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Zusammenfassung

In dieser Arbeit werden verschiedene Techniken zur Beschreibung der Physik von in-
homogenen Flüssigkeiten im Gleichgewicht und Nichtgleichgewicht untersucht. Insbe-
sondere werden hierbei Korrelationen und Kräfte betrachtet, die sich durch die nicht-
trivialen Wechselwirkungen in klassischen Vielteilchensystemen ergeben. Die Teilchen-
modelle in den untersuchten Systemen reichen von simplen Paar-Wechselwirkungen wie
beispielsweise in Hart-Kugel- und Lennard-Jones-Fluiden bis hin zu komplexen Interak-
tionstypen, die unter anderem zur Charakterisierung von Wasser und kolloidalen Gelen
verwendet werden. Methodisch werden drei Herangehensweisen näher betrachtet und
verknüpft: Computersimulationen von Vielteilchensystemen, funktionale Theorien und
maschinelles Lernen.

Im Rahmen der Vielteilchensimulationen wird eine effiziente numerische Methode
für überdämpfte Brownsche Dynamik (BD) entwickelt und verwendet. Bei BD wird
angenommen, dass sich Teilchen in einem implizit modellierten Lösungsmittel befin-
den, welches dissipative und stochastische Kräfte ausübt und dabei die Trägheit der
Teilchen unterdrückt. Obwohl dieses dynamische Modell häufig theoretische Ansätze
erleichtert, erweist sich die Anwendung robuster numerischer Methoden auf die re-
sultierenden Langevin-Bewegungsgleichungen als äußerst schwierig. Adaptive BD wird
hier als neue Simulationsmethode und als Alternative zu herkömmlichen Integrations-
algorithmen mit festem Zeitschritt dargestellt. Durch die automatische Anpassung der
Zeitschrittlänge kann mit adaptiver BD der numerische Fehler in der Zeitentwicklung
der Trajektorien kontrolliert und beschränkt werden. Dadurch erhält man ein auch in
anspruchsvollen Situationen numerisch stabiles sowie effizientes und genaues Verfah-
ren, welches die erforderte Statistik der Zufallskräfte erhält. Neben anderen bekannten
Methoden wie Monte Carlo wird adaptive BD in dieser Arbeit als Grundpfeiler für
Vielteilchensimulationen verwendet.

Während solche computergestützten Experimente viel Einsicht in konkrete Systeme
erlauben, ist auch eine theoretische Beschreibung der beobachteten Phänomene erstre-
benswert, welche ohne eine explizite Vielteilchenmodellierung auskommt. Im Gleichge-
wicht ist durch die klassische Dichtefunktionaltheorie (DFT) ein formal exaktes funk-
tionales Minimierungsprinzip etabliert, in welchem das Dichteprofil als zentraler Ord-
nungsparameter agiert. Powerfunktionaltheorie (PFT) kann als entsprechendes Analo-
gon im Nichtgleichgewicht herangezogen werden, wobei die funktionalen Abbildungen
eine zusätzliche Abhängigkeit vom Stromprofil aufweisen. Insbesondere erlaubt PFT
eine klare Trennung von Gleichgewichts- und Nichtgleichgewichtsbeiträgen im internen
Kraftprofil, welche jeweils als adiabatische und superadiabatische Kräfte bezeichnet
werden. In dieser Arbeit wird PFT genutzt, um superadiabatische Kräfte in relevan-
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ten Nichtgleichgewichtsumgebungen zu untersuchen, wobei speziell ein inhomogen ge-
schertes kolloidales Gel sowie der Kompressionsfluss einer Lennard-Jones-Flüssigkeit
betrachtet werden.

