundamental point of view, the availability of the
entire density functional relationship c1ðr; ½ρ�; TÞ suffices
in principle to predict the full structural and thermodynamic
behavior of any fluid model. We lay out in this section
common theoretical and numerical methods, which are
tailored to the neural correlation functional and which differ
in some aspects from the usual treatment of analytical
(meaning explicit) free-energy functionals.

The central application of classical DFT concerns the
determination of the one-body inhomogeneous equilibrium
density profile for a given state point μ, T and external
potential VextðrÞ. One solves the Euler-Lagrange equation,

ρðrÞ ¼ expf−β½VextðrÞ − μ� þ c1ðr; ½ρ�; TÞg; ð8Þ

which emerges from the minimization principle (2) and
which determines the density profile ρðrÞ self-consistently.
Equation (8) can be solved efficiently, e.g., with a standard
mixed Picard iteration, allowing for vast parameter studies,
thereby commonly outperforming many-body simulation
techniques by orders of magnitude in computational cost.
The entirety of the nontrivial interparticle correlation
effects are captured in the one-body direct correlation
functional c1ðr; ½ρ�; TÞ, which are crucial in determining
the resulting equilibrium state. Instead of approximating
c1ðr; ½ρ�; TÞ analytically, see, e.g., the mean-field functional
Eq. (4) that yields the one-body direct correlation func-
tional explicitly upon functional differentiation (5), the
machine-learning routine in Secs. II B and II C provides an
immediate neural representation of this central functional
mapping, which can be readily utilized in Eq. (8).
Functional differentiation of c1ðr; ½ρ�; TÞ yields informa-

tion about higher-order correlations in the model fluid
considered. The two-body direct correlation functional,
defined as the functional derivative,

c2ðr; r0; ½ρ�; TÞ ¼
δc1ðr; ½ρ�; TÞ

δρðr0Þ ; ð9Þ

can be evaluated efficiently from a computational repre-
sentation of c1ðr; ½ρ�; TÞ with reverse mode automatic
differentiation (autodiff) [46]. This technique is particularly
suited to our neural-network-based description of
c1ðr; ½ρ�; TÞ, as autodiff is paramount to machine learning,
specifically being the central mechanism for the back-
propagation of errors during training [65]. As such,
machine-learning libraries come with ready-to-use imple-
mentations that make autodiff available as an efficient
high-level operation, which we leverage for the evaluation
of Eq. (9).
Contrary to standard analytical DFT approaches, which

usually commence by expressing the excess free energy
Fexcð½ρ�; TÞ as an explicit density functional, e.g., in the
form of the mean-field Eq. (4), our starting point is given by
the neural representation of the one-body direct correlation
functional, which emerges formally as the functional
derivative (5). Nevertheless, the free energy is pertinent
both in its mathematical role as a generating functional as
well as for the calculation of physical quantities such as the
equation of state and the surface tension (see Sec. III D).
For evaluating Fexcð½ρ�; TÞ given a (neural) functional
c1ðr; ½ρ�; TÞ, we utilize functional line integration
[11,25–27], which constitutes formally integrating the
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functional derivative (5). Making the functional line inte-
gral explicit via the linear parametrization of the density
profile ρaðrÞ ¼ aρðrÞ, 0 ≤ a ≤ 1, gives the expression
[11,25]

Fexcð½ρ�; TÞ ¼ −kBT
Z

dr ρðrÞ
Z

1

0

da c1ðr; ½ρa�; TÞ; ð10Þ

which can be evaluated straightforwardly on the basis of the
neural correlation functional.

III. RESULTS

A. Bulk pair correlation functions

As a first investigation, we deliberately stay clear of any
liquid-gas phase transition and consider pair correlations in
bulk at constant supercritical temperature kBT=ε ¼ 1.5.
Evaluating Eq. (9) via autodiff with constant density input
ρðrÞ ¼ ρb and exploiting translational invariance yields the
bulk two-body direct correlation function c̄b2ðxÞ in planar
geometry (indicated here and in the following by the
overbar); we drop the parametric dependence on temper-
ature in the notation.
The numerical result can be transformed to the standard

radial representation cb2ðrÞ by writing out the lateral
integration,

c̄b2ðxÞ ¼
Z

dy
Z

dz cb2

�
r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

q �

¼ 2π

Z
∞

x
dr rcb2ðrÞ; ð11Þ

that arises due to the planar geometrical setup.
Differentiation of Eq. (11) with respect to x gives the
inverse transformation:

cb2ðrÞ ¼ −
1

2πr
dc̄b2ðxÞ
dx

����
x¼r

: ð12Þ

The total correlation function is obtained via the OZ
route. A one-dimensional Fourier transform of c̄b2ðxÞ yields
the radial quantity c̃b2ðkÞ in Fourier space (indicated by the
tilde). The OZ equation,

h̃ðkÞ ¼ c̃b2ðkÞ
1 − ρbc̃b2ðkÞ

; ð13Þ

then determines the Fourier transform of the total corre-
lation function hðrÞ algebraically, from which the static
structure factor follows as

SðkÞ ¼ 1þ ρbh̃ðkÞ: ð14Þ

The radial distribution function gðrÞ ¼ hðrÞ þ 1 is deter-
mined by a radial Fourier (Hankel) backtransform of h̃ðkÞ
to real space:

hðrÞ ¼ 1

2π2r

Z
∞

0

dk k sinðkrÞh̃ðkÞ: ð15Þ

Results for the various bulk pair correlation functions
are shown in Fig. 2 for a supercritical temperature of
kBT=ε ¼ 1.5 and different bulk densities. See also Ref. [28]
for comparative data obtained with isothermal training and

FIG. 2. Bulk pair correlation functions from the neural func-
tional for constant supercritical temperature kBT=ε ¼ 1.5 and
different bulk densities ρbσ3 ¼ 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, and 0.7,
as indicated by ticks on the color scale and labeling of the curves.
Shown are (a) the planar two-body direct correlation function
c̄b2ðxÞ along with the radial representation cb2ðrÞ (inset), (b) its
Fourier transform c̃b2ðkÞ and the total correlation function h̃ðkÞ in
Fourier space (inset) as obtained from the OZ equation (13), and
(c) the static structure factor SðkÞ and the radial distribution
function gðrÞ (inset). For three bulk densities ρbσ3 ¼ 0.1, 0.4, and
0.7, we show results for each quantity (dotted lines), obtained
from Fourier transform and OZ inversion of bulk grand canonical
MC simulation data for gðrÞ.
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from other methods, e.g., pair-correlation matching [23],
and Ref. [25] for pair correlations of the hard-sphere fluid.
From Fig. 2 we note that (i) noisy artifacts arise in cb2ðrÞ and
gðrÞ for r < σ due to numerical intricacies associated with
the transformations (12) and (15), (ii) cb2ðrÞ and c̄b2ðxÞ are
independent of density ρb for r > σ, reflecting the fact that
cb2ðrÞ quickly reaches its asymptotic limit −βϕðrÞ [67],
(iii) SðkÞ exceeds 2.0 for small wave numbers k at reduced
densities ρbσ3 ¼ 0.2, 0.3, a possible sign of the approach
to a critical point, and (iv) the neural predictions match
very closely the simulation results extracted from sepa-
rate grand canonical MC data for gðrÞ—see dotted lines
referring to three specific densities in Fig. 2. We empha-
size that no information regarding pair correlations was
incorporated during training.

