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Zusammenfassung

Um inhomogene Fluide im thermodynamischen Gleichgewicht besser zu charakterisie-
ren und lokale Effekte zu untersuchen, werden zusätzlich zum Dichteprofil ρ(r) weitere
Einteilchen-Felder definiert und für das Teilchenmodell harter Kugeln betrachtet. Zu-
nächst wird dafür die lokale Entropiedichte s(r) eingeführt und mittels Monte-Carlo-
Simulationen für exemplarische Systeme untersucht. Daraus gewonnene Ergebnisse wer-
den mit den Resultaten einer analytischen Betrachtung verglichen, die den Zusammen-
hang der Entropiedichte zur Dichtefunktionaltheorie und insbesondere zur fundamenta-
len Maßtheorie deutlich macht. Neben der Entropiedichte werden die lokale Kompressi-
bilität χµ(r) und die Entropizität χT (r) als lokale Fluktuationsfelder definiert und Re-
lationen für den Fall harter Kugeln hergeleitet. Es erfolgt ebenfalls eine Untersuchung
durch Monte-Carlo-Simulationen für relevante Modellsysteme, in denen fundamentale
Eigenschaften dieser neuartigen Einteilchengrößen aufgezeigt und verifiziert werden. Zu-
letzt wird darauf eingegangen, inwiefern sich die Fluktuationsfelder zur Formulierung
eines grundlegenden Minimierungsprinzips eignen.





Abstract

To gain a better understanding of local effects in inhomogeneous fluids at thermodynamic
equilibrium, new one-body fields besides the particle density profile ρ(r) are introduced
and studied for hard sphere systems. Firstly, the entropy density s(r) is defined and
its behaviour in exemplary systems is investigated by Monte-Carlo simulations. An
analytic approach, which clarifies the connection of the entropy density to density func-
tional theory and fundamental measure theory, is compared to numerical results and
good agreement is found. Secondly, the local compressibility χµ(r) and the entropicity
χT (r) are introduced as local fluctuation profiles and considered again for hard sphere
systems. Monte-Carlo simulations are used to explore and verify elementary properties
of those new one-body fields. Lastly, the idea of an augmented minimization principle
incorporating local fluctuation fields is presented.
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1. Introduction

The description of inhomogeneous fluids is still an important and challenging task in
modern theoretical physics as well as in chemistry, biology, material science and nu-
merous other applied fields. Many relevant systems show a variety of phenomena that
are particularly hard to tackle. These include e.g. solvation [1], adsorption [2], phase
transitions and coexistence [3], mixture of different particle species [4] and even more
complex observations like wetting and drying transitions on substrates and interfaces [5–
7]. The development of suitable theories describing these phenomena in a generic way
has thus been the goal of many physicists for the last decades. Although formalisms of
thermodynamics and classical statistical mechanics of many-body systems have become
textbook knowledge [8] and provide the tools necessary to answer some of the arising
questions in principle, the development of new quantitative and predictive theories that
pave the way towards the implementation of efficient numerical algorithms is still of
great interest. Furthermore, by deriving new concepts, hitherto unknown simplifications
and identities may be discovered.

Of course, much progress has already been made, especially considering computational
methods. With molecular dynamics (MD) and Monte-Carlo (MC) simulations becom-
ing more feasible as available computational resources increased, it is now possible to
accurately predict the behaviour of many model systems of interest. But although the
efficiency of those methods can be improved by various means (Metropolis sampling,
umbrella sampling, extended ensemble MC [9], histogram-reweighting [10], transition
matrix MC [11], Wang-Landau sampling [12]), the underlying principle is still based on
the sampling of a high-dimensional configuration space to obtain estimates for averages
of observables.
A framework that drastically reduces the computational cost was established by the

development of classical density functional theory (DFT) [13], as it leads the explicit
dependence on the distribution function back to one on the particle density ρ(r). A
minimization principle can be formulated on the grand potential Ω[ρ] that, when imple-
mented numerically, is orders of magnitude cheaper than MD or MC routines. However,
the difficulty lies in the derivation of this functional for a given internal interaction
potential which is the incentive for the considerable amount of work invested in this
problem.
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1. Introduction

For many reasons, the special case of a hard core interaction potential is worth further
investigation. Not only can it be considered as a first attempt in stepping away from the
ideal gas analytically, there are also numerous practical applications involving a hard
core contribution. A common approximation to more complicated interaction potentials
is for example the splitting into repulsive and attractive parts [14]. While the latter can
be dealt with by a standard mean field treatment, the former are approximated by the
already mentioned hard core potential. Due to their central role in the description of
inhomogeneous liquids - especially when entropic effects dominate - the main focus of
this work will be on systems of hard particles.
Although there has been great success in the application of DFT, some questions

still remain – both conceptually and considering practical results. Why is the tempera-
ture treated so differently compared to the effective chemical potential? Why are there
phenomena like hydrophobicity of substrates and interfaces that seemingly cannot be
described well enough with the particle density alone? Why is it so hard to derive den-
sity functionals even for simple internal interactions? In this work, light will be shed on
some of those questions by considering not only the particle density, but also additional
fields.
This thesis is structured as follows. In chapter 2, the definition of a one-body entropy

density is presented and applied to equilibrium hard core systems. This new quantity is
investigated by Monte-Carlo simulations and the connection to density functional theory
is established by the inspection of a common high-accuracy functional for hard particles,
derived using fundamental measure theory (FMT). In chapter 3, an alternative but
closely related route is taken that leads to the introduction of fluctuation fields which will
be called the local chemical susceptibility or local compressibility and the local thermal
susceptibility or entropicity. A minimization principle analogous to the one of DFT can
be formulated using a set of one-body fields including these local fluctuations. Regarding
the usefulness of standard DFT, this property seems very promising for the development
of an augmented formulation of functional many-body equilibrium physics. It is therefore
investigated both analytically and numerically, how local fluctuations behave in hard
particle systems. After concluding the most important aspects of the examined one-
body fields in the case of hard core interactions, open questions are discussed and an
outlook regarding the generalization of the aforementioned concepts to other particle
models and practical applications is given in chapter 4.
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2. Entropy density in hard sphere fluids

Albeit not as intuitively comprehensible as other thermodynamic variables, the total
entropy S is a key value in the description of many-body physics. In most cases, the
constraints that are imposed on a system make S a dependent variable which immedi-
ately raises the question how this quantity can be measured or calculated. Especially
from a statistical mechanics point of view, it becomes apparent that a determination of
the entropy is conceptually difficult since the definition originally attributed to Gibbs
and refined by Jaynes [15],

S = −kB〈lnψ〉, (2.1)

is explicitly dependent on the many-body distribution function ψ. Angled brackets 〈·〉
denote the average over the suitable thermodynamic ensemble, whereas kB is Boltz-
mann’s constant. However, the high dimensionality of phase space makes ψ difficult to
obtain and the average hard to evaluate analytically.
On the basis of eq. (2.1), a localization to a one-body entropy density s(r), where r

indicates position, is presented and applied to systems of hard particles. MC methods
for the determination of s(r) in simulations are developed and the results are compared
with a proposed analytic expression for the entropy density of hard spheres derived with
FMT.

2.1. Definition and properties of entropy density

2.1.1. Canonical ensemble

By restricting ourselves first to the canonical ensemble with N particles of mass m in D
spatial dimensions, we can define the density operator

ρ̂N (r) =
N∑
i=1

δ(r− ri) (2.2)

and the canonical trace
TrN = 1

N !~DN
∫

drN
∫

dpN (2.3)
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2. Entropy density in hard sphere fluids

with ~ being the reduced Planck constant and (rN ,pN ) denoting a vector in phase space.
The system under consideration has the volume V and is at temperature T . Then the
canonical average is given as

〈·〉N = TrN · ψN , (2.4)

whereby ψN (rN ,pN ) is the canonical N -body distribution function.

This suggests a definition of the local canonical entropy density by inserting ρ̂N (r)/N
into (2.1):

sN (r) = −kB
〈
ρ̂N (r)
N

lnψN
〉
N
. (2.5)

The denominator N is needed for correct normalization as

S =
∫
s(r) dr (2.6)

should hold, which can be proven by exchanging the order of integrations.

With definition (2.5), the entropy density attains the role of a one-body field analogous
to the particle density

ρN (r) = 〈ρ̂N (r)〉N (2.7)

that satisfies N =
∫
ρN (r) dr.

Nevertheless, the explicit occurence of the many-body distribution function ψN in
the canonical average (2.5) is a peculiarity compared to other common one-body fields
that emerge from the averaging of microscopic operators. It is beneficial to rewrite this
explicit dependence on ψN by inserting its known Boltzmann form

ψN (rN ,pN ) = 1
ZN

e−βHN (rN ,pN ), (2.8)

whereby ZN is the canonical partition sum and β = 1/(kBT ). Note that we are only
considering the equilibrium.

The Hamiltonian of the system is assumed to be of the form

HN (rN ,pN ) =
N∑
i=1

p2
i

2m + Uint(rN ) +
N∑
i=1

Vext(ri) (2.9)

with the one-body external potential Vext(r) and the interaction energy Uint(rN ) of a
certain configuration rN .

The insertion of eq. (2.8) into eq. (2.5) yields

sN (r) = −kB
〈
ρ̂N (r)
N

ln
(

exp(−βHN (rN ,pN ))
ZN

)〉
N

(2.10a)
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2.1. Definition and properties of entropy density

= −kB
〈
ρ̂N (r)
N

(
FN
kBT

− HN (rN ,pN )
kBT

)〉
N

(2.10b)

= − FN
TN

ρN (r) + 1
TN

〈
ρ̂N (r)

(
N∑
i=1

p2
i

2m + Uint(rN ) +
N∑
i=1

Vext(ri)
)〉

N

(2.10c)

= − FN
TN

ρN (r) + kBD

2 ρN (r) +

〈
ρ̂N (r)Uint(rN )

〉
N

TN
+

〈
ρ̂N (r)∑N

i=1 Vext(ri)
〉
N

TN
(2.10d)

= sN,free(r) + sN,kin(r) + sN,int(r) + sN,ext(r). (2.10e)

We have identified each contribution with its “physical origin”, namely free energy,
kinetic energy, internal interactions and external potential. The latter three terms arise
from the explicit insertion of the Hamiltonian (2.9) into (2.10b). In (2.10b), the free en-
ergy FN = −kBT lnZN was used. The kinetic part was evaluated with the equipartition
theorem and the fact that 〈A(rN )B(pN )〉N = 〈A(rN )〉N 〈B(pN )〉N for two phase space
functions A(rN ) and B(pN ) with limited dependence on arguments.