Die Anwendung des Noether-Theorems auf thermische Vielteilchensysteme verschafft
weitere nützliche Erkenntnisse. Summenregeln, welche Mittelwerte verschiedener Ob-
servablen miteinander verknüpfen und in der statistischen Mechanik analog zu Er-
haltungssätzen sind, können durch das Ausnutzen von fundamentalen Invarianzen des
Phasenraums gewonnen werden. Dies ist unter anderem zur Herleitung einer kraftba-
sierten DFT nützlich, welche hier anhand von numerischen Daten untersucht wird. Das
Noether-Konzept erlaubt auch Einsichten in die Struktur von homogenen Flüssigkeiten,
wobei mittels Summenregeln zweiter Ordnung neue Arten von radialen Verteilungsfunk-
tionen in den Fokus rücken. Diese bisher unbekannten Größen werden in Computersimu-
lationen gemessen, um deren erwartete Zusammenhänge für eine Vielzahl verschiedener
Modellflüssigkeiten zu verifizieren und zu interpretieren. Außerdem wird gezeigt, dass
durch eine Generalisierung der Noether-Invarianz auf beliebige Phasenraumfunktionen
eine Hierarchie von Hyperkraft-Summenregeln resultiert, welche relevant für kraftba-
sierte Samplingtechniken und Konsistenzchecks in Simulationen ist.

Neben den numerischen und funktionalen Methoden kann maschinelles Lernen als
weiteres hilfreiches Mittel zur Beschreibung der statistischen Mechanik von inhomo-
genen Fluiden herangezogen werden. Hierzu werden Verfahren des überwachten ma-
schinellen Lernens entwickelt, mittels derer neuronale Netzwerke zur Repräsentation
von lokalen funktionalen Zusammenhängen genutzt werden können. Im dynamischen
Fall beschreibt das neuronale Funktional die durch PFT vorgegebene kinematische Ab-
bildung von Dichte- und Stromprofil zur lokalen internen Kraft. Solch ein neuronales
Funktional wird hier mit Simulationsdaten aus adaptiver BD trainiert, um stationäre
Zustände einer getriebenen Lennard-Jones-Flüssigkeit genau vorherzusagen und zu kon-
zipieren, wodurch systematische Unzulänglichkeiten von dynamischer DFT bewältigt
werden. Im Gleichgewicht wird das neuronale Funktional genutzt, um gemäß DFT
die Abbildung vom Dichteprofil zur direkten Korrelationsfunktion zu repräsentieren.
Das neuronale Korrelationsfunktional erweist sich dabei als vielseitiges Werkzeug zur
Untersuchung struktureller und thermodynamischer Eigenschaften von Gleichgewichts-
flüssigkeiten. Insbesondere stellt die Implementierung einer neuronalen Funktionalre-
chenmethode ein zentrales Konzept dar, welches am Beispiel der Hart-Kugel-Flüssigkeit
detailliert erläutert wird. Außerdem ermöglicht die Methode eine neuronale DFT zur
selbstkonsistenten Berechnung von Dichteprofilen, welche nahezu Simulationsgenauig-
keit liefert und effizient auf Multiskalenprobleme anwendbar ist.
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Abstract

In this thesis, different techniques for the description of inhomogeneous fluids in and
out of equilibrium are investigated. We focus in particular on a thorough account
of correlations and forces, which arise nontrivially from interparticle interactions in
classical many-body systems. The constituent particles in the considered systems range
from models with simple pair interactions such as the hard sphere and Lennard-Jones
fluid to more complex interaction types as used in studies of water and of colloidal gels.
Our methodology is threefold, as we base the investigations on many-body computer
simulations, on functional theories and on machine learning techniques.

Regarding the computational approach, we develop and utilize an efficient numerical
method for overdamped Brownian dynamics (BD) simulations. In BD, particles are
assumed to be suspended in an implicit solvent, which gives rise to both dissipative and
stochastic forces and which suppresses the inertia of the particles. This type of dynam-
ical description commonly poses conceptual advantages for theoretical developments,
but the application of robust numerical methods to the resulting Langevin equations of
motion turns out to be challenging. We remedy this situation by presenting adaptive
BD as a more powerful alternative to common fixed-timestep integration algorithms.
By automatic adjustment of the timestep length, adaptive BD facilitates to control
and bound the propagation of numerical errors on the trajectory level. This yields a
performant and accurate integration scheme that is numerically stable even in demand-
ing scenarios, thereby addressing the problem of preserving the correct statistics of
the random forces. Throughout this work, adaptive BD is used among other standard
techniques such as Monte Carlo as a staple of many-body simulation methods.