B. Lines of maximal isothermal compressibility and
correlation length, Fisher-Widom line, and spinodal

In bulk, the inverse of the isothermal compressibility χT
is accessible from the pair direct correlation function:

χ−1T ¼ kBTρb½1 − ρbc̃b2ðk ¼ 0Þ�: ð16Þ

Although we obtain the planar quantity c̄b2ðxÞ from the
autodifferentiated neural functional via Eq. (9), we have
shown that a simple one-dimensional Fourier transform
suffices to acquire c̃b2ðkÞ in radial geometry [25]. Hence,
evaluation at k ¼ 0 gives direct access to χ−1T and results
are shown in Fig. 3 in the temperature-density plane.
Strikingly, the neural functional predicts a spinodal where
χ−1T ¼ 0 and which bounds an unstable region where

FIG. 3. First column: the inverse of the isothermal compressibility obtained from c̃b2ðk ¼ 0Þ according to Eq. (16). The spinodal
corresponds to χ−1T ¼ 0, and the predicted values of χ−1T inside of it are negative. The line of maximal isothermal compressibility is
indicated in red. Second column: true correlation length ξ from pole analysis according to Eq. (22). The Widom line of largest
correlation length is indicated in red. Third column: difference Δα0 between the imaginary parts of the leading monotonic and
oscillatory poles, which determines the Fisher-Widom line via Δα0 ¼ 0. On the low density side (green) the ultimate decay of hðrÞ is
monotonic whereas on the high density side it is damped oscillatory (purple). Simulation results from Ref. [67] are reproduced (gray
line) after applying corresponding states rescaling; see text. The blue circles denote neural liquid-gas coexistence densities; see Fig. 4.
Results obtained from a neural correlation functional that has been trained with data including subcritical temperatures (first row) as well
as from purely supercritical training (second row) are shown. The lowest temperatures of the simulations that contribute to the training
are indicated by the horizontal dotted pink lines.
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χT < 0. The first column in Fig. 3 shows the (red) line of
maximal compressibility obtained from scans of varying
density at fixed temperature. The quantity χ−1T vanishes as T
is reduced, and below a critical value the spinodal emerges.
In the first row results are presented for training above
kBT=ε ¼ 1.0, whereas the second row includes only train-
ing data at supercritical temperatures, kBT=ε > 1.3. Note
that both training protocols deliver a spinodal, albeit with
slightly different critical points.
We turn now to the asymptotic (large r) decay of hðrÞ.

Specifically, we determine both the Widom line of maximal
true correlation length, middle column, and the Fisher-
Widom crossover line, third column of Fig. 3. A pole
analysis of the total correlation function determines the
asymptotic behavior of hðrÞ at long range, r → ∞, where
either (damped) oscillatory or monotonic decay is exhibited
[67–69]. In Fourier space, the poles α ¼ α1 þ iα0 of the
total pair correlation function are readily determined by the
OZ equation (13), leading back to the analysis of the direct
correlation function c̃b2ðkÞ. The zeros of the denominator
1 − ρbc̃b2ðαÞ in Eq. (13) yield the conditions [67]

1 ¼ 4πρb

Z
∞

0

dr r2cb2ðrÞ
sinhðα0rÞ

α0r
cosðα1rÞ; ð17Þ

1 ¼ 4πρb

Z
∞

0

dr r2cb2ðrÞ coshðα0rÞ
sinðα1rÞ
α1r

; ð18Þ

where cb2ðrÞ is the bulk two-body direct correlation
function in direct space and in radial geometry. A pure
imaginary pole gives rise to monotonic decay and is given
by Eq. (17) with α1 ¼ 0; Eq. (18) does not arise in this case.
It remains to express Eqs. (17) and (18) in terms of c̄b2ðxÞ

instead of cb2ðrÞ in order to accommodate the planar
geometrical setup. The identity (12) enables us to rewrite
Eqs. (17) and (18), via partial integration, as

1 ¼ 2ρb

Z
∞

0

dr c̄b2ðx ¼ rÞ
�
coshðα0rÞ cosðα1rÞ

−
α1
α0

sinhðα0rÞ sinðα1rÞ
	
; ð19Þ

1 ¼ 2ρb

Z
∞

0

dr c̄b2ðx ¼ rÞ
�
α0
α1

sinhðα0rÞ sinðα1rÞ

þ coshðα0rÞ cosðα1rÞ
	
: ð20Þ

A pure imaginary (monotonic) pole amon
0 is determined

by the simpler condition,

1 ¼ 2ρb

Z
∞

0

dr c̄b2ðx ¼ rÞ coshðαmon
0 rÞ; ð21Þ

which follows from setting α1 ¼ 0 either directly in
Eq. (19) or, consistently, in Eq. (17) and performing the
partial integration using Eq. (12). Solving Eq. (21) along
with the coupled Eqs. (19) and (20) for a complex
(oscillatory) pole is implemented efficiently in terms of a
minimization procedure.
At low bulk densities, and in the neighborhood of the

critical point, one expects monotonic asymptotic decay of
the total pair correlation function: hðrÞ ∼ expð−αmon

0 rÞ=r at
large r. It follows that the leading pole, i.e., with the
smallest imaginary part, will be given by Eq. (21). The true
correlation length is

ξ ¼ 1

αmon
0

; ð22Þ

which is plotted for a range of bulk densities and temper-
atures in the second column in Fig. 3. The behavior of ξ is
consistent with the results for the isothermal compressibil-
ity χT : The correlation length increases rapidly when
approaching the critical region and indicates a spinodal
where ξ diverges when continuing to lower the temperature.
Tracing ξ → ∞ or χT → ∞ yields numerically identical
spinodals. Of course, this is expected since setting αmon

0 to
zero in Eq. (21) is equivalent to requiring the right-hand
side of Eq. (16) to vanish. Within the spinodal, Eq. (21)
yields no solution and ξ is undefined.
The difference between the imaginary parts of the

leading monotonic and oscillatory (α̃) poles determines
whether monotonic or oscillatory decay pertains at longest
range, which in turn determines the Fisher-Widom line
via the condition Δα0 ¼ αmon

0 − α̃0 ¼ 0; see Fig. 3, third
column. The gray line in the third column denotes the MC
simulation results of Dijkstra and Evans [67] obtained for a
truncated and shifted LJ potential rescaled to take account
of how the critical point alters when shifting the potential at
cutoff. Note how close their Fisher-Widom line lies to our
present neural functional prediction (see white line where
Δα0 ¼ 0) and that determining the Fisher-Widom line is a
subtle task requiring accurate knowledge of the decay
of bulk pair correlation functions not easily accessible
from simulations. That our neural functional discovers this
crossover line, never having encountered directly bulk pair
correlation functions in the learning process, is remarkable.
The Fisher-Widom line is estimated to cross the liquid
branch of the neural coexistence curve, described in the
next section and denoted by blue circles in Fig. 3, at a
temperature of kBT=ε ≈ 1.04. This has implications for the
structure of the liquid-gas interface; see Sec. III D.

C. Liquid-gas coexistence, binodal,
and estimate of critical point

In order to investigate liquid-gas phase coexistence, the
neural direct correlation functional is used in the iteration of
the Euler-Lagrange equation (8) keeping the mean density
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ρ̄ ¼ R
dx ρðxÞ=Lx fixed. When initialized with a steplike

density profile at sufficiently low temperature, the mini-
mization yields a phase-separated system with a liquid and
a gas domain, from which one can determine the coexisting
densities provided that the system has been chosen large
enough. We set Lx ¼ 100σ for the following investigations
and hence exploit here the multiscale applicability of the
neural functional. Performing this procedure at different
temperatures allows us to trace the binodal, which is shown
and compared with simulation data in Fig. 4.
One can attempt to fit the binodal and determine the

critical point in various ways that can incorporate critical
exponents beyond mean field. Following Wilding [59],
we exclude the near-critical region and take the neural
coexistence densities within the temperature range
0.95 ≤ kBT=ε ≤ 1.15 to fit the binodal via [59]

ρ� ¼ ajT� − T�
cj � bjT� − T�

cjβ þ ρc; ð23Þ
with scaled temperature T� ¼ kBT=ε, liquid and gas
densities ρþ ¼ ρl and ρ− ¼ ρg, and critical density ρc,
temperature Tc, exponent β, and amplitudes a and b. Note
that the exponent β should not be confused with the inverse
temperature. Equation (23) is empirical; it fails at low
temperatures.
Unlike in Ref. [59], the critical point is, a priori,

undetermined in Eq. (23); ρc and T�
c are to be deduced

in the fit along with all other parameters. To demonstrate
the robustness of the fitting procedure, we also keep the
(critical) exponent β as a free parameter, although we bear
in mind the Ising result β ¼ 0.326 30ð22Þ [70]. The results
of the binodal fit are shown in Fig. 4 and agree very well

with the data from highly accurate simulations [59]. This
procedure, which focuses on coexistence densities at
temperatures sufficiently far below the critical point such
that the correlation length ξ is less than the system size,
attempts to avoid some of the intricacies of the critical
region that are also pertinent for the neural functional (see
Sec. III E). We note that the resulting value of the “critical”
exponent β is, from full training, 0.330 which lies close to
the Ising value [70], demonstrating that the fit is mean-
ingful as well as indicating possible beyond-mean-field
character of the neural functional. Note also that
the corresponding results from Wilding’s MC simulations
and fitting [59]: kBTc=ε ¼ 1.188, ρcσ