To simplify this expression for hard particle systems, a rewriting of the internal and
external part is performed. Note that for hard particles of diameter σ,

Uint(rN ) =
N∑
i=1

N∑
j=1,j<i

Φ(ri, rj) (2.11)

with the hard core potential

Φ(ri, rj) =

∞ |ri − rj | < σ

0 |ri − rj | ≥ σ.
(2.12)

Therefore, sN,int(r) vanishes as Uint = 0 for all allowed microstates of the system.
The external contribution can be rearranged to

sN,ext(r) = 1
TN

〈
ρ̂N (r)

N∑
i=1

Vext(ri)
〉
N

(2.13a)

= 1
TN

〈
ρ̂N (r)

N∑
i=1

∫
δ(r′ − ri) dr′Vext(ri)

〉
N

(2.13b)

= 1
TN

∫ 〈
ρ̂N (r)

N∑
i=1

δ(r′ − ri)Vext(r′)
〉
N

dr′ (2.13c)

= 1
TN

∫ 〈
ρ̂N (r)ρ̂N (r′)

〉
N Vext(r′) dr′. (2.13d)

An analogous calculation can be performed for sN,int(r) in the case of arbitrary pair-
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2. Entropy density in hard sphere fluids

interactions and is shown in appendix A.1.
We emphasize that the splitting in eq. (2.10) is not a separation of the dependence

on Vext(r) since the free energy FN contains information about the external potential as
well. Yet, in the canonical case,

FN = FN,int +
∫
ρN (r)Vext(r) dr, (2.14)

which leads to

sN (r) = −FN,int
TN

ρN (r) + kBD

2 ρN (r)

+ 1
TN

∫ (〈ρ̂N (r)ρ̂N (r′)〉N − ρN (r)ρN (r′)
)
Vext(r′) dr′. (2.15)

In eq. (2.15), the last summand contains the influence of the external potential com-
pletely.

2.1.2. Grandcanonical ensemble

There are necessary alterations to obtain results in the grandcanonical ensemble, i.e.
when the particle number N is not fixed but rather a chemical potential µ is imposed.
Grandcanonical trace Tr, average 〈·〉 and partition sum Ξ are defined as usual:

Tr =
∞∑
N=0

TrN , (2.16)

〈·〉 = Tr · ψ =
∞∑
N=0

TrN · eβµN
ZN
Ξ ψN (rN ), (2.17)

Ξ =
∞∑
N=0

eβµNZN . (2.18)

The local entropy density
s(r) = −kB

〈
ρ̂N (r)
N

lnψ
〉

(2.19)

is then analogous to (2.5) but inherits its grandcanonical nature from the grandcanonical
average (that we denote without the subscript N) and the grand ensemble distribution
function

ψ(rN ,pN ) = 1
Ξe−β(H(rN ,pN )−µN) = eβµN ZNΞ ψN (rN ,pN ). (2.20)

The identification of canonical ψN from eq. (2.8) can be obtained by separating eβµN ,
the fugacity raised to the power of N , as a prefactor and expanding by ZN .
We proceed similarly to the canonical case by inserting the equilibrium expression

(2.20) of ψ which formally leads to a splitting
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2.1. Definition and properties of entropy density

s(r) = sfree(r) + skin(r) + sint(r) + sext(r) (2.21)

with

sfree(r) = −Ω
T

〈
ρN (r)
N

〉
− µ

T
ρ(r) = − 1

T

〈
ρN (r)
N

FN

〉
, (2.22)

skin(r) = kBD

2 ρ(r), (2.23)

sint(r) = 1
T

〈
ρ̂N (r)
N

Uint(rN )
〉
, (2.24)

sext(r) = 1
T

〈
ρ̂N (r)
N

N∑
i=1

Vext(ri)
〉
. (2.25)

The grand potential Ω = −kBT ln Ξ was identified and the naming conventions of
the canonical case have been adopted. Although the Helmholtz free energy is not the
appropriate potential in the grandcanonical ensemble, a rearrangement with FN = Ω +
µN still suggests the labeling of sfree(r) that we will thus keep for this contribution.
Note however that the actual Helmholtz free energy F = Ω+µ〈N〉 of the grandcanonical
system is obtained by a Legendre transform of the grand potential Ω.

It is straightforward to show that eq. (2.13) holds almost analogously when switching
to the grandcanonical average. Different to the canonical case, the factor 1/N stays
inside of the average so that

sext(r) = 1
T

∫ 〈
ρ̂N (r)
N

ρ̂N (r′)
〉
Vext(r′) dr′. (2.26)

One has to be cautious of the zero-particle state (i.e. N = 0) as it is not well-defined
in the formal expression (2.22) of sfree(r). Still, the integral value of this contribution
can be evaluated to 1/Ξ, which leaves the localization of this finite contribution as a
choice to be made. An examination of the ideal gas suggests this part to be proportional
to the grandcanonical density profile ρ(r). This choice will be applied in the following
considerations. The derivations of those two details are presented in appendix A.2.

It seems that a grandcanonical averaging of the splitting (2.10) of the canonical sN (r)
results in the grandcanonical entropy density (2.21)–(2.25). However, in general, there
is a discrepancy between the Helmholtz free energy FN obtained in a canonical N -
particle system and FN = Ω + µN in the grandcanonical version calculated for the
same N , which corresponds to no thermodynamic potential. Therefore, although the
grandcanonical entropy density relies heavily on canonical information,

s(r) 6= 〈sN (r)〉. (2.27)
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2. Entropy density in hard sphere fluids

This can also be proven more directly by recognizing the nonlinearity of its definition
(2.19) in the partition function caused by the explicit occurence of lnψ.

Numerical methods for the computation of s(r) must therefore yield proper grand-
canonical information. This will be explored in the next section, where efficient proce-
dures of obtaining sN (r) or s(r) from simulations are presented.

2.1.3. Numerical methods

The definitions of the local canonical entropy density (2.5) and of its grandcanonical
version (2.19) give sN (r) and s(r) as an explicit average over phase space. However,
due to the exponential scaling of the numerical integration w.r.t. its dimensionality, a
practical limit is already reached if ND ≈ 4 for N particles in D spatial dimensions.
Therefore, this method is not applicable for complex model systems.
Instead, eq. (2.10) and eq. (2.21) provide means to sample the entropy density in

molecular simulations such as MC since all averages and fields are accessible. In most
cases (and especially for hard particle systems), standard Metropolis sampling is a rea-
sonable choice. While the sampling of a canonical system is straightforward, there is a
variety of methods for the grandcanonical ensemble [16, 17]. In the approach used in this
work, each grandcanonical trial move consists of either the insertion of a new particle or
the removal or displacement of a randomly chosen one. The displacement trial move is
accepted with the common Metropolis probability

pdis
A = min

(
1, e−β∆E

)
, (2.28)

while the acceptance ratio of insertion and removal is given by [16]

pins
A = min

(
1, V

Λ3(N + 1)e−β∆E
)
, (2.29)

prem
A = min

(
1, NΛ3

V
e−β∆E

)
, (2.30)

with the thermal wavelength Λ =
√

2πβ~2/m and energy difference ∆E of trial and
initial configuration.
Solely the thermodynamic potentials FN in the canonical splitting (2.10) and Ω in

eq. (2.22) for the grandcanonical ensemble both pose a difficulty as they cannot be
sampled in one conventional Metropolis-MC run. A common procedure to obtain the
respective values is thermodynamic integration – the construction of a reversible path
from a statepoint with known thermodynamic potential to the one of interest. For hard
particles in the canonical ensemble, a suitable path is found by varying the height ε of
a repulsive step interparticle interaction potential with constant diameter σ. The ideal

8



2.1. Definition and properties of entropy density

gas (ε = 0) can be used as a reference state and hard core interactions are recovered for
ε→∞.
In the grandcanonical ensemble, a more general approach can be taken by varying the

chemical potential µ. Considering the limit

lim
µ→−∞

Ω(µ, V, T ) = 0, (2.31)

a statepoint with a sufficiently low chemical potential µ0 provides a suitable reference
due to the vanishing grand potential. Hence, for the desired µ,

Ω(µ, V, T ) =
∫ µ

−∞

∂Ω
∂µ

∣∣∣∣
µ′,V,T

dµ′ ≈
∫ µ

µ0

∂Ω
∂µ

∣∣∣∣
µ′,V,T

dµ′ = −
∫ µ

µ0
〈N〉|µ′,V,T dµ′, (2.32)

where the vertical bar denotes an evaluation with the variables in the subscript. Note
that the necessary MC simulations along this path are very efficient since we start from
a low density limit and sample only the scalar mean particle number 〈N〉 for each µ′.
Furthermore, this method is independent of the internal interaction potential.

The requirement of reversibility can be limiting and will be discussed in section 3.1.
In the considered hard particle systems, no restrictions of this kind occurred and ther-
modynamic integration was possible.

2.1.4. Monte-Carlo results for hard spheres

It is instructive to apply the methodology of the previous section to some exemplary
cases. The results in fig. 2.1 stem from the simulation of a hard sphere system in an
external cosine potential of spatial period 6.25σ and amplitude 3ε that varies only in the
x-direction, i.e.