While such in silico experiments contribute much to the understanding of specific sys-
tems, we also aim for a theoretical description of the observed phenomena which does
not necessitate to invoke the many-body picture explicitly. In equilibrium, classical
density functional theory (DFT) establishes a formally exact functional minimization
principle in which the one-body density profile acts as the central order parameter.
Power functional theory (PFT) can be viewed as the analogous framework in nonequi-
librium, where the functional relations possess additional dependence on the one-body
current. Specifically, PFT allows for a systematic splitting of the resulting internal
force profile into an adiabatic and superadiabatic part, where the latter constitutes the
genuine nonequilibrium contribution. We use PFT in this work to account for the oc-
curring superadiabatic forces in relevant nonequilibrium environments and investigate
in particular both an inhomogeneously sheared colloidal gel former and compressional
flows of the Lennard-Jones fluid.

Noether’s theorem provides further useful insight when applied to thermal many-
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body systems. By exploiting fundamental invariance properties of phase space under
continuous transformations, one gains access to corresponding sum rules, which connect
averages of different observables and which serve as the statistical mechanical equivalent
of conservation laws. This proves to be useful for the development of a force-based
DFT, which we investigate by comparison to numerical data. The Noether framework
is valuable also in bulk liquids, where second-order invariance generates sum rules for
novel kinds of radial correlation functions. Via computer simulations we measure and
subsequently interpret the resulting quantities and verify their expected interrelation
for a broad range of diverse model fluids. Additionally, the generalization of Noether
invariance to arbitrary phase space functions yields hierarchies of hyperforce sum rules,
which are shown to be practically relevant for force-sampling techniques and consistency
checks in many-body simulations.

With the numerical and functional techniques at hand, machine learning is incorpo-
rated as a further efficacious means for describing the statistical mechanics of inhomo-
geneous fluids. To this end, we develop and utilize supervised training procedures which
yield neural networks that act as representations of local functional relationships. For
the dynamical case, the resulting neural functional is constructed to capture the kine-
matic map from the density and current profile to the local internal force as prescribed
by PFT. We show that such a neural functional can be trained based on adaptive
BD simulations in order to accurately predict and design the steady state of a driven
Lennard-Jones fluid, thereby overcoming systematic deficiencies of dynamical DFT. In
equilibrium, the neural network is devised to represent the DFT map from the density
profile to the one-body direct correlation functional. This neural correlation functional
turns out to be a versatile tool for the investigation of structural and thermodynamic
properties of fluid equilibria via the successful implementation of a neural functional
calculus, which we exemplify in detail for the hard sphere fluid. The framework further
realizes a neural DFT for the self-consistent determination of density profiles, which
retains near-simulation accuracy and which serves as an efficient method for multiscale
predictions.
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1 Introduction

1.1 Survey of relevant soft matter physics and outline of this
work

Soft matter systems, as they form the inspiration for the present research [1–12], are
ubiquitous both in nature and in technological applications. They display a broad range
of highly relevant phenomena, with many of them remaining to be fully understood yet
[13]. The oftentimes intricate behavior can be traced back to the coupled motion of the
constituent particles, which is caused and influenced primarily by their mutual interac-
tions. Conceptually, it is this coupling of the microscopic degrees of freedom that needs
to be tackled in order to describe such systems and to predict their resulting proper-
ties quantitatively. Common theoretical techniques are naturally rooted in statistical
mechanics, where progress in the last few decades has been driven besides pen and
paper derivations also by the rapidly increasing availability of computational resources
and by a wealth of novel simulation methods. Not least, recent advances in machine
learning have added to this evolution, thereby complementing conventional analytic and
numerical approaches.