3 ¼ 0.320, aσ3 ¼
0.182, bσ3 ¼ 0.523, β ¼ 0.326, are close to the present.
Following the work of Panagiotopoulos [60], an alter-

native estimate of the critical temperature Tc and density ρc
proceeds by a regression and extrapolation of the cubed
difference of coexistence densities and of the rectilinear
diameter law, respectively. As before, coexistence data in
the close vicinity of the critical point needs to be excluded.
The thrust of this approach is the prediction that ρl − ρg
should decay approximately as ðTc − TÞ1=3 near the critical
point rather than as ðTc − TÞ1=2, which is the mean-field
prediction. Figure 5(a) indicates that our neural functional
yields results consistent with non-mean-field behavior and
the estimate of the critical temperature is close to the
simulation result. Figure 5(b) plots the rectilinear diameter
versus temperature which allows for an estimate of the
critical density that is again close to the simulation result.
The results shown in Fig. 5 are consistent with the previous
fit to the binodal using Eq. (23).

FIG. 4. Liquid-gas coexistence densities (blue circles) from neural minimization of the free interface, obtained with neural correlation
functionals trained (a) on the basis of the whole reference dataset, kBT=ε > 1.0, and (b) with supercritical data only, kBT=ε > 1.3. The
temperature cutoffs are indicated by the pink horizontal lines. For comparison, we show data from Refs. [59,64] as well as the binodal
from the standard analytical DFT treatment [64] of the LJ fluid based on the Rosenfeld [13] hard-sphere FMT functional plus mean-field
attraction (brown line). Fitting the neural coexistence data in (a) to Eq. (23) yields the dotted black line (binodal) with the parameters
displayed. The resulting estimates of the critical point and the binodal are close to those of Wilding [59] (gray). Panel (b) shows
corresponding results for the case of purely supercritical training.
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D. Bulk equation of state, liquid-gas interface,
and surface tension

Evaluating the excess free energy on the basis of the
neural direct correlation functional is facilitated via func-
tional line integration, for which Eq. (10) provides a
straightforward parametrization. We utilize the efficient
access to such thermodynamic information for both homo-
geneous (bulk) and inhomogeneous systems in the follow-
ing to obtain the bulk equation of state and the surface
tension of the liquid-gas interface.
In bulk, evaluation of Eq. (10) for constant target

density ρðrÞ ¼ ρb yields the excess free-energy density
ψb ¼ Fexcð½ρb�; TÞ=V, where V is the system volume. This
allows us to calculate the bulk pressure,

Pðρb; TÞ ¼ kBTρbð1 − cb1Þ − ψb; ð24Þ

where cb1 ¼ c1ðx; ½ρb�; TÞ follows from direct evaluation
of the neural correlation functional with constant density
input and at arbitrary position x due to translational
invariance. Note that the excess chemical potential can
be identified as μexc ¼ −kBTcb1 . We show the neural
prediction for the equation of state Pðρb; TÞ, obtained from
Eq. (24), for a range of temperatures in Fig. 6. Note that a
van der Waals loop emerges for subcritical temperatures,

i.e., for kBT=ε≲ 1.2, and that negative pressures arise at
low temperatures. The inset of Fig. 6 plots pressure versus
volume. Performing a Maxwell equal area construction
yields, within the expected numerical accuracy, values of
the coexisting liquid and gas densities equal to those
determined in Sec. III C by direct solution of the Euler-
Lagrange equation for an inhomogeneous phase-separated
system. This attests to the consistency of the neural
functional.
As the functional line integral Eq. (10) is constructed for

inhomogeneous density input, evaluation with the liquid-
gas interfacial density profiles provides direct access to the
surface tension. Determining Fexcð½ρ�; TÞ from Eq. (10)
facilitates calculating the grand potential Ωð½ρ�; TÞ via
Eq. (1), which in turn yields the liquid-gas tension as
the surface excess grand potential per unit area:

γlg ¼
Ωþ PV

A
; ð25Þ

with system volume V, lateral system area A, and pressure
P at coexistence as given by Eq. (24). We note that subtle
discrepancies in the values of the liquid and gas pressures
Pl and Pg arise for low temperatures due to the accumu-
lation of numerical errors when integrating through the van
der Waals loop in Eq. (24). To alleviate this numerical
issue, we compute PV ¼ PlVl þ PgVg and employ this
relation consistently in Eq. (25); Vl and Vg denote the
volumes of liquid and gas domains, respectively. This
procedure is in line with the definition of the surface
tension γlg as a genuine excess quantity. We also note that

FIG. 5. Critical temperature and density (black dots) obtained
by extrapolation of (a) the cubed difference of liquid-gas densities
ρl and ρg and of (b) the rectilinear diameter law. Data points
utilized for the linear regressions are indicated in cyan and the
dotted black lines depict the resulting fit functions. The results for
the critical point and the binodal parameters are consistent with
Fig. 4. We also show in (a) the squared difference of the
coexisting densities (the mean-field prediction); see text.

FIG. 6. Bulk equation of state. Pressure P as a function of the
bulk density ρb for temperatures kBT=ε ¼ 0.7, 0.8, 0.9, 1.0, 1.1,
1.2, and 1.3, as labeled and indicated on the color scale. The inset
shows the same data plotted with respect to the inverse bulk
density, i.e., proportional to the system volume. Note the
appearance of a van der Waals loop at subcritical temperatures.

NEURAL DENSITY FUNCTIONAL THEORY OF LIQUID-GAS … PHYS. REV. X 15, 011013 (2025)

011013-11



the pressures predicted at bulk coexistence are generally
small, with values of the order of 10−2ε=σ3.
Neural predictions of the interfacial density profile and

the surface tension for a range of temperatures are shown in
Fig. 7. The density profiles shown in Fig. 7(a) exhibit
damped oscillatory decay into the bulk liquid for the two
lowest temperatures plotted: kBT=ε ¼ 0.7 and 0.8. Both
correspond to temperatures well below that where the

Fisher-Widom line meets the liquid binodal, i.e.,
kBT=ε ≈ 1.04; see Sec. III B. For higher temperatures
the decay of the density profile into bulk appears to be
monotonic. Such a scenario is similar to an early DFT study
by Evans et al. [69] for a square-well model fluid.
We return to the issue of how oscillations in the density
profile might be eroded by capillary wave fluctuations in
the discussion, cf. Sec. IV B. The values obtained for
the surface tension are close to state-of-the-art simulation
data [62–64], notably also for temperatures significantly
below the training cutoff kBT=ε ¼ 1.0—see the vertical
pink dotted line in Fig. 7. This demonstrates both the
validity of the minimization Eq. (8) for obtaining liquid-gas
density profiles as well as of the functional integral Eq. (10)
for the evaluation of γlg. Both procedures remain robust
when extrapolating to lower temperatures; see Sec. III G for
further discussion.
The data in Fig. 7 obtained for a range of subcritical

temperatures allow us to investigate the near-critical
behavior of the surface tension. Recall that the latter should
vanish as γlg ∼ ðTc − TÞμ̃ with a critical exponent μ̃, given
by μ̃ ¼ 2ν ≈ 1.26 for the three-dimensional Ising case,
where the correlation length diverges as ξ ∼ ðTc − TÞ−ν.
We proceed analogously to Sec. III C and perform a fit
of subcritical data within the same temperature range
0.95 ≤ kBT=ε ≤ 1.15. Importantly, we thereby fix the
critical temperature kBTc=ε ¼ 1.1883 as obtained from
the binodal regression in Fig. 4. This choice of fitting
procedure yields the “effective” critical exponent μ̃ ≈ 1.26,
consistent with the Ising value. Recall that the mean-field
exponent is μ̃ ¼ 3=2. We also examined the “10-90” width
of the liquid-gas interface in the same temperature range.
This appears to diverge in the same fashion as the
correlation length, i.e., with exponent ν ≈ 0.63, as expected
from scaling arguments.
We conclude that using density profiles of the free

interface, in a suitably chosen range of subcritical temper-
atures, allows one to perform fits to both the coexistence
densities, cf. Fig. 4, and the surface tension, cf. Fig. 7, that
suggest non-mean-field behavior. Of course, in making
such fits one is deliberately avoiding the direct evaluation
of the neural functional for temperatures very close to Tc,
where the correlation length becomes very long. We might
expect results to cross over to mean-field behavior, as a
result of the finite size of our systems as we lay out in the
following section.