Vext(x) = 3ε cos
( 2πx

6.25σ

)
. (2.33)

Results for the splitting (2.21) into internal, external, kinetic and free contributions
are presented. As already discussed, the internal contribution vanishes due to the hard
core nature of the internal potential.
Furthermore, it is interesting to look at the behaviour of s(r)/ρ(r) since fig. 2.1 already

suggests a simple connection between s(r) and ρ(r) in some cases. In general, of course,
the entropy density is not proportional to ρ(r) as 〈ρ̂N (r)/N〉 6= ρ(r)/〈N〉. But in the case
of no internal energetic contribution, one is left with terms that are either proportional to
ρ(r), to 〈ρ̂N (r)/N〉 or to 〈ρ̂N (r)Eext(rN )/N〉, where Eext(rN ) denotes the total external
energy.

It is observed that in the thermodynamic limit, i.e. for N → ∞, 〈ρ̂N (r)/N〉 →
ρ(r)/〈N〉 since the distribution of the particle number N ,

9



2. Entropy density in hard sphere fluids
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Figure 2.1.: The influence of an external cosine potential in a system at temperature
T = 1.0ε/kB and chemical potential µ = −7.0ε with planar geometry is shown. Hard
spheres are confined between two hard walls at a distance of 12.5σ and periodic boundary
conditions in the remaining two directions are applied. Only the left half of the mirror
symmetric system is depicted. The wavelength of the external potential (c) was chosen
such that two periods fit in the cavity. Due to large external energetic modulation
with an amplitude of 3ε, the density profile (b) is notably altered to that in the case of
vanishing Vext. The minimum of Vext(x) at x ≈ 3σ causes a global maximum of ρ(x),
whereas the contact value of the density at the hard wall is reduced. Most importantly,
the splitting of s(x) into all parts of eq. (2.21) is shown (a). Trivially, sint(x) = 0 due
to the hard core nature of interparticle interactions. It is also apparent that s(x) has
the same behaviour as ρ(x) since the system is sufficiently large so that correlations of
the density operator to global quantities such as the particle number N or the total
external energy Eext vanish. The largest contribution to the entropy density is sfree(x).
Proportionality to ρ(x) for the kinetic part skin(x) is expected due to eq. (2.23) and
indeed observed. The external contribution sext(x) is small and negative, since the total
energy Eext(rN ) < 0 for most relevant configurations rN .

p(N) = 〈δN(rN ,pN ),N 〉, (2.34)

develops a sharp peak around the mean particle number 〈N〉. The phase space function
N(rN ,pN ) counts the particles in the system for a certain point (rN ,pN ) in phase space
and δi,j is the Kronecker delta that yields 0 everywhere except for i = j, where it has a
value of 1.
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Figure 2.2.: The entropy density in a large system with vanishing external potential
becomes proportional to ρ(x). Here, a cavity of length L = 12.5σ with hard walls in
x-direction and periodic boundary conditions in the remaining two axes was simulated
at temperature T = 1.0ε/kB and chemical potential µ = −5.0ε. The system consists of
hard particles of diameter σ and mass m = 2∗103π~2/(εσ2). The entropy density profile
has a maximum in the vicinity of the hard wall and layering effects are also visible in
s(x). The inset shows the ratio s(x)/ρ(x), which is constant throughout the cavity. This
also holds for the separate contributions sfree(x)/ρ(x) and skin(x)/ρ(x).
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x/σ

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

sσ
3 /
k
B

s
sfree

skin

0.0 0.2 0.4

5

10

15

s/
(ρ
k
B

)

Figure 2.3.: Unlike in fig. 2.2, the entropy density is not proportional to ρ(x) in a narrow
hard cubic box of volume V = (2.0σ)3. The thermodynamic limit is broken as the relative
variance of p(N) is not negligible. The inset shows a non-constant profile of s(x)/ρ(x)
and sfree(x)/ρ(x). The kinetic part skin(x) is still proportional to ρ(x) due to eq. (2.23).
All other parameters are the same as in fig. 2.2.
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2. Entropy density in hard sphere fluids

The configurational energy distribution

p(E) = 〈δ(Eext(rN )− E)〉 (2.35)

for a hard sphere fluid in a large system also degenerates to a delta function at the
expectation value 〈Eext(rN )〉 so that ρ̂N (r) and Eext(rN ) lose their correlation. Under
those circumstances, s(r)/ρ(r) becomes constant even in the presence of an external
potential. As an illustrative case, we consider hard spheres confined between two hard
walls at a sufficiently large distance from each other. Fig. 2.2 displays results from a
grandcanonical MC simulation for this case. Notice that s(r)/ρ(r) = const. is even true
in the vicinity of the hard wall.
We emphasize however that internal interactions and changes to the parameters of the

system can alter this result significantly. More precisely, whenever it is not guaranteed
that p(N) and p(E) show a sharp peak, the proportionality to the particle density is
lost. Therefore, the entropy density stays a relevant nontrivial field. Even in our case of
simple hard core interactions, confined systems such as cavities lead to a more complex
behaviour as the particle number varies noticeably. This can be seen in fig. 2.3, where
the volume of the hard box was reduced to V = (2.0σ)3. The ratio s(r)/ρ(r) is not
constant in this case, which proves the loss of proportionality.

2.2. Application to classical DFT for hard particles

To demonstrate that the definitions (2.5) and (2.19) are not somewhat arbitrary and of
questionable benefit, the profound connection to DFT is shown and a reinterpretation
of a common hard sphere functional in the context of the local entropy density is given.

2.2.1. Basic concepts of DFT and FMT

To introduce notation and conventions, a short overview of DFT and FMT is presented.
The reader is referred to the pertinent literature for more details [14, 18].
Typically, classical DFT is formulated in the grandcanonical ensemble at chemical

potential µ and temperature T . Hence, the central object is the grand potential

Ω([ρ], µ, T ) = Fint([ρ], T )−
∫
ρ(r)(Vext(r)− µ) dr (2.36)

where Fint([ρ], T ) indicates the intrinsic Helmholtz free energy as a density functional
independent of Vext(r). The parametric dependence on T is made explicit here, but will
usually be omitted.
A variational principle can be formulated [13], that connects the minimization of Ω[ρ]
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2.2. Application to classical DFT for hard particles

w.r.t. ρ(r) to the realized equilibrium density ρ0(r), i.e.

δΩ[ρ]
δρ(r)

∣∣∣∣
ρ=ρ0

= 0 (min). (2.37)

A further splitting of the intrinsic Helmholtz free energy functional

Fint[ρ] = Fid[ρ] + Fexc[ρ] (2.38)

introduces ideal (Fid) and excess (Fexc) contributions. Fid[ρ] can be derived rigorously,
which yields

Fid[ρ] = kBT

∫
ρ(r)

(
ln(ρ(r)ΛD)− 1

)
dr. (2.39)

In order to apply DFT to interacting particles, the excess free energy functional has
to be specified. The development of suitable approximations of Fexc[ρ] for certain inter-
particle interactions is still a relevant topic in current literature [19]. Hard particles are
a special case since highly accurate functionals can be found due to the purely geometric
nature of internal interactions. For hard rods in one spatial dimension, the functional
obtained by Percus is even exact [20]. In D = 3, the most famous and widely used
method is FMT. Thereby, the excess free energy functional is of the form

Fexc[ρ] = kBT

∫
Φ({nα(x)}) dx (2.40)

for a one component hard sphere fluid, where {nα : α = 0, 1, 2, 3} is a set of weighted
densities obtained by the convolutions

nα(x) = (ρ ∗ ωα)(x) =
∫
ρ(x′)ωα(x− x′) dx′. (2.41)

Equivalent representations of the weight functions {ωα} exist. We use Kierlik and Ros-
inberg’s scalar weight functions [21] given by

ω3(x) = Θ(R− x), (2.42)

ω2(x) = δ(R− x), (2.43)

ω1(x) = 1
8πδ

′(R− x), (2.44)

ω0(x) = − 1
8πδ

′′(R− x) + 1
2πxδ

′(R− x). (2.45)

The actual form of Φ({nα}) as a function of weighted densities is still up to debate [22]
and depends on the particular derivation and considered approximations. The approach
used by Rosenfeld [23] is an ansatz based on dimensional analysis, where remaining co-
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2. Entropy density in hard sphere fluids

efficients are obtained such that the functional reconstructs the low-density limit exactly
and approximates the behaviour at higher densities. Kierlik and Rosinberg adapted the
results to their scalar weight functions and obtained

Φ = −n0 ln(1− n3) + n1n2
1− n3

+ n3
2

24π(1− n3)2 . (2.46)

There are improved functionals that overcome some existing deficiencies by incor-
porating accurate equations of state directly in the derivation, such as the so-called
White-Bear versions of Roth et al. [24] and Hansen-Goos and Roth [25]. Still, in this
work, eq. (2.46) is taken as a starting point similar to Ref. [26].

Due to the multiple convolution integrals that enter eq. (2.40), the ambiguity of the
integrand is already seen here and will be exploited when the entropy density is addressed
in the next section.

2.2.2. Connection to entropy density

To further motivate the definition of s(r) and to discuss the role of temperature in DFT,
a reformulation of the latter is presented, which incorporates the entropy density as a
trial field for minimization as it was already stated by Schmidt [26]. In this approach,
s(r) is defined equivalently to (2.19) and Levy’s constrained search method is applied to
the grand potential which is now a functional of both ρ and s. This leads to a splitting

Ω[ρ, s] = E[ρ, s]− T
∫
s(r) dr +

∫
ρ(r)(Vext(r)− µ) dr (2.47)

and shifts the focus from the intrinsic Helmholtz free energy to the internal energy
functional E[ρ, s] as the nontrivial object that incorporates excess contributions. The
minimization principle (2.37) can be cast into the Euler-Lagrange equations

δE[ρ, s]
δρ(r)

∣∣∣∣
ρ=ρ0,s=s0

= µ− Vext(r), (2.48)

δE[ρ, s]
δs(r)

∣∣∣∣
ρ=ρ0,s=s0

= T, (2.49)

which makes clear that T does not only enter as a mere parameter anymore, but also
has a direct influence on the conjugate field s(r) in the minimization. The equilibrium
profiles ρ0(r) and s0(r) represent the realized particle density and entropy density.