Simple fluids [14] arguably form the basis of soft matter. They are modeled as
collections of particles which interact via rather rudimentary and usually isotropic pair
potentials. Despite the apparent simplicity, their collective behavior turns out to be
highly nontrivial though. In particular, certain prototypical model systems may account
surprisingly well for many properties of real fluids, such as for the occurrence of phase
transitions and coexistence as well as for interfacial and surface phenomena [15, 16]. The
liquid phase thereby constitutes a noteworthy and rather peculiar state of matter [17,
18], as it is disordered while still possessing a high degree of correlation on a microscopic
level. These features separate liquids clearly from solids, where particles are arranged
in a lattice, and from a low-density gas, where interparticle interactions are scarce and
correlations often become negligible. The properties of liquids have ramifications in
bulk and also in spatially inhomogeneous external environments, as occur e.g. in the
vicinity of substrates or via confinement in narrow pores. When subjected to such
conditions, the fluid becomes spatially inhomogeneous as well, and its resulting state is
influenced largely by the mediation of interparticle correlations.

There is a wide array of soft matter systems that go beyond these simple models
and which are hence often referred to as complex fluids [19, 20]. Pertinent examples
include mixtures, liquid crystals, polymer melts, glasses, gels and various forms of
active matter [21]. In this regard, the special role of colloids must be emphasized,
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1 Introduction

as they are commonly employed to realize both simple and beyond-simple fluids in
experiments as well as to carry out fundamental theoretical work. Contrary to atomic
and molecular fluids, colloidal suspensions consist of mesoscopic particles on the nano-
or microscale which are dispersed in a solvent. From an experimental point of view, the
colloidal size often allows to make direct observations of their motion and interaction,
e.g. via atomic force [22], scanning electron [23] and in situ confocal microscopy [24–
26], thus complementing typical light, x-ray or neutron scattering techniques [27–29].
A further practical advantage is the possibility of manufacturing colloidal particles
with precisely tailored interactions between them [30–33]. This facilitates both the
synthesis of increasingly complex particle types [34–36] and the accurate comparison
of experimental data to theoretical and simulation results for corresponding model
Hamiltonians. Besides their use for research purposes, complex fluids and in particular
colloidal systems are abundant in everyday life, where they occur both naturally in
living matter [37] as well as in common household items [38, 39]. Essentially, the
possibility to adjust macroscopic properties of a substance via the careful fabrication of
its constituent particles gives colloids their prominent role in industrial and consumer
products [40–42]. This link between the microscopic and macroscopic behavior of soft
matter is hence deservedly a focal point of theoretical and computational physics. Here,
one is interested particularly in finding generic methods to describe and predict this
interrelation. Due to the many-body nature of the problems at hand, this is by no
means trivial, and different coarse-graining techniques have to be invoked to reduce the
behavior of individual particles to more manageable and insightful statistical quantities.

Many-body computer simulations have fared very well for the coarse-graining task,
with methods that were conceptualized some 70 years ago still being in prominent use
today [43]. Over the last decades, a variety of numerical algorithms have been estab-
lished [44], and their development has been accompanied and aided by the tremendous
progress of computational resources. Large-scale investigations are not out of reach
today [45], but in general the resource demand of particle-based simulations is still a
prime concern. Therefore, advanced algorithms are desired which aim to make specific
parts of a simulation program more efficient, such as the evaluation of interparticle
interactions or the evolution of the system state. How particles evolve during a simula-
tion run depends on the applied scheme. Broadly speaking, one can distinguish between
two categories:1 Monte Carlo methods are based on an entirely statistical exploration
of the high-dimensional phase space, while molecular dynamics algorithms approximate
the physical trajectories of particles by numerically solving their equations of motion.
Whereas Monte Carlo usually implies equilibrium conditions, relying on a physical time
evolution of particle trajectories is typically also applicable in nonequilibrium scenarios
[47]. In the category of trajectory-based methods, a special type of dynamics is founded
on the observable Brownian motion [48] of particles on the mesoscale, as we focus on
in this work. Brownian dynamics (BD) [14, 44] is particularly relevant for colloids, as
it assumes the motion of a particle to be driven besides colloidal interactions also by

1There are also hybrid schemes which thrive on a combination of techniques [46].
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1.1 Survey of relevant soft matter physics and outline of this work

collisions with much smaller solvent particles. However, the motion of the latter is not
considered explicitly. Instead, only the statistical effects of random collision events are
modeled, which simplifies the microscopic description. Several schemes for BD simu-
lations exist, but they are commonly restricted by certain limitations, which can be
traced back to the difficulty of treating the underlying stochastic differential equation
numerically. We discuss these conventional methods [49–52] below and present adaptive
Brownian dynamics [1] as an improved algorithm, which we apply throughout this work
in various simulations of simple and complex fluids in and out of equilibrium.