E. Critical region and Ornstein-Zernike plots

Although the neural functional is straightforward to
evaluate for state points in the vicinity of the critical point,
the resulting predictions must be treated with particular
caution. The limitations are already apparent by comparing
results obtained for the spinodal, see the isothermal
compressibility χT and correlation length ξ in Fig. 3,
and the estimate of the critical point from fitting to the

FIG. 7. (a) Liquid-gas interfacial density profiles as obtained
from solution of Eq. (8) for a phase-separated system upon
keeping the mean density fixed. Results are shown for five
temperatures kBT=ε ¼ 0.7, 0.8, 0.9, 1.0, and 1.1; see labels. The
inset indicates the respective bulk coexistence densities, the fitted
binodal (dotted black line) and critical point (black dot) repro-
duced from Fig. 4; the horizontal dotted pink line shows the
temperature cutoff of kBT=ε ¼ 1.0 during training. Oscillations
of the interfacial density profile that extend into the liquid domain
are visible for the two lowest temperatures. (b) Surface tension γlg
of the liquid-gas interface as determined from functional line
integration of interfacial density profiles. Simulation results are
taken from Refs. [62–64]. The cutoff for training, kBT=ε ¼ 1.0, is
indicated again, now by the vertical dotted pink line. Fitting to
neural data yields the effective exponent for the tension μ̃ ≈ 1.26;
see text.
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binodal using Eq. (23) in Fig. 4. One observes that the
critical point obtained from the latter does not match
exactly the top of the spinodal from the former. To be
precise, we get kBTc=ε ≈ 1.188 from the binodal fit in
Fig. 4 but kBTc=ε ≈ 1.203 from the locus of either χ−1T ¼ 0

or ξ−1 ¼ 0 in Fig. 3. It is important to note that simply
tracing the neural binodal (blue circles) in Fig. 4 will also
yield the identical critical temperature kBTc=ε ≈ 1.203 and
critical density as obtained from the spinodal, as is expected
from a DFTapproach. On the other hand, our determination
of the critical temperature, kBTc=ε ≈ 1.188, obtained by
fitting to a suitably chosen range of subcritical data, is
inspired by simulation studies [59,60] and deliberately
invokes additional physics by excluding results in the near-
critical region that will be beset by finite-size artifacts.
We first should place our results in perspective: We are

focusing on estimates of the critical point, obtained via
our neural functional that had no prior knowledge of the
existence of phase separation let alone a critical point,
which lie within about 1% of the most accurate, inde-
pendent, simulation study of the critical point of the LJ
fluid [59] which finds kBTc=ε ¼ 1.188.
In the following, we scrutinize further issues that arise

when inferring properties in the critical region. Recall that,
for a suitably chosen temperature range, the neural func-
tional yields coexisting densities that are fitted better,
within our procedures, by a non-mean-field critical expo-
nent close to the Ising value β ≈ 0.33 than by the mean-
field result β ¼ 1=2; see Sec. III C. Similarly, for the
surface tension we find via an analogous procedure the
critical exponent μ̃ ≈ 1.26 instead of the mean-field pre-
diction μ̃ ¼ 3=2. Of course, when approaching Tc very
closely the physics is more subtle. For example,
Panagiotopoulos [60] argues that certain properties in the
critical region could be forced to appear mean-field-like
because of the finite size of the simulation. The basic idea is
that one cannot access correlation lengths that are larger
than or of the same order as the simulation box size. In our
study we provide training data from MC simulations of
planar density profiles in boxes of lateral size L < 20σ. It is
clear that large correlation lengths will be suppressed, and
one might therefore expect the neural functional to inherit
mean-field critical behavior.
We choose to examine this issue by performing an OZ

plot of the static structure factor, cf. Sec. III A and Eq. (14),
in the supercritical regime, employing the traditional OZ
description SðkÞ ¼ Sð0Þ=ð1þ ξ2OZk

2Þ for small wave num-
bers k. The inverse of SðkÞ is plotted against k2, at
supercritical temperatures approaching Tc, and at fixed
critical density ρcσ

3 ¼ 0.322, in Fig. 8. Note that the
reference value of the critical temperature refers here to
kBTc=ε ≈ 1.2031 as given by the maximum of the spinodal,
defined, of course, by 1=Sð0Þ ¼ 0.
From the OZ plot, we can investigate the isothermal

compressibility critical exponent γ by analyzing the

scaling of the y intercept 1=Sð0Þ, which determines Sð0Þ∼
χT ∼ jT − Tcj−γ. From the slope of the lines in Fig. 8 we
can determine the OZ correlation length ξOZ given by

ξ2OZ ¼ R2Sð0Þ; ð26Þ

where the short-range correlation length R is the second
moment of cb2ðrÞ:

R2 ¼ 2πρb
3

Z
∞

0

dr r4cb2ðrÞ

¼ ρb

Z
∞

0

dx x2c̄b2ðxÞ; ð27Þ

and the second equation, involving the planar two-body
direct correlation function, follows via Eq. (12) and partial
integration. The gradient of 1=SðkÞ in the OZ plot is R2.
From Fig. 8 we observe this is constant close to the critical
temperature; we find R=σ ≈ 0.97.
Defining the critical exponent ν by ξOZ ∼ jT − Tcj−ν it

follows that our analysis predicts γ ¼ 2ν, since R remains
finite. This implies a (Fisher) exponent η ¼ 0. The inset in
Fig. 8 shows a log-log plot of Sð0Þ and the OZ correlation
length ξOZ as functions of the reduced supercritical
temperature difference ðT − TcÞ=Tc. Our neural func-
tional results yield the mean-field critical exponents
γ ¼ 1 and ν ¼ 0.5 to high accuracy, in keeping with
ideas of Panagiotopoulos [60] and others.

FIG. 8. OZ plot of the inverse structure factor S with respect to
k2 for supercritical temperatures at constant critical density ρc,
from which one can determine Sð0Þ, the short-range correlation
length R, and the OZ correlation length ξOZ; see text. Plots of
Sð0Þ and ξOZ with respect to jT − Tcj=Tc determine the critical
exponents γ and ν (inset); our neural functional yields the mean-
field values as shown. The true correlation length ξ, calculated
from Eq. (22), lies very close to ξOZ for temperatures close to Tc,
as shown (in green) in the inset.
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We also investigated the critical behavior of the true
correlation length ξ as given by the pole analysis; see
Sec. III B and Eq. (22). As expected, see the inset (Fig. 8), ξ
and ξOZ are almost identical near the critical point. Hence,
we find the true correlation length also exhibits mean-field
behavior with critical exponent ν ¼ 0.5. That these two
different correlation lengths obtained from the neural
functional are consistent in the critical region, albeit both
exhibiting mean-field scaling, gives us confidence in our
numerical implementations.