Considering hard sphere systems, it is argued that the internal energy functional is of
the form [26]
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2.2. Application to classical DFT for hard particles

E[ρ, s] = 3π~2

e5/3m

∫
ρ(r)5/3 exp

(
s(r)− sHS([ρ], r)

3kBρ(r)/2

)
dr. (2.50)

It is proposed that a suitable choice of sHS(r) can be derived using the results of FMT,
making sHS([ρ], r) itself a pointwise functional of the density profile. We first consider
the case of a hard external potential, so that sext vanishes. In this totally athermal
system, the free energy is given by

F = −T
∫
s(r) dr. (2.51)

The splitting into ideal and excess contribution induces s(r) = sid(r)+sexc(r), whereby
the ideal part can be derived [26] as

sid(r) = −kBρ(r)
(

ln(ρ(r)ΛD)− D

2 − 1
)
. (2.52)

Note that eq. (2.52) is a local version of the well-known Sackur-Tetrode equation [27]

Sid = −kBN
(

ln
(
N

V
ΛD
)
− D

2 − 1
)

(2.53)

for the total entropy Sid of an ideal gas.

The excess part of the entropy density must yield an integral value of −Fexc/T , which
can be approximated by scalar FMT, cf. section 2.2.1. Of course, a unique identification
of the integrand −kBΦ(r) with sexc(r) is not possible. However, it is argued that a rear-
rangement of integrals can be used to separate one of them in a way that is as unbiased
as possible [26]. This can also be motivated by the use of diagrammatic methods which
provide a formalized framework for the construction of FMT functionals [28]. A more
detailed discussion is presented in appendix A.3, where the reordering of integrations is
shown explicitly.

The remaining integrand is then a suitable representation of the hard sphere excess
entropy density sHS(r). This reasoning yields

sexc(r) = sHS(r) = −kBρ(r)
3∑

α=0
(ωα ∗ φα) (r) (2.54)

with

φ0 = 1 +
( 1
n3
− 1

)
ln(1− n3), (2.55)

φ1 = −n2
n3
− n2
n2

3
ln(1− n3), (2.56)
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2. Entropy density in hard sphere fluids

φ2 =
(

n2
2

4πn3
3
− n1
n2

3

)
ln(1− n3)− n1

n3
+ n2

2(2− n3)
8πn2

3(1− n3) , (2.57)

φ3 = −
(
n0
n2

3
− 2n1n2

n3
3

+ n3
2

4πn4
3

)
ln(1− n3)− n0

n3
+ n1n2(2− n3)

n2
3(1− n3) −

n3
2(2n2

3 − 9n3 + 6)
24πn3

3(1− n3)2 ,

(2.58)

as the hard sphere contribution to the entropy density. Here, {nα} is the same set of
weighted densities that was defined in eq. (2.41).

2.3. Comparison of entropy density from MC and FMT

In the following section, a computational scheme will be presented that makes the cal-
culation of sHS(r), both within the FMT approach and from simulations, possible. This
provides a tool necessary to compare the obtained theoretical result (2.54) to the real
influence of hard sphere interactions on s(r), which are accessible from particle based
simulations such as MC.

2.3.1. Computational scheme

The FMT formalism consists of numerous convolutions which can be evaluated efficiently
in Fourier space. We mainly follow the procedure of Levesque et al. [29] but make
alterations to the treatment of the weight functions {ωα} for improved accuracy.

For a better understanding, the standard scheme of scalar FMT is presented in fig.
2.4. The convolutions are dealt with by direct fast Fourier transforms (FFT), inverse
fast Fourier transforms (iFFT) and multiplications in Fourier space, while {ωα} is ana-
lytically Fourier transformed (F) and sampled in Fourier space in the beginning of the
process.
This treatment of the weight functions induces errors in the discrete representation of
{ωα(x)} in direct space. An alternative route is thus used to retain the accuracy needed
for a spatially resolved result and is shown schematically in fig. 2.5. A comparison of the
weight functions obtained by both methods can be seen in fig. 2.6. The new route yields
exact representations, whereas oscillations are induced in the conventional procedure.
In our new method, only ω2 and ω3 are implemented on a grid in direct space. Con-

volutions with ω0 and ω1 are treated by partial integration which yields

(f ∗ ω1)(r) = 1
8π [(f ∗ a) (r)− (∇f ∗ c) (r)] , (2.59)

(f ∗ ω0)(r) = 1
8π

(f ∗ b) (r)−
∑
i,j

(H[f ]ij ∗Dij) (r)

 , (2.60)
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x

x

continuous
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x

x

r-/direct-space

k-/Fourier-space

ωα
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ρ

ρ nα = ρωα

nα = ρ ∗ ωα φα

φα φαωα

φα ∗ ωα sHS

F
and

sample
FFT iFFT FFT iFFT

Figure 2.4.: The original scheme of scalar 3D-FMT that is commonly used to get the
excess Helmholtz free energy for hard core interactions [29]. Fast Fourier transforms
(FFT) and inverse fast Fourier transforms (iFFT) are used to compute the three-
dimensional convolutions efficiently by multiplication in k-space. The weighted densities
{ωα : α = 0, 1, 2, 3} of eqs. (2.42)–(2.45) are analytically Fourier-transformed (F) and
sampled on a grid in k-space. We need the spatially resolved quantity sHS(r) and must
have accurate representations of {ωα} in real space. Therefore, the implementation of
weight functions {ωα} and the evaluation of convolutions is altered and explained in
fig. 2.5.

x

x

continuous

discrete/sampled

x

x

r-/direct-space

k-/Fourier-space

ω2, ω3

ω2, ω3

f,∇f,H[f ]

f,∇f,H[f ] fωα

f ∗ ωα

FFT FFT

(2.59),
(2.60)

iFFT

Figure 2.5.: Our improved computational scheme for calculating the convolution of a
function f with a weight function. One can see that only ω2 and ω3 have to be im-
plemented in real space. The convolutions can be evaluated using f , its gradient ∇f
and its Hessian matrix H[f ]. For convolutions with ω1 and ω0, eqs. (2.59) and (2.60)
are applied. This method replaces the original procedure of computing convolutions in
fig. 2.4.
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Figure 2.6.: The implementation of {ωα} in the conventional way induces oscillations in
real space. Here, the behaviour of ω2 and ω3 is shown (dashed lines). This is compared
to our improved method (solid lines, ω∗2, ω∗3) which is exact by construction.

for a test function f . In our case, f = nα or φα, α = 0, 1, 2, 3. The Hessian matrix H[f ]
of f is computed with the second-order central-difference scheme and a, b, c,D can be
evaluated using only ω2:

a(x) = 2
x
ω2(x), (2.61)

b(x) = 2
x2ω2(x), (2.62)

c(x) = exω2(x), (2.63)

Dij(x) = (ex)i(ex)jω2(x). (2.64)

With this result, the only weight functions needed for the convolutions are ω2(x) =
δ(R−x) and ω3(x) = Θ(R−x). In eqs. (2.63) and (2.64), the unit vector in the direction
of x is denoted by ex = x/x.
As a direct comparison, the result of this method is also shown in fig. 2.6 and the

improvement is obvious.

2.3.2. Results for hard spheres in a cubic box

With the possibility of an accurate numerical implementation for the FMT framework, a
comparison with the aforementioned MC method can be drawn. Thereby, hard spheres
of diameter σ and mass m = 2 ·103π~2/(εσ2) in a three-dimensional cubic box of volume
V = (2.55σ)3 with hard walls were simulated with the grandcanonical MC scheme of
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Figure 2.7.: The entropy densities (a) obtained from MC simulation (circles) and from
the FMT scheme (crosses) are compared. Also shown is the splitting of s in ideal
(sid, pluses) and hard sphere (sHS, dots) contributions. The grandcanonical system
under consideration is a three-dimensional cubic hard box of volume V = (2.55σ)3 at
temperature T = 1.0ε/kB and chemical potential µ = −5.0ε containing hard spheres of
diameter σ and mass m = 2 · 103π~2/(εσ2). A slice from the center of the box towards
one of its faces is plotted in this figure and is representative for evaluating the agreement
of s(r) via MC and s(r) via FMT. A good agreement is observed, which proves that eq.
(2.54) is a reasonable approximation to the one-body entropy density for hard sphere
systems. The local relative error (b) rarely exceeds 10% and shows that the FMT scheme
overestimates the entropy density inside the box but yields lower values than the MC
simulation near the walls of the system.

section 2.1.3. Temperature T = 1.0ε/kB and chemical potential µ = −5.0ε were imposed
and the entropy density s(r) as well as the density profile ρ(r) were obtained. The latter
served as a basis for the alternative calculation of s(r) via the FMT route.