On the theoretical side, functional methods have proven to be useful to get to grips
with the coupled many-body problem. Classical density functional theory (DFT) [53]
provides a modern and formally exact framework for describing the thermodynamic
equilibrium of a system which may be spatially inhomogeneous. Central to the ap-
proach is a minimization principle of a thermodynamic potential that is expressed as a
functional of the one-body density profile. The contribution due to internal correlations
constitutes the nontrivial part of this functional, for which, depending on the type of
considered fluid, a suitable (approximate) representation has to be found. For nonequi-
librium systems, power functional theory (PFT) [54, 55] is the analogous framework and
it establishes the existence of a functional map from the one-body density and current
profiles to the internal force profile. In particular, one can uniquely identify supera-
diabatic forces, which are genuine out-of-equilibrium contributions that are commonly
assumed to be negligible in approximate descriptions such as dynamical density func-
tional theory (DDFT). This so-called adiabatic approximation is uncontrolled though.
We explore in this work systems which show highly relevant superadiabatic phenom-
ena such as viscous response under shear [2] and develop power functional theories to
account for these effects.

In connection to the functional point of view, symmetries and invariances of general
thermal many-body systems can be exploited via Noether’s theorem with the aim of
gaining relations that characterize statistical mechanical correlation functions [56–59].
These sum rules, which provide exact constraints for averages of different phase space
functions, are a fundamental theoretical tool and prove to be useful also in practical
applications. Specifically, we derive novel types of force-gradient and force-force corre-
lation functions, which can be measured in bulk equilibrium fluids for different types
of particle interactions [4]. Furthermore, we illustrate a generic framework to obtain
hierarchies of Noether sum rules for arbitrary observables and give examples for their
use in computer simulations of inhomogeneous fluids [5]. The investigation of Noether
identities also allows for a reformulation of DFT which operates on the level of forces
and which we here gauge against conventional DFT by comparison to simulation data
[3].

As a means to connect the advantages of the presented theoretical approaches with
computational methods, we lastly turn to the application of machine learning for an
in-depth quantitative description of many-body systems in and out of equilibrium. For
this, we develop generic procedures for constructing and using neural functionals, which
are neural networks that are trained with suitable simulation data to represent func-
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1 Introduction

tional maps as given either via DFT in equilibrium or via PFT in nonequilibrium. For
the dynamical case, we exemplify the neural functional framework for the steady uni-
axial flow of a Lennard-Jones fluid [6], where we find our method to overcome inherent
limitations of DDFT. In equilibrium, we revisit the well-studied hard sphere fluid in
order to evaluate the capabilities of functional machine learning via benchmarks to
analytic and simulation results [7]. A neural correlation functional is acquired in a
supervised training routine, which facilitates to investigate the full structure and ther-
modynamics of homogeneous and heterogeneous fluid states. The use of the neural
functional in a self-consistent scheme for the calculation of density profiles outperforms
all common analytic approximations and the method directly applies to multiscale prob-
lems. Additionally, the neural functional provides highly accurate and computationally
cheap access to fundamental quantities that are difficult to obtain by other means, such
as the free energy and the hierarchy of direct correlation functions. Our machine learn-
ing framework therefore exceeds the mere interpolation of training data and it can be
considered to form the basis of a standalone neural functional theory. We further elu-
cidate the different techniques used within this approach by an instructive application
to the one-dimensional hard rod system [8], where the exact solution due to Percus [60]
provides clear-cut reference.