F. Inhomogeneous fluids: Predictions for drying,
capillary evaporation, and local fluctuations

Previous sections have focused mainly on bulk behavior,
i.e., the fluid in the absence of any external potential. Here
we turn to inhomogeneous systems and, in particular, to the
physics of adsorption at substrates and of fluids in confine-
ment. Specifically, we show that the neural functional
allows one to capture accurately fluid structure for phe-
nomena associated with phase transitions at state points
close to bulk coexistence. These are challenging to access
via simulation studies. We investigate the phenomena of
(i) density depletion and drying at a hard wall and
(ii) capillary evaporation in a planar slit. Quantifying the
properties associated with such phenomena serves as a
stringent test of the neural functional; recall that the training
data consist of systems with randomized state points and
inhomogeneities not tailored to feature the subtle physics
occurring near surface phase transitions.
As before, the equilibrium density profile is calculated via

iteration of Eq. (8), where now a given external potential
VextðrÞ induces inhomogeneity in ρðrÞ. Examining states
close to bulk coexistence requires increased numerical effort,
as the equilibrium density profile is highly susceptible to
small changes in the control parameters, specifically the
deviation of the chemical potential from bulk coexistence.
Nevertheless, the self-consistent calculation via Eq. (8)
remains numerically robust, albeit requiring an increasing
number of iteration steps.
We consider first the case of a single planar hard wall,

VextðxÞ ¼ ∞ for x < 0 and 0 for x > 0, and show results in
Fig. 9(a). We choose kBT=ε ¼ 0.93 and approach bulk
coexistence from the liquid side by decreasing the chemical
potential μ ¼ μcoex þ Δμ toward the neural prediction
μcoex=ε ≈ −3.553 57 for the chemical potential at bulk
coexistence. The resulting density profiles show the for-
mation of a gas layer adsorbed at the hard wall whose
thickness increases continuously when lowering Δμ. This
is the classic signature of complete drying, i.e., complete
wetting of the wall-liquid interface by gas—see, e.g.,
Ref. [48], early DFT studies by Sullivan [71] and
Tarazona and Evans [72], and the important article by
Henderson and van Swol [73] that laid out the rich physics
involved and presented pioneering simulation results for a
square-well model fluid. This phase transition corresponds

to gas layer thickness, or the negative of the Gibbs
adsorption, diverging slowly, i.e., logarithmically, as Δμ
approaches zero. We note that the shape of the density

FIG. 9. Density ρðxÞ and local compressibility χμðxÞ profiles for
drying at a hard wall (a),(b) and for capillary evaporation between
hard walls with weak attraction (c),(d), cf. Eq. (28). Results are
shown for chemical potentials μ ¼ μcoex þ Δμ approaching, from
the liquid side, the respective bulk coexistence values μcoex; see text.
We investigate Δμ=ε ¼ 0.3, 0.1, 0.01, 0.001, and 0.0001, as
labeled. In the drying case kBT=ε ¼ 0.93 and density profiles
(a) showagas layer at thewallwhose thickness grows for decreasing
values ofΔμ. The local compressibility profile (b) develops a sharp
maximum (note the logarithmic scale) at a position located in the
emerging gas-liquid interface whose height grows rapidly on
approaching bulk coexistence. In the case of capillary evaporation
kBT=ε ¼ 1.0 and the density profiles in (c) refer to the condensed
liquid states (solid lines) and the stable gas states (dotted lines)
plotted for the same chemical potential differences as in (a). The
inset displays the differenceΔΩ ¼ Ωl −Ωg between the liquid and
gas grand potentials Ωl and Ωg per lateral system area A. Positive
values of ΔΩ indicate metastability of the condensed state. Similar
to (b), the local compressibility profiles (d) display maxima located
in the interface which increase for decreasing Δμ.
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profile for the smallest value of Δμ plotted resembles
closely that of the free interfacial liquid-gas profile shown
in Fig. 7(a) for a similar temperature, confirming once
again that complete drying occurs.
We next consider confinement between two repulsive

hard walls with additional (weak) long-range attraction.
The left wall is described by the external potential:

VextðxÞ ¼
8<
:

∞ x ≤ 0

εw
h
2
15



σ

xþxm

�
9
−



σ
xþxm

�
3
i

x > 0:
ð28Þ

The parameter εw sets the attraction strength and the
minimum of the potential well is shifted to x ¼ 0 by
setting xm ¼ ð2=5Þ1=6σ. The right wall is obtained analo-
gously by a mirrored version of Eq. (28) and the symmetric
confinement potential is the sum of these. We choose this
potential to correspond to a recent MC simulation study by
Wilding et al. [74] and set the attraction strength of the wall
εw ¼ 0.01ε, wall separation L ¼ 25σ, and temperature
kBT=ε ¼ 1.0 to be the same as in Ref. [74]. For such a
weak attraction we expect complete drying to occur at a
single wall; i.e., the corresponding contact angle should be
180°. Results for the density profiles are shown in Fig. 9(c)
for the same values of Δμ as in Fig. 9(a). For this
temperature the neural prediction is μcoex=ε ≈ −3.461 54.
The density profiles are typical of those found for a fluid in
a slit with hard or very weakly attractive walls: A liquidlike
density plateau forms at the center of the slit and as Δμ
decreases increasing density depletion occurs and even-
tually a layer of gas develops at the walls. An early
(analytical) DFT study [75], see also Ref. [76], showed
that the “liquid” becomes metastable with respect to the
evaporated “gas,” whose density is small throughout the
slit, and determined the capillary evaporation (first-order)
transition point for a model fluid.
Importantly we find that metastability can be inves-

tigated using the neural functional. Recall that Eq. (8)
emerges from the minimization Eq. (2). For fixed Δμ,
initialization from an empty system yields the gas state,
whereas starting with a sufficiently high initial bulk density
yields the condensed liquid state. We calculate the grand
potential difference ΔΩ ¼ Ωl −Ωg between the liquid and
gas states as a function of chemical potential by evaluating
the density functional Eq. (1), where the excess free energy
Fexcð½ρ�; TÞ follows from the functional line integral
Eq. (10) employing the previously determined density
profiles. Note that we obtain the grand potential per lateral
system area A due to the planar geometry. We find positive
values of ΔΩ=A for a chemical potential difference
Δμ=ε ≤ 0.01—see the inset of Fig. 9(c). Such states are
therefore metastable with respect to capillary evaporation:
A gaslike density profile, see the dotted lines in Fig. 9(c), is
associated with a lower value of the grand potential.

The one-body density profile provides the crudest
measure of the effects of correlations. We consider also
the local compressibility χμðrÞ ¼ ∂ρðrÞ=∂μ for fixed T
which provides a spatially resolved measure of density
fluctuations in the particle number and which was shown
to be important in characterizing surface phase transitions
[16,64,74,77–80]. We investigate this quantity for the
two cases described above. Rather than evaluating χμðrÞ
as the partial derivative of the density profile with
respect to μ numerically in terms of a finite difference,
we choose to utilize a route employing the fluctuation OZ
equation [79,80],

χμðrÞ ¼ ρðrÞ
Z

dr0c2ðr; r0; ½ρ�; TÞχμðr0Þ þ βρðrÞ; ð29Þ

as the inhomogeneous pair direct correlation function
c2ðr; r0; ½ρ�; TÞ is explicitly accessible from the neural
functional by autodiff, cf. Eq. (9). Obtaining the local
compressibility numerically from Eq. (29) reduces to solving
a system of linear equations and is hence much simpler than
the solution of the standard inhomogeneous OZ equation,
see, e.g., Ref. [45], owing to the fact that χμðrÞ is a one-body
property. Such a simplification was already recognized in an
early study of wetting transitions [81].
Figures 9(b) and 9(d) show results for the local com-

pressibility profiles corresponding to the density profiles
depicted in Figs. 9(a) and 9(c), respectively. Approaching
bulk coexistence, by decreasing Δμ, the local compress-
ibility develops sharp peaks located in the “gas-liquid”
interface that emerges as the gas layer grows at a wall. The
values of the maxima of χμðxÞ increase by orders of
magnitude: Note the logarithmic scale. For the case of
drying at a hard wall, Figs. 9(a) and 9(b), investigated at
kBT=ε ¼ 0.93, well below the temperature kBT=ε ≈ 1.04
where the Fisher-Widom line intersects the binodal, we
observe, for the largest Δμ, damped oscillations in χμðxÞ
reflecting those in the density profile. For small Δμ we
expect from the theory of complete drying, for the
potentials we consider here, that the maximum of χμðxÞ
should increase as Δμ−1, which corresponds to the loga-
rithm of the maximum increasing linearly with the thick-
ness of the drying (gas) layer. Our results are consistent
with this prediction.
The contact values χμð0þÞ at the hard wall remain almost