The result of both procedures is depicted in fig. 2.7 and good agreement with 5.5% as
the root mean square value of the local relative error

e(r) = sFMT(r)− sMC(r)
sMC(r) (2.65)

is found, where sFMT(r) and sMC(r) indicate the local entropy density obtained by the
FMT and MC method respectively. This error can stem from the noise of the MC simu-
lation, inaccuracy of the thermodynamic integration as well as a systematic deviation of
sFMT(r) from the true entropy density of a hard sphere system. Qualitatively, the FMT
scheme underestimates the behaviour of the entropy density near walls but compensates
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2. Entropy density in hard sphere fluids

this error by too large values in some inner parts of the box. Therefore, the integral
values of s(r) via MC and s(r) via FMT differ only by 0.5%. However, this is expected
due to

∫
sHS(r) dr = −Fexc/T and the high accuracy of the conventional FMT functional

for Fexc.
In conclusion, the FMT framework can not only be used for the determination of

functional values for the excess Helmholtz free energy. It was numerically validated that
the reordering of integrations performed by Schmidt [26] and explained in appendix
A.3 yields an approximate expression for the excess entropy density of a hard sphere
system by identifying the integrand of the rearranged free energy functional with sHS(r).
Inversely, the FMT functional can be reinterpreted as a measure that mainly accounts for
internal entropic contributions – albeit intricately hidden as convolutions of the density
profile.
Of course, the case of a soft external potential still remains for discussion. As al-

ready described in section 2.1.4, the entropy density (2.21) in general includes nontrivial
correlators that cannot be approximated by the density profile alone. For the case of
non-vanishing sext(r), this is indeed the case even for a hard sphere system since eq.
(2.25) must be taken into account. This means that although the excess entropy density
sHS(r) as a part of sfree(r) can still be evaluated with the FMT framework, the average
〈ρ̂N (r)Eext(rN )〉 is an additional contribution that cannot systematically be formulated
as a density functional. Nevertheless, this issue does not alter the interpretation of the
FMT functional and the validity of sHS(r) but shows again that s(r) really is a nontrivial
one-body field.
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3. Local fluctuations: entropicity and local
compressibility

3.1. From entropy density to local fluctuations

In the following chapter, an alternative approach is shown that introduces local one-body
fluctuation fields which are closely related to s(r). Although the local entropy density is
a well-defined quantity that gives insight to equilibrium properties of entropically driven
systems (e.g. consisting of hard particles), its usefulness and accessibility may be limited
in some other cases, especially when more realistic particle models are considered.
Certainly, it would be beneficial to avoid the explicit occurence of a thermodynamic

potential, since, from a practical point of view, its determination with MC simulations
requires additional work. In a system of Lennard-Jones particles for example, one can
be faced with phase transitions that make the construction of a reversible path for
thermodynamic integration challenging.
On the other hand, it was shown that an additional one-body field such as s(r) can be

used to reformulate DFT and is at least approximately accessible for hard particles by
common concepts such as FMT. This could be indicative of a more general approach to
DFT, which uses not only the density profile ρ(r) but rather multiple variational fields
for the minimization of functional values.
Local fluctuation fields, that we call the local thermal susceptibility or entropicity

χT (r) and the local chemical susceptibility or local compressibility χµ(r), are promising
candidates for the formulation of a functional minimization principle that augments
common classical DFT [30]. In addition, a truly direct sampling of χT (r) and χµ(r) in
molecular simulations is possible and will be applied in section 3.3 for the investigation
of hard particle systems. Most importantly, it will be shown that the fluctuation fields
themselves attain a physical meaning which is crucial for the interpretation of processes
that cannot be explained well enough with the density profile alone. For this reason,
the interest in the local compressibility has already grown in current literature over the
last few years [31–34]. With our fundamental approach that yields a full set of related
fields, we provide further tools to investigate density fluctuations more systematically.
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3.2. Theory of local fluctuations

3.2.1. Entropicity and local compressibility

This section summarizes the general results of Eckert et al. [30]. In-depth derivations
for the multiple equivalent definitions and the stated relations can be found in Ref. [35].

As a starting point, thermodynamic differentiation of the equilibrium density profile
ρ(r) w.r.t. temperature T and chemical potential µ respectively yields

χµ(r) = ∂ρ(r)
∂µ

∣∣∣∣
T

, (3.1)

χT (r) = ∂ρ(r)
∂T

∣∣∣∣
µ
. (3.2)

Notably, χµ(r) as introduced by Evans and Stewart [31] is argued by these authors to
be of great interest for solvophobicity and hydrophobicity at substrates. In this context,
χT (r) can be viewed as a natural extension that complements χµ(r) and that is worth
further investigation.
Another possibility besides the definitions (3.1) and (3.2) of local fluctuations, that

reveals a more profound functional structure in the context of inhomogeneous liquids,
is the use of functional derivatives as generators of one-body fields. By making use of
Ω = U − TS − µ〈N〉 and ρ(r) = δΩ/δVext(r)|µ,V,T , one obtains

χµ(r) = − δ〈N〉
δVext(r)

∣∣∣∣
µ,V,T

, (3.3)

χT (r) = − δS

δVext(r)

∣∣∣∣
µ,V,T

, (3.4)

ρ∗(r) = δU

δVext(r)

∣∣∣∣
µ,V,T

(3.5)

with the response function ρ∗(r) of the total energy U . This also implies that the density
profile is composed of those three fluctuation fields, i.e.

ρ(r) = ρ∗(r) + µχµ(r) + TχT (r). (3.6)

The one-body field ρ∗(r) can then be interpreted as a local Legendre transform of the
density profile ρ(r) due to

ρ∗(r) = ρ(r)− µ∂ρ(r)
∂µ

− T ∂ρ(r)
∂T

. (3.7)

Furthermore, the derivation of correlator expressions is of special interest for numerical
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implementation in molecular simulations. This is possible for all three fluctuation fields
and leads to

χµ(r) = 〈βNρ̂N (r)〉 − β〈N〉ρ(r)

= cov(βN, ρ̂N (r)),
(3.8)

TχT (r) = 〈βHρ̂N (r)〉 − β〈H〉ρ(r)− µχµ(r)

= cov(βH − βµN, ρ̂N (r)),
(3.9)

ρ∗(r) = ρ(r)− 〈βHρ̂N (r)〉+ β〈H〉ρ(r)

= ρ(r)− cov(βH, ρ̂N (r))
(3.10)

with the covariance of two phase space functions A and B defined as cov(A,B) =
〈AB〉 − 〈A〉〈B〉. It is remarkable that no thermodynamic potential occurs on the right
hand sides of eqs. (3.8)–(3.10).

In order to split the fluctuation fields into ideal (χid
µ , χid

T ) and excess contributions
(χexc
µ , χexc

T ), the ideal gas is examined. The analytic results

χid
µ (r) = βρ(r), (3.11)

χid
T (r) = 1

T

(
D

2 − ln(ΛDρ(r))
)
ρ(r) (3.12)

for ideal entropicity and local compressibility can be derived and let us define the excess
parts as χexc

µ = χµ − χid
µ and χexc

T = χT − χid
T .

This allows the formulation of the Ornstein-Zernicke integral equations

χexc
µ (r) = ρ(r)

∫
c2(r, r′)χµ(r′) dr′, (3.13)

χexc
T (r) = ρ(r)

(
c1(r)
T

+ ∂c1(r)
∂T

+
∫
c2(r, r′)χT (r′) dr′

)
. (3.14)

Thereby, c1(r) = −δβFexc/δρ(r) and c2(r, r′) = δc1(r)/δρ(r′) are the one-body and
two-body direct correlation function respectively.

The correlator expressions in particular lead to the conclusion that there are similari-
ties to the entropy S and entropy density s(r), especially considering the determination
in molecular simulations. If one defines the entropy operator

Ŝ = −kB lnψ, (3.15)

the possibility emerges to write the entropicity as the local covariance of the entropy
operator with the particle density operator, i.e.
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kBTχT (r) = cov(Ŝ, ρ̂N (r)) = s̃(r)− Sρ(r). (3.16)

This can be proven analogously to eq. (2.10) by insertion of the equilibrium distri-
bution function. With the local quantity s̃(r) = −kB〈ρ̂N (r) lnψ〉, the connection to
the entropy density defined in eqs. (2.5) and (2.19) becomes clear since the expressions
differ merely by the factor 1/N in the average. Therefore, the correlators needed to
reconstruct the fluctuation fields are the same ones as for the entropy density except for
the increased order in N . This correspondence also clarifies the term “entropicity” for
χT (r), which emphasizes the resemblance to the former entropy density.
There are two major benefits that the local fluctuations possess over the entropy den-

sity. Firstly, there is no zero-particle state that needs further attention due to a formal
term that is not well-defined for N = 0. This could not be prevented for the entropy
density in the grandcanonical splitting (2.21). Secondly, the free energy contribution
that arises when performing this splitting vanishes due to the difference introduced by
the covariance. No thermodynamic integration is needed in this case, which is a sig-
nificant practical advantage compared to the determination of entropy densities. This
means that local fluctuations are readily available in one MC run – even for systems
that show complex behaviour such as phase transitions.

3.2.2. Relations for hard particles

The Ornstein-Zernicke equation (3.14) simplifies for hard particles since ∂c1(r)/∂T = 0
holds. Therefore,

χHS
T (r) = ρ(r)

(
c1(r)
T

+
∫
c2(r, r′)χT (r′) dr′

)
. (3.17)

Furthermore, due to 〈Uint〉 = 0 and 〈Uintρ̂N (r)〉 = 0 in the case of interparticle hard
core interactions, the correlator expression for the entropicity reduces to

TχT (r) = cov
(
β

N∑
i=1

(
p2
i

2m + Vext(ri)
)
, ρ̂N (r)

)
− µχµ(r) (3.18a)

= D

2 kBT cov(βN, ρ̂N (r)) + cov
(
β

N∑
i=1

Vext(ri), ρ̂N (r)
)
− µχµ(r) (3.18b)

=
(
D

2 kBT − µ
)
χµ(r) + cov

(
β

N∑
i=1

Vext(ri), ρ̂N (r)
)

(3.18c)

=
(
D

2 kBT − µ
)
χµ(r) + β

∫ (〈ρ̂N (r)ρ̂N (r′)〉 − ρ(r)ρ(r′)
)
Vext(r′) dr′ (3.18d)

=
(
D

2 kBT − µ
)
χµ(r) + β

∫
H2(r, r′)Vext(r′) dr′. (3.18e)
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3.2. Theory of local fluctuations

We used the equipartition theorem for the evaluation of the kinetic part in eq. (3.18a).
The same reasoning as in eq. (2.13) leads to the rearrangement in the last line (3.18e)
where the two-body density covariance H2(r, r′) = cov(ρ̂N (r), ρ̂N (r′)) occurs. This also
shows that although local fluctuations are one-body fields, information about higher-
order correlators can be incorporated.
In the case of vanishing external potential Vext = 0,

