
Supporting Information for

Neural functional theory for inhomogeneous fluids: Fundamentals and applications

Florian Sammüller, Sophie Hermann, Daniel de las Heras, and Matthias Schmidt

Florian Sammüller.
E-mail: florian.sammueller@uni-bayreuth.de
Matthias Schmidt.
E-mail: Matthias.Schmidt@uni-bayreuth.de

This PDF file includes:

Supporting text
Figs. S1 to S4
SI References

Florian Sammüller, Sophie Hermann, Daniel de las Heras, and Matthias Schmidt 1 of 9

mailto:florian.sammueller@uni-bayreuth.de
mailto:Matthias.Schmidt@uni-bayreuth.de


Supporting Information Text

Higher-order correlations. Analogous to Sec. B.1, we demonstrate that higher-order correlations can be obtained from the
neural correlation functional by nested automatic differentiation. This is due to the fact that the hierarchy of direct correlation
functions cn(r, r′, . . . , r(n−1); [ρ]), n ≥ 2, is accessible from successive functional derivatives of the one-body direct correlation
functional (1),

cn(r, r′, . . . , r(n−1); [ρ]) = δn−1c1(r; [ρ])
δρ(r′) . . . δρ(r(n−1))

. [1]

As illustrated in the main text, translational symmetry can be applied in bulk fluids such that the resulting bulk correlation
function cb

n(r, . . . , r(n−2)) = cn(0, r, . . . , r(n−2); [ρb]) only incorporates n− 2 remaining position coordinates.
We specialize again to the planar geometry of our neural functional and show in Fig. S1 the three-body bulk correlation

function c̄b⋆
3 (x, x′) for a bulk density of ρb = 0.7σ−3. While the computation of c̄b⋆

2 (x) is practically immediate via a single
reverse mode autodifferentiation pass, going to the three-body correlation function comes at the price of having to evaluate
the Hessian of c⋆

1(x; [ρ]), for which different strategies exist (2). In principle, one can proceed by nesting autodifferentiation
layers to obtain further members of the hierarchy Eq. (1), albeit being restricted by the practicability of the actual evaluation
and the efficacy of the result. Note that the computational effort at the three-body level is by no means restrictive and that
growing numerical demands are expected when considering higher-order correlations. The computation and analysis of c̄b

3(x, x′)
might be especially useful for more complex fluid models, e.g. containing internal three-body interactions (3).

We compare c̄b⋆
3 (x, x′) to analytic approximations based on FMT. For both the Rosenfeld and the White Bear MkII

functional, the three-body bulk direct correlation function is analytic in Fourier space. We point the reader to Ref. (4) for
an expression of the original Rosenfeld result in terms of vectorial weight functions and to Refs. (5, 6) for an equivalent
representation via scalar weights. As the weight functions remain unchanged, the White Bear MkII result follows immediately
from the modification of the excess free energy density as laid out in Ref. (7).

A cumulant expansion of the bulk result of the three-body direct correlation function in Fourier space can be transformed to
real space analytically, which in planar geometry gives

c̄b
3(x, x′) = − bR4

a
exp

(
−x2 + xx′ − x′2

aR2

)
, [2]

where the width parameter a and the prefactor b are determined by

a = ν

κ

3
5

53 − 25η + 8η2

30 + 2η + 5η2 − η3 , [3]

b = κ
8π

3
√

3
30 + 2η + 5η2 − η3

(1 − η)5 , [4]

with the packing fraction η = πρb/6. The correction factors ν and κ are set to unity in the Rosenfeld FMT and attain the forms

ν = 53 − 35η + η2 + 5η3

53 − 25η + 8η2 , [5]

κ = 30 − 6η
30 + 2η + 5η2 − η3 , [6]

in the White Bear MkII case.
The comparison reveals that the form of the neural three-body bulk correlation function c̄b⋆

3 (x, x′) is plausible and that it
captures genuine features which go beyond both FMT descriptions. The Rosenfeld FMT yields a large discrepancy in the core
region x, x′ ≈ 0, which is significantly unterestimated as compared to the results from the neural functional and from the White
Bear theory. We recall that, as in Sec. C.2, the tensorial weights of Tarazona (8) have not been used in the FMT functionals
and that their inclusion might be particularly relevant on the level of higher-order correlations. In this vein, investigating
members of the direct correlation hierarchy Eq. (1) with the neural correlation functional could be a valuable aid for testing
and refining analytic FMT functionals.

Spatial symmetry of the neural two-body direct correlation functional. A further consistency test of c⋆
2(x, x′; [ρ]) arises due to its

expected symmetry with respect to an interchange of the planar position coordinates x and x′. Recall that the excess free
energy functional Fexc[ρ] generates the two-body direct correlation function according to

c2(r, r′; [ρ]) = − δ2βFexc[ρ]
δρ(r)δρ(r′) , [7]

see Eq. (2) and Eq. (4) of the main text. One can directly recognize from the symmetry of the second functional derivative in
Eq. (7) that c2(r, r′; [ρ]) = c2(r′, r; [ρ]) must hold.