unchanged as Δμ is reduced. This behavior is consistent
with the contact theorem χμð0þÞ ¼ βρb that establishes an
important connection between the bulk density ρb far from
the wall and a quantity local to the wall [77,79,80]. Our
numerical results satisfy this sum rule to within 1%, apart
from the lowest value of Δμ, where numerical errors
become more important. In our investigation of capillary
evaporation we chose our system to correspond to that of
the MC simulations in Ref. [74] which examined the local
compressibility at bulk coexistence. The density and local
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compressibility profiles that we obtain mimic those
observed in simulation. However, there are subtleties in
making direct comparisons that we return to in Sec. IV B.
We chose to study the profiles at decreasing values of Δμ
monitoring the growth of the maximum in the local
compressibility which increases in a similar fashion to
what is observed for the complete drying case at a single
hard wall in Fig. 9(b).

G. Purely supercritical training

As described in Sec. II B, we deliberately trained a second
neural network with supercritical data by including only
simulations with kBT=ε > 1.3; see the dotted pink line in
Fig. 1 showing the temperature cutoff. In the following we
focus on the extrapolation capabilities of this neural network
and, in particular, expound how much information can be
deduced from learning data at temperatures well above our
(subsequent) determination of the critical temperature.
In Fig. 3, we observe that analyses of the isothermal

compressibility χT (first column), true correlation length ξ
(second column), and long-range decay of the total corre-
lation function (third column) carry over straightforwardly
when using the supercritical neural functional; there are no
problems for inferring results at lower temperatures.
Specifically, the predicted phenomenology remains identi-
cal to the case of training with data including some
subcritical states: A spinodal emerges, as characterized
by diverging isothermal compressibility and correlation
length, χ−1T ¼ 0 and ξ−1 ¼ 0. The top of the spinodal marks
a critical point, from which the lines of maximal com-
pressibility and maximal correlation length can be traced
and the Fisher-Widom line emerges from the pole analysis
of hðrÞ. Despite requiring extrapolation to substantially
lower temperatures than encountered during training, only
minor differences occur from the case of full (subcritical
and supercritical) training. We note that the critical point is
predicted at a slightly higher temperature and density.
Results from purely supercritical training are shown in

Fig. 4 also for the binodal. Remarkably, the supercritical
neural functional in the Euler-Lagrange minimization (8)
delivers at lower temperatures, predicting bulk liquid-gas
coexistence. Moreover, the resulting binodal agrees very
well with our previous findings based on the full training
dataset; small deviations occur for liquid densities at low
temperatures. We emphasize that these predictions of
liquid-gas coexistence arise from probing only supercritical
states that have no direct signature of possible liquid-gas
phase separation.

IV. DISCUSSION

A. Methodology

Employing the neural functional approach is very differ-
ent from what one encounters in pure simulation studies or
in analytical density functional studies where an explicit

approximation to the excess free-energy functional is
provided from the outset. Setting up a neural functional
from scratch requires an upfront investment in compute
resources in order to deliver a suitable training dataset. This
(perceived) hurdle is not encountered in working with
simulations only; the first run can deliver useful informa-
tion. However, once the initial threshold has been passed,
the method scales very well. As retraining the neural
network itself is relatively cheap, it is entirely feasible
and sensible to provide additional training data, be it for
changing system size 1=L, extending parameter ranges,
such as temperature T, or simply to provide better statistics
in an iterative cycle, possibly guided by active machine-
learning techniques. Crucially, the initial investment is
never lost, as the original training data can continue to
be used in updated training cycles.
What sets aside our neural functional approach is the

range of phenomena and results that it can describe: These
far exceed the information provided during training. How
this comes about is nontrivial and relies upon the math-
ematical structure of DFT. Investigating physical phenom-
ena, i.e., calculating the structure and thermodynamic
properties, reduces to standard analysis tasks within the
(neural-network-based) functional mapping c1ðr; ½ρ�; TÞ.
Inputting only MC training data of one-body profiles in
planar geometry and then examining c1ðr; ½ρ�; TÞ through
the functional lens provides access to quantities which
could not be obtained directly from the input data. Indeed,
determining these usually requires advanced simulation
techniques [9]; note the array of computational methods
tailored to study liquid-gas coexistence, interfacial profiles,
free energies, and the surface tension, as well as two-body
correlation functions. These properties and the physical
scenarios they encompass follow, in our treatment, from a
single numerical object, namely the neural network repre-
senting c1ðr; ½ρ�; TÞ. Our results achieve accuracy compa-
rable with direct simulations of phase coexistence but with
much reduced computational cost, and without requiring
any additional simulations after training.
We consider our present methodology to be more closely

interwoven with the basic theoretical physics at play, in this
case DFT, than are the more generic data-based machine-
learning methods [1–4]. Importantly, the formal structure of
density functional relationships between generating func-
tionals and hierarchical levels of correlation functions is
built into our neural density functional approach and guides
application using functional calculus (see Sec. II D). In this
regard, it might be interesting to explore similarities to and
differences from other recent work [82–84] which employs
liquid integral equation theory in the context of physics-
informed machine learning.

B. Physical phenomena investigated

In this section, we summarize some of the physics that
we considered together with the results we found and raise
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issues that require further investigation. For the bulk LJ
(continuum) fluid the trained neural direct correlation
functional yields an accurate description of pair structure.
The pair correlation function gðrÞ and static structure factor
SðkÞ exhibit signatures typical for fluids with attractive
interactions; see Fig. 2 (Sec. III A). Moreover, a compre-
hensive account of very subtle correlation phenomena can
be obtained with relative computational ease from our
determination of the bulk pair direct correlation function.
Specifically, we determined the lines in the phase diagram
where the isothermal compressibility and true correlation
length have their maximal value, and the Fisher-Widom
line that denotes the crossover from damped oscillatory to
purely monotonic decay of gðrÞ at large distances; see
Fig. 3 (Sec. III B). Recall, once again, that the neural
network had not encountered bulk pair correlation func-
tions, let alone their asymptotic decay, in training.
Clearly our analysis rests on the familiar (bulk) OZ

equation together with the neural representation of the pair
direct correlation function cb2ðrÞ obtained from automatic
differentiation of the (planar) one-body direct correlation
functional. It is tempting to argue that the neural functional
provides a highly accurate closure relation for the OZ
equation, making stand-alone prediction feasible and
avoiding reliance upon approximate closures [82–84].
Furthermore, as our approach is DFT based, there is a
unique route to the bulk free energy thereby avoiding
inconsistencies that can plague liquid integral equation
theories [8]. Note that (i) our approach differs from neural
functional methods based on pair-correlation matching
[23,28] and (ii) it allows us to access three-body direct
correlations, as demonstrated for hard spheres in Ref. [25].
Our results for the spinodal and the location of the liquid-

gas critical point as determined from the divergence of the
true correlation length, or equivalently of the compressibl-
ity, are also obtained from cb2ðrÞ; these are shown in Fig. 3.
The OZ plots in Fig. 8 provide further information about
the approach to criticality from above Tc: We find mean-
field critical exponents for the OZ correlation length and
for the compressibility. Separately we find that the true
correlation length diverges in the same fashion as the OZ
correlation length. The spinodal is a concept commonly
associated with employing analytic functionals that incor-
porate attraction, e.g., via the mean-field approximation
(4); of course, in reality there is only a horizontal tie line in
the density-temperature plane linking coexisting gas and
liquid. It seems that our simulation-based machine-learning
procedure generates a neural functional, which, for appro-
priate bulk densities and temperatures, also gives rise to a
spinodal. We examine this further in the next section.
In many respects our determination of the gas-liquid