χT (r)
χµ(r) = D

2 kB −
µ

T
, (3.19)

which makes the ratio of both fluctuations invariant of position.
Evans and Stewart showed [31] that the local compressibility satisfies the contact

theorem
χµ(0+) = βN/V = βρ(∞) (3.20)

at a hard wall potential of the form

Vext(x) =

∞, x ≤ 0

0, x > 0
(3.21)

independent of the nature of internal interactions. The argument 0+ in the contact
theorem (3.20) represents a position in the vicinity of the wall whereas ∞ denotes the
bulk behaviour far away from it. A similar consideration leads to an analogous contact
theorem for the entropicity [36],

χT (0+) = β

TV
(U − µN). (3.22)

For the ratio of thermal and chemical wall contact susceptibility, eqs. (3.20) and (3.22)
imply that

χT (0+)
χµ(0+) = U

TN
− µ

T
. (3.23)

It is striking that the ratio of those fluctuations obeys a contact theorem that gives an
estimate of the internal energy per particle for arbitrary internal interactions.
Keeping in mind that χT (x)/χµ(x) is spatially homogeneous for hard particles at a

hard wall due to eq. (3.19), it immediately follows that the internal energy per particle
is constant, as one would expect in that case. Eq. (3.19) is consistent with eq. (3.23)
which can again be proven with the equipartition theorem since the kinetic part is the
only contribution to the internal energy U in this situation.
The contact theorems (3.20), (3.22) and (3.23) may become of special interest for

various interparticle interactions that are not of the hard core type, e.g. Lennard-Jones or
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3. Local fluctuations: entropicity and local compressibility

Gaussian particles. Local fluctuations in those particle models were studied in Ref. [36].

3.3. MC results for hard sphere systems

To test the obtained relations described in section 3.2 and to get insight into the be-
haviour of χµ(r) and χT (r) in inhomogeneous situations, MC simulations for hard sphere
systems are performed. The numerical method is analogous to that described in sec-
tion 2.1.3 for the sampling of averages in eqs. (3.8), (3.9) and (3.10). Since thermody-
namic integration is now avoided and no numerical derivatives – as the definitions (3.1)
and (3.2) by thermodynamic derivatives of the density profile would suggest – have to
be evaluated, a truly direct sampling in one conventional Metropolis-MC run is possible.
Nevertheless, it is apparent that covariances have a worse signal-to-noise ratio than

simpler one-body fields such as ρ(r). This behaviour is due to the generally small
difference of 〈AB〉 and 〈A〉〈B〉 for two phase space functions A and B. Hence, to obtain
acceptable results for cov(A,B), longer MC runs are needed for the convergence of this
small difference.
The computation of χµ(r) and χT (r) via numerical derivatives of ρ(r) is still possible,

of course, and will be applied below as a consistency check. Due to their original def-
inition of χµ(r) and the application of a DFT scheme, Evans et al. [7] used solely this
method for the evaluation of the local compressibility. It was however already recognized
that the local compressibility is an indicator for the fluctuation of the liquid density and
that it can also be expressed as the correlator term (3.8) [32, 33]. Still, computational
advantages of the more direct covariance route will be shown in our context of particle
based simulations.

3.3.1. Interpretation of local fluctuations

As before, hard spheres in a confinement of two parallel hard walls and periodic boundary
conditions in the remaining directions are simulated. The distance of the walls is chosen
sufficiently large so that a mutual influence is avoided. Thus, the simulation serves as
an approximation to a bulk fluid in contact with only one wall.
Although the strictly positive density profile is a linear combination of χT (r), χµ(r)

and ρ∗(r), the fluctuation profiles do not have to obey the constraint of positivity sep-
arately. In fig. 3.1, χT (r) and χµ(r) become negative around x ≈ 0.5σ. A similar
observation was made by Evans et al. [7] for the local compressibility χµ(r) in Lennard-
Jones liquids near a solvophilic wall. Our result shows, however, that the presence of this
effect is not only due to attractive interactions – be it from internal or external contri-
butions. It can already be reconstructed in an athermal situation where only repulsions
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3.3. MC results for hard sphere systems
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Figure 3.1.: The considered system at T = 1.0ε/kB and µ = −5.0ε approximates a hard
sphere bulk fluid in contact with a hard wall. Layering near the wall occurs as usual and
is observed in all three fluctuation fields. Local maxima and minima coincide approxi-
mately for all fluctuations, although small deviations can still be noticed. Interestingly,
while ρ(x) > 0 is composed of the three fields, χT (x), χµ(x) and ρ∗(x) do not have to
be strictly positive. Here, negative values of χT (x) and χµ(x) occur at x ≈ 0.5σ.

of a hard core nature exist.
One might find it unusual that the local susceptibilities can change sign. Let us

define the corresponding bulk quantities χbµ = ∂ρb/∂µ and χbT = ∂ρb/∂T with the bulk
density ρb = 〈N〉/V . Since Ω(µ) is a concave function of the chemical potential µ as a
consequence of the second law of thermodynamics [8],

χbµ = 1
V

∂〈N〉
∂µ

∣∣∣∣
V,T

= − 1
V

∂2Ω
∂µ2

∣∣∣∣∣
V,T

> 0. (3.24)

As we showed, this property is not true for χµ(r) at every position r. A strongly mod-
ulated or even locally negative susceptibility can be interpreted as a sign of substantial
changes in the local structure of the fluid when shifting the thermodynamic statepoint
only by a small amount. In the case of the local compressibility χµ(r), variations of the
chemical potential µ on the structure of ρ(r) are considered. This behaviour could be
helpful in the indication of layering or prewetting transitions at substrates or interfaces
analogous to the already mentioned use as a sign for solvophobicity and hydrophobicity.
The same reasoning applies for the entropicity χT (r), although its bulk counterpart

χbT is not necessarily strictly positive (recognize that a similar calculation to eq. (3.24)
would yield an off-diagonal element of the Hessian matrix of Ω(µ, T ) which shows no
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3. Local fluctuations: entropicity and local compressibility
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χµ/ε with derivative
χµ/ε with covariance
χT kB/ε with derivative
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Figure 3.2.: The consistency of definitions (3.1) and (3.2) that make use of derivatives
of the density profile and definitions (3.8) and (3.9) that take the covariance route can
be verified in this figure. The system in consideration is the same as in fig. 3.1. For the
evaluation of numerical derivatives, MC runs of the system at the shifted statepoints
µ ± 0.1ε, T ± 0.02ε/kB were carried out and the central difference was calculated. The
individual MC runs are equally long in both cases, but the signal-to-noise ratio is similar
in both methods. This shows the numerical difficulty of sampling covariances, although
the disadvantage of needing results for multiple thermodynamic statepoints in the case
of the derivative route is still prevented.

strict positivity). Still, as the influence of T on the density profile is examined by this
quantity, additional information can be gained for systems that show local structural
changes due to variations in temperature.
For ρ∗(r), a bulk counterpart is unknown since this field does not emerge directly from

a thermodynamic derivative of the density profile. Still, strict positivity is also out of
the question as local negative values can already be observed in an ideal gas [35].
In fig. 3.2, the consistency of numerical differentiation and evaluation of covariances

is shown. The derivatives are approximated by a central difference, where ∆µ = 0.1ε
and ∆T = 0.02ε/kB around the statepoint µ = −5ε and T = 1.0ε/kB are chosen.
The agreement proves the equivalence of definitions (3.1) and (3.2) with (3.8) and (3.9)
empirically.
Since the considered system is athermal and no energy gauge due to a finite external

potential is imposed, the physics of the system only depends on the ratio µ/T . Therefore,
the evaluation of both derivatives is redundant, which is also reflected by eq. (3.19) that
shows a simple proportionality of χT (r) to χµ(r). In the following section, this relation is
explored further and the influence of a soft external potential on this ratio is investigated.
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3.3. MC results for hard sphere systems

3.3.2. Thermal vs. chemical susceptibility

We first consider the ratio (3.19) of the susceptibility profiles by simulating the same
system as in section 3.3.1. Although eq. (3.19) is exact for hard sphere interactions, the
computation of ratios of covariances in MC simulations could induce errors. We show
that the covariance route leads to usable results for χT (r)/χµ(r) that converge even
faster than the individual fluctuation profiles.
The result of the MC simulation is shown in fig. 3.3 and the behaviour of the sus-

ceptibility ratio is as expected: χT /χµ does not depend on position and it is constant
even in regions where the density profile is strongly modulated due to layering effects
near the hard wall. The value of this constant corresponds exactly to the findings of
eq. (3.19) since χT /(kBχµ) = 7.5 for µ = −6ε, χT /(kBχµ) = 9.5 for µ = −8ε, and
χT /(kBχµ) = 11.5 for µ = −10ε.