On the basis of the neural direct correlation functional in planar geometry, assessing the validity of the identity

c⋆
2(x, x′; [ρ]) = c⋆

2(x′, x; [ρ]) [8]
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is a highly nontrivial test. This is due to the fact that c⋆
2(x, x′; [ρ]) evaluated at certain positions x and x′ follows from

automatic differentiation of c⋆
1(x; [ρ]), where the input density window is centered around the location x, see Sec. B.1. On the

other hand, when formally evaluating c⋆
2(x′, x; [ρ]), where the arguments x and x′ are now reversed, the density window is

centered around x′, hence constituting a generally very different and a priori unrelated input profile. One can expect Eq. (8) to
be recovered only if the physical implications of Eq. (7) are captured correctly by the neural functional. Note that Eq. (8)
is a necessary condition for the existence of a unique neural excess free energy functional F ⋆

exc[ρ], which can practically be
obtained via functional line integration, see Sec. B.3. We exemplify in Fig. S2 that the neural two-body direct correlation
functional c⋆

2(x, x′; [ρ]) obtained via autodifferentiation of c⋆
1(x; [ρ]) indeed satisfies the symmetry requirement Eq. (8) to very

high accuracy.

Neural equation of state for hard disks via dimensional crossover. Although the neural functional c⋆
1(x; [ρ]) was acquired

explicitly for the three-dimensional hard sphere fluid, dimensional crossover techniques can be used to obtain bulk results for
the two-dimensional hard disk system. This is facilitated by investigating the behavior of the hard sphere fluid under narrow
confinement, which constitutes a quasi-two-dimensional scenario. With this method, one obtains the equation of state for the
hard disk fluid from c⋆

1(x; [ρ]), as we demonstrate in the following.
We proceed similar to Sec. B.3 and utilize Eq. (16) to express the pressure P (ρb) via the excess free energy density ψb(ρb),

which we aim to compute for a range of bulk densities ρb. Whereas c⋆
1(x; [ρ]) was evaluated for the three-dimensional bulk fluid

at spatially constant density, cf. Eq. (15), here a suitable density profile ρ2D(x) is constructed as input to the neural direct
correlation functional in order to emulate narrow planar confinement. For this, we choose

ρ2D(x) = ρb

xw
Θ

(∣∣∣x− xw

2

∣∣∣) [9]

with the Heaviside function Θ(·); note that Eq. (9) is a Dirac series and yields the Dirac distribution for xw → 0. The neural
direct correlation functional is then evaluated at the center of this assumed slit, and the values c⋆

1(0; [ρ2D]) are used analogous
to Sec. B.3 for the determination of P ⋆

2D(ρb). The equation of state for the associated two-dimensional hard disk system follows
formally for xw → 0. As this limit is not directly accessible in practice, we assess the obtained values for finite but small slit
widths 0.3 ≤ xw/σ ≤ 1 and extrapolate to xw = 0 via a quadratic fit.

The resulting equation of state P ⋆
2D(ρb) for the two-dimensional hard disk fluid as obtained from this dimensional crossover

on the basis of the neural network is shown in Fig. S3. We additionally display analytic equations of state from scaled particle
theory (9) and by Henderson (10) which serve as reference. One recognizes that reasonable results can be achieved for low and
medium densities, but that deviations to analytic results become noticeable for ρb > 0.7σ−2. Nevertheless, it is both surprising
and reassuring that the neural functional is capable of predicting correlations in narrow confinement, as no such situations
were explicitly included in the training data. Recall that hard walls were imposed only at the borders of the simulation box of
length L = 20σ and that the inhomogeneous external potential within the simulation domain consisted solely of Fourier modes
and of piecewise linear functions, cf. Eq. (3) in the main text. Presumably, improvements over the results presented in Fig. S3
could be obtained especially for large densities by including situations of very narrow confinement explicitly in the training
data. From our outset, the successful achievement of a viable two-dimensional equation of state serves as a demonstration that
c⋆

1(x; [ρ]) indeed captures the intricate functional relationship of the underlying physical problem instead of acting as a mere
interpolation tool with respect to the encountered training data.

Neural DFT for the Lennard-Jones fluid. We illustrate the generalizability of our machine learning framework to other particle
types by considering the truncated Lennard-Jones fluid with pairwise interparticle potential

ϕ(r) =

{
4ϵ

[(
σ
r

)12 −
(

σ
r

)6
]
, r ≤ rc,

0, r > rc,
[10]

where r is the interparticle distance, ϵ is the dispersion energy and the cutoff radius is set to rc = 2.5σ. Analogous to Sec. A.2
of the main text, reference data is generated via GCMC simulations of 800 systems with randomized external conditions of
which 500 are used for training and 150 respectively for validation and testing. We focus on the isothermal behavior of the
supercritical fluid and hence set kBT = 1.5ϵ. The chemical potential varies uniformly in a range of −8 ≤ βµ ≤ 4 and the
external potential is generated as described in the main text, cf. Eq. (3).