binodal (bulk coexistence curve) is one of the most striking
results; see Sec. III C. Our training data had no knowledge
of bulk phase separation. Comparison with existing sim-
ulation results in Fig. 4 shows how well the neural

prediction performs and how it outperforms the standard
analytical DFT. Using fitting procedures applied previ-
ously to simulation data [59,60] for coexisting densities,
we found evidence for a nonclassical critical exponent β
and obtained an estimate of Tc that agrees very closely
with the best simulation estimate. The subtleties involved
with finite-size effects were discussed in Sec. III E. We
have demonstrated that the neural prediction for the
binodal is (i) highly accurate and (ii) internally consis-
tent: Results from neural density functional minimization
of coexistence states that feature both gas and liquid in a
single computational system agree with those from func-
tional line integration for the free energy. Practical
implementation of the latter method requires only a
cheap numerical routine; the neural functional is the
integrand in Eq. (10). The bulk equation of state from
functional line integration, Eq. (24), displays a van der
Waals loop, see Fig. 6, at subcritical temperatures. We
comment further on this result in Sec. IV C.
The former method of direct numerical stabilization of

phase coexistence provides access to one-body liquid-gas
interfacial structure. As remarked in Sec. III D, the density
profiles ρðxÞ for the two lowest temperatures show the
presence of damped oscillations extending into the liquid;
see Fig. 7(a). Such behavior is commonly found in DFT
calculations that utilize the standard mean-field approxi-
mation (4), e.g., Ref. [69] for the square-well and Tschopp
et al. [85] for the hard-core Yukawa model. Equivalent
behavior is also found in FMT-based DFT calculations for
the Asakura-Oosawa model that describes colloid-polymer
mixtures. Pronounced oscillations are found on the (col-
loid-rich) liquid side of the fluid-fluid interface for states in
the neighborhood of the triple point [86]. The physical
origin of the oscillations lies, of course, in the packing of
particles in the dense liquid. The argument [69], based on
asymptotics, is that in the oscillatory region of the bulk
phase diagram, as determined by the Fisher-Widom line,
the one-body liquid-gas density profile should decay into
the bulk liquid at coexistence with the same exponential
decay length 1=α0 and same wavelength 2π=α1 as would be
determined for the bulk state from the pole analysis, i.e.,
Eqs. (17)–(20). Unfortunately there is no simple means of
determining the amplitude of oscillations. Moreover, the
argument is based on mean-field ideas and omits effects of
thermally induced capillary wave fluctuations. The physi-
cal picture adopted in Ref. [69], and in subsequent work, is
that the DFT results provide a “bare” profile that is then
“dressed” by unfreezing the fluctuations which serve to
erode the oscillations. For a Gaussian treatment of the
fluctuations the decay length and the wavelength of the
oscillations are unchanged but the amplitude is reduced by
a factor that depends on the interfacial roughness which
depends, in turn, upon the interfacial area A; see Brader
et al. [87] for a thorough discussion. The profiles we find
here for the LJ fluid exhibit very weak oscillations even at
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the lowest temperature shown, suggesting that our neural
functional might already capture some fluctuation effects.
In this context, it is instructive to take note of Tschopp et al.
[85] who show that profiles obtained from a DFT that
incorporates correlations into a reference hard-sphere
system yield liquid-gas density profiles that have much
less pronounced oscillations than those that emerge from
employing Eq. (4). It is tempting to surmise that our neural
functional provides a very accurate, albeit still mean-field,
description of the bare interface.
The liquid-gas surface tension is not beset by subtle

issues of including capillary wave fluctuations and we
expect our results, obtained from an inhomogeneous func-
tional line integral, to be reliable. Indeed these match
closely high-quality simulation data for the LJ system; see
Fig. 7(b). Moreover, our neural functional was able to
probe the surface tension for the same range of temper-
atures as investigated in the calculation of the binodal and
we found evidence for a nonclassical critical exponent μ̃.
The free liquid-gas interface was the first of our neural

density functional investigations of interfacial phenomena.
In Sec. III F we presented results for two further inhomo-
geneous situations: (i) complete drying at a single planar
hard wall and (ii) capillary evaporation inside a planar slit
pore with very weakly attractive walls. Both constitute
demanding tests. For the former the density and local
compressibility profiles must reflect the proper growth of
the thickness of the gas layer as the chemical potential
deviation Δμ is reduced to zero. Complete drying is a
continuous (critical) surface phase transition. Our neural
density functional minimization accounts well for this
phenomenon; see Figs. 9(a) and 9(b). In particular, we
find that the logarithm of the maximum of the local
compressibility χμðxÞ increases linearly with the layer
thickness, in agreement with theoretical predictions.
Moreover, we find that the contact theorem for the local
compressibility at the hard wall, χμð0þÞ ¼ βρb, is satisfied
accurately; this provides a valuable check on the consis-
tency of our approach. In case (ii), capillary evaporation,
we deliberately chose the confining external potential and
temperature to be those employed in the MC study of
Wilding et al. [74]. Our methods allow us to investigate
efficiently several values of the chemical potential
deviation Δμ and to measure the grand potential of
metastable states thereby allowing us to estimate the value
of Δμ at which the (first-order) evaporation transition
occurs; see Figs. 9(c) and 9(d). This task is demanding
within direct simulation. For the three smallest values
of Δμ, corresponding to the three thickest gas layers, the
condensed liquid state is metastable with respect to the
evaporated gas state. For these metastable states χμðxÞ takes
on very large values similar to what we find for drying at the
planar hard wall in Fig. 9(b). Note that this quantity does
not reach the corresponding bulk value in the middle of the
slit; the density fluctuations remain very large throughout.

We find that our results for Δμ=ε ¼ 0.01 match well with
the density and local compressibility profiles plotted in
Ref. [74]; the maximum of χμðxÞ is about 100 times the
bulk value. However, the results in Ref. [74] refer to
Δμ ¼ 0, i.e., to bulk coexistence as measured in simulation.
This begs, once again, the question as to how best to make
comparisons between DFT results and simulation. Neither
the simulation nor the neural functional value of μcoex is
known precisely; the former depends on the finite size of
the simulation box and the latter on the numerics we
employ. One might argue that for this particular problem
the chemical potential itself is a better control parameter
than Δμ; unlike the case of complete drying there is no
critical divergence associated with the approach to coex-
istence. We intend to return to this issue in future work.
That we are discussing such subtle matters in this first
application of our neural functional to phase transitions
attests to the overall potential of our approach.

C. Discovering phase coexistence and extrapolation
of functional mappings

The successful reproduction of results with supercritical
training only, cf. Sec. III G, calls for a reassessment of the
importance of the one-body direct correlation functional
c1ðr; ½ρ�; TÞ; recall this is the quantity we seek to capture
from simulation data via a neural network. It seems feasible
to infer this particular functional mapping even when
excluding substantial ranges of the parameter space in
the training data. Our findings point to the fundamental
nature of the one-body direct correlation functional and
its favorable mathematical properties. It is arguably the
object most appropriate for machine-learning tasks—recall
also the simplicity of Eq. (7) for determining c1ðxÞ from
simulation data—in contrast to other possible functional
mappings [21,22]. Importantly, our results show that liquid-
gas phase coexistence is an emerging phenomenon that can
already be gleaned far from its onset, i.e., from training data
taken above the critical temperature.
We note in this context that the extrapolation capabilities

of the neural functional, and of the underlying functional
mapping it represents, are arguably much more extensive
than one might initially expect. Recall that the data used
during training, see Sec. II C, comprise only true equilib-
rium states obtained via many-body simulations, and that
the resulting density profiles fulfill the Euler-Lagrange
equation (8) by construction. However, when using the
trained neural functional for predictions, one cannot guar-
antee a priori that only such “physical” density profiles are
encountered. This may be the case during the iteration of
Eq. (8) as well as for the evaluation of the excess free
energy via the parametrized functional integral Eq. (10).
For the latter the scaled density profiles ρaðrÞ ¼ aρðrÞ are
not merely transient, rather they enter as genuine contri-
butions to the total value of Fexcð½ρ�; TÞ.
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That the predictions remain accurate despite requiring
the evaluation of the neural functional with possibly
“unphysical” density profiles, i.e., ones that cannot corre-
spond to minimization in the presence of any external
potential, indicates there is a well-defined continuation of
the functional relationship to such states. Furthermore, it
seems feasible to infer this extended mapping from
physical data alone, using only the restricted function
space of the true equilibrium density profiles that provided
input. We attribute the successful extrapolation to (i) the
beneficial mathematical properties of the functional map-
ping c1ðr; ½ρ�; TÞ and (ii) the prowess of the utilized
machine-learning techniques.
This is important in practical applications. Although