In contrast, the situation at a 9-3-Lennard-Jones wall is shown in fig. 3.4 and represents
a bulk system in contact with a somewhat soft boundary. Hereby, the external potential

Vext(x) =


ε
4

[(
σ
x

)9 − 3
(
σ
x

)3 − ( σxc)9
+ 3

(
σ
xc

)3
]

x ≤ xc

0 x > xc

(3.25)

with the cutoff distance xc = 2σ was chosen.
Layering effects occur as well, but the density profile vanishes continuously in the

vicinity of the wall. We expect the ratio χT (r)/χµ(r) to deviate from the former constant
(cf. fig. 3.3) and indeed this is the observed behaviour. Near the wall, the value of the
susceptibility ratio increases and follows the structure of the external potential. This
behaviour also explains the minimum that occurs in the region x ≈ 1σ, where Vext(x) has
a minimum as well and the particle density peaks. Especially for higher packing fractions,
i.e. for larger values of µ, an oscillation that reaches a few hard sphere diameters into
the bulk can be seen. Thereby, χT (r)/χµ(r) behaves inversely to ρ(r) since the former
shows local maxima where the latter is relatively small. Therefore, χT (r)/χµ(r) does
not only follow the shape of Vext(r) directly but also incorporates the effects of internal
interactions that transmit the disturbance of the Lennard-Jones wall further into the
bulk system. Because of this observation, it is not surprising that this ratio also occurs
in the fluctuation functionals which will be introduced in the next section and have to
include excess contributions by construction. Physically, χT (r)/χµ(r) can be viewed as
a measure of effective internal energy variations that are imposed on the system by the
presence or absence of a virtual test particle at the considered position r. This is seen
in the correlator expressions (3.9) and (3.8) since χT (r) incorporates the Hamiltonian of
the system and χµ(r) in the denominator corrects for fluctuations that are purely due
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3. Local fluctuations: entropicity and local compressibility
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Figure 3.3.: The plot shows (a) the density profile ρ(x) and (b) the susceptibility ratio
χT (x)/χµ(x) of hard particles at a hard wall for various chemical potentials µ and
constant temperature T = 1.0ε/kB. Although the structure of ρ(x) changes significantly
near the wall, the ratio of χT (x) and χµ(x) stays constant at a value of 3/2kB − µ/T .
This is in agreement with eq. (3.19).
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Figure 3.4.: Contrary to fig. 3.19, χT (r)/χµ(r) at a 9-3-Lennard-Jones wall is not con-
stant and adapts the modulation of ρ(r). An inverse relation is observed, i.e. that the
susceptibility ratio (b) is large where the density (a) is low. This coincides with the
interpretation of an effective internal energy fluctuation per particle. Far from the wall
the behaviour according to eq. (3.19) is recovered.
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3.3. MC results for hard sphere systems
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Figure 3.5.: The practical convergence of χT (r)/χµ(r) in MC simulations can only be
guaranteed when avoiding the evaluation of numerical derivatives. With the covariance
method (solid line), the noise of both individual fields cancels, while the derivative route
(dashed line) leads to the propagation of errors and unusable results. The parameters
of the system are those of fig. 3.1.

to variations in particle number.
Numerically, the advantage of the calculation by covariances in one MC run in con-

trast to the evaluation of numerical derivatives in multiple MC runs at slightly different
thermodynamic statepoints becomes apparent when computing the fluctuation ratio
χT (r)/χµ(r). Although the local compressibility χµ(r) and the entropicity χT (r) indi-
vidually are equally noisy in both methods (cf. fig. 3.2), since the origin of the noise
is the same in the covariance route, the ratio of both quantities retains a much better
convergence than the individual fields themselves. This is surprising as we still deal with
covariances that are difficult to obtain from MC simulations. But, as one can see, our
proficient method leads to the cancellation of errors.
Diametrically opposed to this observation, the derivative route leads to an amplifica-

tion of errors due to multiple MC runs being used. Fig. 3.5 shows a direct comparison of
χT (r)/χµ(r) obtained by the derivative and the covariance method with MC simulations
of equal computational cost. It is apparent that only the latter produces usable results
for further calculations.
This is especially important when going beyond the use of fluctuation profiles as

individual indicator fields of certain physical processes. For example, if one wants to
evaluate the fluctuation functionals that will be presented in the next section, good
convergence of the involved terms is crucial for obtaining correct values. Therefore, our
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3. Local fluctuations: entropicity and local compressibility

computational tools could help in the development of some of the following ideas.

3.4. Minimization principle

One strength of the entropy density of chapter 2 is the possibility to formulate a mini-
mization principle analogous to common DFT that incorporates the density profile ρ(r)
as well as the entropy density s(r), cf. section 2.2.2. In the case of fluctuation fields, it is
proposed by Eckert et al. that a similar augmentation of DFT is possible, which includes
ρ∗(r), χT (r) and χµ(r) as variational fields of a fluctuation functional Γ[ρ∗, χT , χµ] [30].
Using known results of classical DFT, an argument involving a series of Legendre trans-
forms is applied, which eliminates occurences of ρ(r) and establishes Γ[ρ∗, χT , χµ] as the
new central functional. A discussion of this reasoning is illustrated in Ref. [35]. In the
following, we summarize the results that were derived in the zero-dimensional limit as a
proof of concept.
For the minimization principle, the three Euler-Lagrange equations

δΓ
δρ∗(r)

∣∣∣∣
ρ∗0,χT,0,χµ,0

= −Vext(r), (3.26)

δΓ
δχT (r)

∣∣∣∣
ρ∗0,χT,0,χµ,0

= −TVext(r), (3.27)

δΓ
δχµ(r)

∣∣∣∣∣
ρ∗0,χT,0,χµ,0

= −µVext(r) + Vext(r)2

2 (3.28)

can be formulated and are satisfied for the physically realized fluctuation fields ρ∗0(r),
χT,0(r) and χµ,0(r). Remarkably, Γ does not depend on temperature T and chemical
potential µ.

Analogous to DFT, a splitting of the central functional into ideal and excess part is
performed. The ideal gas contribution is evaluated to [30]

Γid[ρ∗, χT , χµ] =
∫ 1

2χµ(r)

[
ρ∗(r)− exp

(
− χT (r)
kBχµ(r)

)]2

dr (3.29)

and can be interpreted as a cost functional of fluctuations due to the quadratic structure
of the integrand.
As a first approximation to the excess part for hard spheres, we consider the local ap-

proximation for the excess free energy on the second virial level, FHS2 = kBT
∫
ρ2b/2 dr.

To lowest order in b [30],

ΓHS2 =
∫

b

χµ(r) exp
(
− 2χT (r)
kBχµ(r)

)[
ρ∗(r)− exp

(
− χT (r)
kBχµ(r)

)]
dr. (3.30)
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3.4. Minimization principle

As already mentioned, the presented results follow directly from the scheme of Leg-
endre transforms and are only a first attempt for this kind of generalization. Hence,
current work is still invested in a first-principles derivation starting from a many-body
object analogous to classical DFT, where the formal proof of the minimization is based
on the Mermin grand potential functional

ΩM [ψ] = 〈Ω̂M 〉ψ = TrψΩ̂M = Trψ(H − µN + kBT lnψ) (3.31)

with the Mermin operator Ω̂M . Eq. (3.31) attains a global minimum for the equilibrium
many-body distribution function ψ(rN ,pN ) = ψ0(rN ,pN ) and establishes a unique map-
ping ρ(r)→ Vext(r).
Yet, there is a chance that the Mermin grand potential is not the only many-body

object that has those desired properties. There are promising candidates for alternative
functionals that incorporate

var(Ω̂M )ψ = cov(Ω̂M , Ω̂M )ψ = 〈Ω̂M Ω̂M 〉ψ − Ω2
M [ψ] (3.32)

and that will be presented in further works. The discovery of a new functional that
attains a minimum for ψ0 and that generates the aforementioned fluctuation profiles in
a certain bijective mapping would promote the development of a completely unexplored
branch of functional many-body physics.
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4. Conclusion and outlook

In this work, we have shown that apart from the density profile ρ(r), further one-body
fields are worthy of consideration in statistical and functional many-body mechanics.
We first defined the entropy density s(r) as an abstract object that incorporates the
many-body distribution function explicitly. With the rewriting of eqs. (2.10) and (2.21),
this quantity can be sampled in MC simulations and its behaviour in numerous systems
of interest can be studied. Although we focused primarily on hard spheres in cubic or
periodic boxes as a rudimentary model of confined inhomogeneous fluids, calculations for
arbitrary internal interactions and much more intricate system geometries are achievable
and expected to yield interesting results.
As an outlook, s(r) could play an important role in systems that show phase tran-

sitions. Generally, in finite systems, where correlations between particle density and
total energy or particle number become large, the entropy density should serve as an
independent field that may describe physical effects more accurately or concisely than
its sole competitor ρ(r). The feasibility of thermodynamic integration as a means to
compute the free energy part can be limited, though. However, it should be noted that
there are more complex methods of obtaining thermodynamic potentials from MC sim-
ulations that were not discussed in this thesis and that could provide a solution to this
technical problem [37, 38].

Furthermore, an analytic expression for s(r) in the case of hard spheres was proposed
and was shown to lead to a reasonable agreement when compared with MC results. The
derivation was based on FMT, which indicates that techniques commonly associated to
DFT could be used to obtain this approximation. Vice versa, the agreement lead to
the conclusion that the hard sphere density functional can be reinterpreted as effectively
incorporating the entropy density. This observation could be important in the develop-
ment of new functionals, maybe even by rethinking DFT in terms of an internal energy
functional depending on both ρ(r) and s(r) as described in section 2.2.1.
Notably, to obtain precise results in the FMT calculation, a state-of-the-art method

of 3D-FMT exploiting a computational scheme based on fast Fourier transforms was
used. Nevertheless, it needed to be altered to prevent a systematic loss of accuracy for
the local excess entropy density. Although such effects are not noticed when evaluating
integral values such as Fexc, our scheme prevents inaccuracies in the weight functions
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from the ground up.
It would be interesting to apply the presented framework to mixtures of hard spheres

that differ in their diameter. A generalization of the involved functionals and the method
of appendix A.3 is straightforward if the distinction of hard sphere species is included.
An agreement in this case would further justify the identification of sHS(r) in the rear-
ranged Fexc. More complex particle models of hard core nature such as oblate or prolate
spheroids could also be investigated in detail.
Regarding interparticle interactions different from the hard sphere type, it is still an

open question whether and if so how analytic approximations to sexc(r) can be found.
The development of an additional perspective on the derivation of additional one-

body fields was motivated in chapter 3, which lead to the introduction of local fluctuation
profiles. Those cannot only be seen as simple partial derivatives of the density profile, but
also as much more elaborate objects that stem from functional generators, covariances
and Ornstein-Zernicke equations.
The behaviour of those fluctuation fields was again studied for hard sphere systems,

which already showed that they differ significantly from their bulk counterparts. Some
observations of other works, that only considered the local compressibility in a Lennard-
Jones fluid and thus incorporated an attractive interaction part, could be recovered in
purely athermal hard particle systems.
It is emphasized that our point of view is more general than that of other mentioned