To accomodate the longer-ranged interactions compared to the hard sphere fluid, the size of the density window to be
input into the neural network is increased to xc = 4σ whilst keeping the design of the hidden layers unchanged (see Sec. A.3).
The training results in a mean average error of 0.0035 and larger values of xc led to no further improvement in the training
statistics. The slight increase of the mean average error as compared to the hard sphere case (see Sec. A.4) can be attributed
to noisier simulation data, which results from the decreased efficiency of GCMC method when simulating soft interactions with
larger cutoff radius instead of hard spherical particles with an interaction range of σ.

After successfully training the neural functional for the Lennard-Jones fluid, we employ c⋆
1(x; [ρ]) in neural DFT to determine

self-consistent density profiles for all 150 test systems. The Picard iteration proceeds without problems and analogously to
Sec. C.1. The results are compared with the standard mean field DFT treatment of the Lennard-Jones fluid. Here, the repulsive
part of Eq. (10) is approximated by a hard core interaction, for which we utilize the White Bear MkII FMT functional. An
additive mean field contribution FMF[ρ] =

∫
dr

∫
dr′ ρ(r)ρ(r′)ϕatt(|r − r′|)/2 to the excess free energy functional incorporates
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the attractive part ϕatt(r) of the Lennard-Jones potential. The function ϕatt(r) is equal to Eq. (10) for r ≥ rmin = 21/6σ and it
is set to −ϵ for r < rmin.

Local and global deviations of both neural DFT and the analytic mean field DFT to the simulation reference data are
presented in Fig. S4. The neglection of correlations in the mean field treatment leads to considerable errors across the whole
test set. Contrarily, the neural DFT achieves close-to-simulation results and outperforms the analytic DFT by up to two orders
of magnitude in the considered error measures.

This successful test demonstrates the transferability of our machine learning framework across particle models and indicates
its utility especially for Hamiltonians which lack satisfactory analytic DFT treatments. Although the considered interparticle
potential Eq. (10) is still short-ranged, we see much potential to extend our method to long-ranged interactions as occur
e.g. in charged systems. The resulting algebraic decay of direct correlations could be tackled in various ways: i) It might be
sufficient in some cases (e.g. for screened interactions) to simply extend the cutoff range xc of the density input. ii) In order
to achieve a better scaling of the number of input nodes with growing xc, one could change the corresponding discretization
of ρ(x) to employ variably spaced sampling points instead of a fixed discretization interval. This would still enable to finely
resolve the vicinity of the considered location x while also incorporating information about long-range density correlations.
iii) An alternative approach emerges by treating the long-range behavior of c1(r; [ρ]) analytically, similar to the treatment of
the Hartree term in quantum DFT, see e.g. Ref. (11). Hence, the neural functional could be trained as is on the remaining
short-ranged part of c1(r; [ρ]) to recover full quasi-exact information about intrinsic correlations.
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Fig. S1. The three-body direct correlation function is shown in bulk at density ρb = 0.7σ−3. We depict (a) the Rosenfeld and (b) the White Bear MkII FMT results for the
planar representation c̄b

3(x, x′), which were obtained analytically according to Eq. (2) by a cumulant expansion in Fourier space and a subsequent backtransform. Within our
neural functional framework (c), c̄b⋆

3 (x, x′) is acquired via nested automatic differentiation of c⋆
1(x; [ρ]).
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Fig. S2. We show (a) the density profile ρ(x) of an inhomogeneous system of the test set and (b) the corresponding neural two-body direct correlation function, which is
obtained for each position x with respect to x′ − x. A linear transformation is applied to display c⋆

2(x, x′; [ρ]) as a function of x and x′ in panel (c). This transformation is
visualized by corresponding gray lines in panels (b) and (c) which indicate the extent of the detailed view (solid) and slices where x + x′ = const. (dotted). The results
exemplify that the neural network reproduces the symmetry property Eq. (8) of the two-body direct correlation function very accurately.
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Fig. S3. The equation of state P2D(ρb) for two-dimensional hard disks is depicted, which is obtained from the neural functional via dimensional crossover. For comparison,
we show analytic results according to scaled particle theory (9) and by Henderson (10). Although the training data for the three-dimensional hard sphere fluid did not cover
narrow confinement within hard walls, c⋆

1(0; [ρ]) reproduces very reasonable behavior when applied to such quasi-two-dimensional situations and yields acceptable results for
densities up to ρb ≈ 0.7σ−2.
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Fig. S4. Neural DFT (yellow circles) is compared to the standard mean field DFT (purple triangles) for the truncated Lennard-Jones fluid. As in Fig. 6, (a) the normalized
L2-norm ∥∆ρ∥2/ρ̄ as a function of the mean density ρ̄, and (b) the relative maximum norm ∥∆ρ∥∞/∥ρ∥∞ as a function of the largest local density ∥ρ∥∞ are considered.
While considerable deviations to the reference profiles are observed for the hard sphere plus mean field treatment, neural DFT achieves almost simulation-like accuracy with
global and local errors being decreased by up to two orders of magnitude.
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