the evaluation of the neural functional remains valid for
unphysical density input, the resulting predictions will not
correspond directly to what one would find in simulations
or in experiments. For instance, the van der Waals loop in
Fig. 6 at T < Tc arises from the neural prediction for the
pressure corresponding to spatially constant bulk densities
ρðrÞ ¼ ρb, which are imposed to lie in the metastable
or unstable coexistence region. Clearly, this is not the
sequence of density profiles that one encounters in practice
where, for fixed mean density, the system will form liquid
and gas domains separated by an interface. If one evaluates
the equation of state along this path of physically realizable
density profiles, one will indeed find a flat isotherm that is
numerically consistent with performing a Maxwell con-
struction in Fig. 6. Of course, this feature is not unique to
the neural functional. For an analytical DFT, e.g., employ-
ing the mean-field functional Eq. (4), one could also solve
Eq. (8) for a range of fixed mean densities and determine
the resulting density profiles, which will show liquid-gas
phase separation within the coexistence region. These will
not be as accurate as the present neural results; leave this
aside. One could then examine the prediction of the theory
for the bulk free-energy density and calculate the pressure,
analogous to Eq. (24). Making a Maxwell construction will
confirm that the coexisting densities agree with those from
solving Eq. (8).
The ability to analyze the neural functional for (virtually)

arbitrary density input is useful and necessary to make
certain calculations. Recall that the determination of the
surface tension γlg, cf. Fig. 7, requires evaluating the
functional line integral Eq. (10) along a path of density
profiles which crosses the coexistence region. That our
neural results for γlg agree well with simulation serves as an
indirect verification of the validity of the neural functional
predictions for such unseen inputs. Similarly, important
bulk quantities such as the isothermal compressibility χT
and the correlation length ξ can be monitored in states of
the bulk fluid that might not be physically accessible, but
which provide additional insight—see, e.g., the emerging
spinodal in Fig. 3. Of course, this is not conceptually
different from using analytical DFT: An explicit

approximation for the excess free-energy functional will
provide these quantities for all states. What does differ
is the mechanism by which the underlying functional is
obtained. Whereas an analytic functional, e.g., Eq. (4), is
arguably conceived with a certain phenomenology in mind,
features such as a spinodal and a van der Waals loop arise
for the neural functional solely from training with appro-
priately chosen simulation data for a given model fluid.

D. Outlook

There are several problems which should be addressed in
future work and which point to possible extensions of the
framework we present.
As described in Sec. III E, mean-field behavior is found

from OZ plots in the close vicinity of the critical point, in
line with the construction of the neural functional with a
finite box size. Nevertheless, we envisage that accessing
“true” critical behavior is not excluded per se from the
neural functional. The strategy used for the extrapolation to
large box sizes via the input node 1=L might well prove to
be helpful for this purpose. Supplying additional training
data that feature the slow decay of density profiles
associated with long-range correlations might also be
necessary. Further, the architecture of the neural network
might need to be modified to accommodate the growing
correlation length which could require incorporating a
larger density window as input to the neural functional.
Although we have focused in this work on the proto-

typical LJ fluid, for ease of comparison with previous
accurate simulation data, we see no fundamental problems
in applying our methodology to more complex fluids. As
the formal structure of DFT remains intact for arbitrary
interaction potentials, the method could be transferred
directly to the investigation of systems that feature more
elaborate force fields, including three- and higher-body
contributions, as used, e.g., to model interactions in water
[88,89] or in colloidal gels [90]. Methodological extensions
arise already for the particular case of pairwise interactions
only. These include the incorporation of bulk pair corre-
lation data during training [23,28] and the generalization of
the functional dependence to feature explicitly the pair
potential ϕðrÞ [33]. In the future, it would be interesting
to investigate further test particle concepts and the topical
problem of inverting structural data to infer interparticle
interactions, and their uniqueness [91], via neural func-
tional methods.
For the case of anisotropic and molecular fluids, orienta-

tional degrees of freedom must be accounted for: The one-
body density profile ρðr;ωÞ which enters the functional
mapping must be resolved with respect to both position r
and orientation ω. In a first venture, Simon et al. [30]
demonstrated that machine learning a classical density
functional is feasible for the anisotropic Kern-Frenkel
model in planar geometry. Notably, the authors found that
the external flat-wall potentials for the generation of
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training data had to incorporate nontrivial orientation
dependence in order to probe the functional mapping
sufficiently. Another very recent work considers an appli-
cation to a model of carbon dioxide, where orientations
become important [34]. Methods developed in the context
of molecular DFT [92,93] could serve as a practical guide
on how to deal with numerical challenges arising from the
additional orientational resolution; see the recent Ref. [94].
For mixtures, the relevant functionals depend on the

density profiles ρiðrÞ of the individual species i ¼ 1;…; s.
A machine-learning scheme aiming to represent the direct
correlation functional c1;iðr; ½ρ1;…; ρs�; TÞ must therefore
account for the additional species labeling. Tackling the
fluid phase behavior of multicomponent systems is, of
course, important in physical chemistry and chemical
engineering. Note, for example, that rich phase behavior
emerges already for the case of a very simple binary
mixture [95]. In ionic systems, charge ordering is key
and appropriate number-number and charge-charge corre-
lation functions should be distinguished. For the restricted
primitive model, Bui and Cox [96] have successfully
demonstrated training a neural density functional, taking
into account ideas from local molecular field theory to curb
the long-range electrostatic interactions.
We have shown that employing only planar geometry in

the input is sufficient to predict various aspects of liquid-
gas phase coexistence. Crystallization presents an even
bigger challenge. Describing the freezing transition is
likely to require input with knowledge of the three-
dimensional geometry. Equivariant neural networks
[97,98], which implement certain symmetry conditions
directly in the neural network architecture, could be
beneficial in this case to ensure efficient data utilization
and performant inference.
As a final remark we point out that describing interacting

many-body systems in terms of functional relationships is
not only relevant for classical statistical physics and
systems in thermodynamic equilibrium. Electronic DFT,
specifically in its Kohn-Sham formulation, plays a role
completely analogous to that of classical DFT. It provides
an exact formulation of the many-body quantum mechani-
cal treatment of interacting electrons and, of course,
constitutes a cornerstone in modern computational chem-
istry and condensed matter physics [99]. The formal
similarities are deep: The electron density nðrÞ takes on
the role of ρðrÞ as functional input, with the central
functionals now being the exchange-correlation energy
functional Exc½n� and the exchange-correlation potential
vxcðr; ½n�Þ, which is generated from Exc½n� via functional
differentiation. Our findings in the classical case, where the
direct correlation functional c1ðr; ½ρ�; TÞ is generated from
the excess free-energy functional Fexcð½ρ�; TÞ, cf. Eq. (5),
immediately suggest representing vxcðr; ½n�Þ as a neural
functional and then taking inspiration from the functional
calculus methods described in Sec. II D.

While classical and quantum DFT, as described, operate
strictly in thermodynamic equilibrium, power functional
theory [44,45] establishes a formally exact extension to
dynamics and nonequilibrium systems. The pertinent
functional relationships must be augmented. For the case
of classical overdamped Brownian motion, besides the
density profile, the entire history of the one-body current
Jðr; tÞ enters the functional mapping, which is now
formulated in terms of the internal force fintðr; t; ½ρ; J�Þ.
For steady states, where dependence on time t vanishes,
constructing a neural force functional has been demon-
strated successfully [24,29]; this offers a promising
perspective for further generalizations.
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