works, which only consider the local compressibility χµ(r) [7, 31–33]. We propose to
have a full set of local fluctuation fields that can be derived systematically via multiple
routes. While the local compressibility χµ(r) is already explored, to our knowledge, the
local thermal susceptibility or entropicity χT (r) has not been mentioned before. The
same applies to the local energy response ρ∗. In a simultaneous work by Stuhlmüller
[36], the behaviour of fluctuation fields in systems of Lennard-Jones and Gauss particles
is investigated.
With this full set of fluctuations at hand, one can also consider the ratio of local

thermal and chemical susceptibility. This has proven to be instructive since the simple
relation (3.19) for hard particles and the contact theorem (3.23), that connects this
ratio to the inner energy per particle, could be derived. Because the contact theorem
still holds for arbitrary internal interactions, an investigation for more realistic particle
models could be useful for a better understanding of internal energetic processes in those
systems.
As a consequence of our first-principles approach, the local fluctuation fields attain the

role of stand-alone observables that are not mere indication fields for certain phenomena
such as solvophobicity or drying and wetting transitions. Although it is still of interest
to consider e.g. also the entropicity χT (r) in those situations, our goal is the use of
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4. Conclusion and outlook

fluctuation fields in a general functional formalism. Section 3.4 therefore serves as a
review of our first attempts in the development of this idea. Still, further work in
this topic is necessary and expected. Nevertheless, the important task of accurately
computing fluctuation fields from particle based simulations was established in this work
and could serve as a helpful tool in a first-principles development of fluctuation functional
theories.
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A. Appendix

A.1. Internal entropy density contribution for pair-interactions

We assume pairwise interactions so that eq. (2.11) is valid with an arbitrary but fixed
pair-potential Φ(ri, rj). Then,

sN,int(r) = 1
TN

〈
ρ̂N (r)Uint(rN )

〉
N

(A.1a)

= 1
TN

〈
ρ̂N (r)

N∑
i=1

N∑
j=1,j<i

Φ(ri, rj)
〉
N

(A.1b)

= 1
2TN

〈
ρ̂N (r)

N∑
i=1

N∑
j=1,j 6=i

Φ(ri, rj)
〉
N

(A.1c)

= 1
2TN

〈
ρ̂N (r)

N∑
i=1

N∑
j=1,j 6=i

∫
δ(r′ − ri) dr′

∫
δ(r′′ − rj) dr′′Φ(ri, rj)

〉
N

(A.1d)

= 1
2TN

∫∫ 〈
ρ̂N (r)

N∑
i=1

δ(r′ − ri)
N∑

j=1,j 6=i
δ(r′′ − rj)

〉
N

Φ(r′, r′′) dr′ dr′′ (A.1e)

= 1
2TN

∫∫ 〈ρ̂N (r)
N∑
i=1

δ(r′ − ri)
N∑
j=1

δ(r′′ − rj)
〉
N

−
〈
ρ̂N (r)

N∑
i=1

δ(r′ − ri)δ(r′′ − ri)
〉
N

)
Φ(r′, r′′) dr′ dr′′ (A.1f)

= 1
2TN

∫∫ (〈
ρ̂N (r)ρ̂N (r′)ρ̂N (r′′)

〉
N

− 〈ρ̂N (r)ρ̂N (r′)
〉
N δ(r

′ − r′′)
)

Φ(r′, r′′) dr′ dr′′. (A.1g)

For the grandcanonical version (2.24) of sint(r), 1/N stays inside of the averages. In
the same way as in eq. (A.1), one obtains

sint(r) = 1
2T

∫∫ (〈
ρ̂N (r)
N

ρ̂N (r′)ρ̂N (r′′)
〉

−
〈
ρ̂N (r)
N

ρ̂N (r′)
〉
δ(r′ − r′′)

)
Φ(r′, r′′) dr′ dr′′. (A.2)
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A.2. Renormalization of entropic zero-particle state

To obtain the total entropy as the correct integral value of the grandcanonical entropy
density, the zero-particle contribution must yield a finite integral value. In particular,

S =
∫
s(r) dr (A.3a)

= −Ω
T

∞∑
N=0

eβµN ZNΞ

∫
ρN (r) dr
N

+
(
−µ
T

+ kBD

2

)∫
ρ(r) dr + 1

T

〈∫
ρN (r) dr
N

HN (rN )
〉

(A.3b)

= −Ω
T

+
(
−µ
T

+ kBD

2

)
〈N〉+ 〈HN (rN )〉

T
(A.3c)

= U − F
T

. (A.3d)

This thermodynamic relation is only fulfilled if∫
ρN (r) dr
N

= 1 for N = 0, 1, 2, . . . (A.4)

is chosen in (A.3b), which renormalizes the case N = 0. Then,

eβµN ZNΞ

∫
ρN (r) dr
N

= 1
Ξ for N = 0. (A.5)

It might be counterintuitive that the zero-particle state gives a non-zero contribution
to the total entropy in the grandcanonical ensemble. Of course, in the canonical ensem-
ble, the entropy of an empty system is zero. However, in the grandcanonical ensemble,
the particle number is not fixed. Thinking along the lines of Shannon-entropy [39], one
can recognize that not knowing the current N leads to a higher information content and
thus to a higher entropy per definition. Not the intrinsic properties of the zero-particle
state increase the entropy – it is much more the uncertainty if particles are even in the
system that leads to this additional contribution.

We now propose a localization of this integral value. In an ideal gas, the canonical
density is given by

ρN (r) = N
exp(−βVext(r))∫

exp(−βVext(r′)) dr′ . (A.6)

Therefore,
ρN (r)
N

= exp(−βVext(r))∫
exp(−βVext(r′)) dr′ = ρ1(r), (A.7)

which is obvious for N 6= 0, but implies a choice for N = 0. This choice yields
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〈
ρN (r)
N

〉
=
∞∑
N=0

eβµN ZNΞ
ρN (r)
N

= ρ1(r)
∞∑
N=0

eβµN
N !

ZN1
Ξ (A.8)

for the grandcanonical average, where we used the relation ZN = ZN1 /N ! for the canon-
ical partition sum of the N -body ideal gas with the canonical partition sum Z1 of an
ideal single-particle system.

The grandcanonical density

ρ(r) = Λ−Deβµe−βVext(r) (A.9)

and partition sum

Ξ =
∞∑
N=0

eβµN
N ! Z

N
1 (A.10)

of the ideal gas let us identify
〈
ρN (r)
N

〉
= ρ1(r) = ρ(r)e−βµ ΛD∫

exp(−βVext(r′)) dr′ = ρ(r)e−βµZ−1
1 = (A.11a)

= ρ(r)

 1
ΞeβµZ1

∞∑
N=0

(
eβµZ1

)N
N !


−1

= (A.11b)

= ρ(r)

 1
Ξ

∞∑
N=0

(
eβµZ1

)N+1

N !


−1

= (A.11c)

= ρ(r)

 1
Ξ

∞∑
N=0

(
eβµZ1

)N+1

(N + 1)! (N + 1)


−1

= (A.11d)

= ρ(r)

 1
Ξ

∞∑
N=1

(
eβµZ1

)N
N ! N


−1

= (A.11e)

= ρ(r)
[

1
Ξ

∞∑
N=0

eβµNZN1
N ! N

]−1

= ρ(r)
〈N〉 . (A.11f)

The zero-particle contribution to s(r) is hence chosen to be proportional to the grand-
canonical density profile ρ(r). This choice is exact for the ideal gas, but is taken as
a reasonable approximation otherwise since the zero-particle state becomes especially
important when internal interactions are sparse.

In grandcanonical MC simulations, 〈ρN (r)/N〉 is then ordinarily sampled for N ≥ 1.
Additionally, the number n0 of occurences of N = 0 is counted so that a contribution
proportional to ρ(r)/〈N〉 can be added with the correct weight n0/ns. ns denotes the
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total number of samples that contribute to the average.

A.3. Excess entropy density from FMT

FMT for a one-species hard sphere system can be formulated in a power series [28]

Fexc = kBT

∫ ∞∑
m=2

1
m(m− 1)N(x)m dx (A.12)

with

N =


n3 n2 n1 n0

0 n3 n2/(4π) n1

0 0 n3 n2

0 0 0 n3

 . (A.13)

The actual excess free energy then corresponds to the entry in the first row and last
column of the matrix Fexc, i.e. Fexc = (Fexc)03 if the index range is {0, 1, 2, 3}. An
explicit summation of the series is possible and results in the Kierlik-Rosinberg integrand
(2.46).

It is clear that x is merely an integration variable that does not represent particle
positions. But due to definition (2.19) of the entropy density, it is expected that a
particle is actually located at a considered position r. Therefore, we single out one N(x)
from the sum, apply its definition

N(x) =
∫

W(x− r)ρ(r) dr (A.14)

with the matrix

W =


ω3 ω2 ω1 ω0

0 ω3 ω2/(4π) ω1

0 0 ω3 ω2

0 0 0 ω2

 (A.15)

of Kierlik-Rosinberg weight functions (2.42)–(2.45) and rearrange the order of integra-
tions. This procedure yields

Fexc = kBT

∫
ρ(r)

∫
W(x− r)

∞∑
m=2

1
m(m− 1)N(x)m−1 dx dr. (A.16)

The series over m can be evaluated to a closed-form expression and provides a matrix
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A =


a00 a01 a02 φ3

a10 a11 a12 φ2

a20 a21 a22 φ1

a30 a31 a32 φ0

 (A.17)

where solely the last column consisting of the terms (2.55)–(2.58) is relevant (recall that
we are only interested in the top right element of Fexc).
Finally,

Fexc = kBT

∫
ρ(r)

3∑
α=0

(ωα ∗ φα) (r) dr (A.18)

follows and sHS(r) can be identified in accordance with eq. (2.54).
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