In the following, we give an overview of the structure of this thesis and of the related
publications [1–8]. We use many-body simulations, functional theories and machine
learning for the investigation of soft matter and explore in particular means to inter-
relate the different methodologies as illustrated in Fig. 1. Fundamentals of general
many-body simulations are presented in Chapter 2 and we give an outline of adaptive
BD as described in detail in Ref. [1]. Adaptive BD is used throughout this work and
proves to be useful for equilibrium and nonequilibrium simulations. The method is
applied specifically to examine an inhomogeneously sheared colloidal gel former, which
exhibits superadiabatic forces that we describe and characterize in Ref. [2]. We turn to
functional theories in Chapter 3 and present the core ideas of DFT and PFT as well as
the derivation of sum rules which arise as a consequence of thermal Noether invariance.
In this regard, a quantitative comparison of a recent reformulation of DFT in terms
of forces (“force-DFT” [61]) is performed in Ref. [3]. Gaining access to sum rules of
pair correlation functions from the application of second-order Noether invariance is
described in Ref. [4], where we verify and interpret the arising two-body identities for
various model fluids in bulk. A generalization of the Noether framework to arbitrary
phase space functions results in hyperforce balance equations, which form a broad class
of both known and novel sum rules as laid out in Ref. [5]. In Chapter 4, we complement
and unify the computational and functional treatments via the development of generic
machine learning routines for training neural networks with simulation data in order to
obtain representations of functional relationships on the one-body level. The applica-
tion of this concept to inhomogeneous nonequilibrium flow, where PFT prescribes the
functional kinematic map, is exemplified for uniaxially driven Lennard-Jones systems in
Ref. [6]. For thermal equilibrium, Ref. [7] gives an in-depth account on the capabilities
of the neural functional framework, where the focus is put on a quantitative compar-
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Figure 1: Overview of the different approaches for the description of classical many-body sys-
tems in and out of equilibrium which are set forth and interrelated in this work.

ison to state-of-the-art analytic treatments, predominantly regarding the well-studied
hard sphere fluid. Ref. [8] serves as a pedagogical and instructive topical review of the
underlying aspects of the neural functional theory including the pertinent simulation
methods, functional principles and machine learning techniques.

1.2 Particle models
As illustrated in the previous section, the physics of thermal many-body systems is
determined primarily by the type of interparticle interaction. In the following, we
present different particle models that are used throughout this work and in the related
publications [1–8]. For each model, we specify its microscopic behavior in terms of the
interaction potential. A brief overview of possible use cases in theory and in simulation
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1 Introduction

is provided and we illustrate some of the arising physical properties. The considered
interaction types range from simple reference systems to representations of complex
fluids.

Hard spheres
The hard sphere model is arguably the simplest reference system for the realization of
short-range repulsion. It is characterized by the pairwise interparticle potential

ϕHS(r) =
{
∞ r < σ,

0 r ≥ σ,
(1.1)

where r denotes the distance of two particles with diameter σ. The purely geometric
nature of Eq. (1.1) makes the hard sphere system particularly amenable to theoretical
techniques, see Sec. 3.1 for its treatment in DFT and note that the hard rod fluid in one
spatial dimension is tractable to the degree of exact results [8, 60]. However, due to its
nonanalytic character, the hard sphere model is not suitable for the straightforward ap-
plication of force-based simulation schemes. Besides resorting to energy-based methods
such as Monte Carlo (see Sec. 2.1), event-driven algorithms enable the determination
of trajectories by the explicit numerical evaluation of particle collisions [3, 62, 63].

Hard-core repulsion is a common idealized feature of many colloids [33, 64] as well as
a reasonable approximation of the short-ranged repulsive part of molecular or atomic
interactions [14, 65]. The hard sphere fluid shows no liquid-gas phase transition, but
despite the lack of attractive interaction, a face centered cubic crystal forms for suffi-
ciently large density. Hard-sphere freezing, albeit having been highly debated [66] until
its experimental confirmation [30], has been observed already in very early simulation
work [67] and it is sometimes referred to as the Kirkwood-Alder transition [68]. Fluid
states of this model, both of spatially homogeneous and heterogeneous nature, are here
revisited in the context of novel DFT [3, 61] and machine learning techniques [7, 8], see
also Secs. 3.3 and 4.2 for brief descriptions.

Lennard-Jones fluid
The Lennard-Jones (LJ) interaction potential is given by

ϕLJ(r) = 4ϵ

[(
σ

r

)12
−
(

σ

r

)6
]

, (1.2)

where ϵ sets the energy scale and σ determines the particle size. The LJ potential is
commonly used for the description of simple atomic fluids such as noble gases, as it is
constructed to capture both the attractive interaction due to van der Waals forces as
well as the repulsion at small separation distance.

In many-body computer simulations, it is common practice to truncate and to pos-
sibly shift the LJ potential in order to reduce the number of interactions that need to
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1.2 Particle models

be evaluated. For truncation, one sets ϕLJT(r) = ϕLJ(r) for r ≤ rc and ϕLJT(r) = 0 for
r > rc, where a typical choice of the cutoff radius is rc = 2.5σ. Unless noted otherwise,
we apply this truncation in the considered LJ systems. Further shifting of the potential
according to ϕLJTS(r) = ϕLJ(r) − ϕLJ(rc) for r ≤ rc while retaining ϕLJTS(r) = 0 for
r > rc prevents a discontinuity at r = rc. One should keep in mind that the thermo-
dynamic properties of the LJ fluid change significantly when the pair potential (1.2) is
truncated and possibly shifted, which is particularly relevant for the interpretation of
results from different simulation methods [69]. Below a critical point, which depends
on the value of rc and on the applied shifting, the LJ fluid exhibits a liquid-gas phase
transition.

The Weeks-Chandler-Andersen (WCA) potential [70] is recovered as a special case of
the LJ potential via ϕWCA(r) = ϕLJTS(r) if the cutoff radius is chosen to be located at
the minimum of the potential well of Eq. (1.2), rc = 6√2σ. The WCA potential hence
only consists of a repulsive contribution and it can be used as a qualitatively similar
alternative to hard-core repulsion. Force-based simulations [1, 4–6] are feasible for the
truncated and shifted LJ potential and hence also for the WCA fluid.

Stillinger-Weber potential

The Stillinger-Weber (SW) potential is representative of more complex fluids. Originally
conceived for computer simulations of silicon [71], the potential has since been adapted
to also account for the behavior of water [72, 73] and of colloidal gels [74, 75]. Its
pairwise contribution

ϕSW,2(r) = Aϵ

[
B

(
σ

r

)p

−
(

σ

r

)q]
exp

(
σ

r − aσ

)
(1.3)

is a generalized variant of the LJ potential with additional parameters A, B, p, q and a.
Besides the two-body term (1.3), the SW potential possesses a three-body contribution

ϕSW,3(r, r′, θ) = λϵ (cos θ − cos θ0)2 exp
(

γσ

r − aσ

)
exp

(
γσ

r′ − aσ

)
(1.4)

with parameters γ, λ and θ0, where r and r′ denote the distances of two particles to a
central particle and θ is the intermediate angle of the particle triplet. The parameter λ
sets the strength of the three-body contribution and θ0 tunes the preferred three-body
angle, i.e. the angular configuration of minimum energy.

Both Eqs. (1.3) and (1.4) vanish continuously at pairwise distances of aσ beyond
which they are set to zero. The SW potential can thus profit from common optimiza-
tions in many-body simulations which reduce the number of evaluations of short-ranged
particle interactions [44]. Note, however, that for the three-body part (1.4), the inter-
actions can be moderated in a range of 2aσ by an intermediate central particle. Due
to the specific multiplicative nature of the SW potential, an alternative representation
can be derived, which avoids the direct evaluation of the three-body term (1.4) in a
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1 Introduction

triple sum when calculating the total internal energy and particle forces. Details of this
optimized evaluation scheme are given in Appendix A and in Ref. [75].

Both in the original publication of Stillinger and Weber [71] as well as for the
monatomic water model by Molinero and Moore [72], the preferred three-body an-
gle has been set to θ0 = arccos(−1/3) ≈ 109.47◦ in order to account for the tetrahedral
nature of the underlying atomic or molecular interactions. In other works [74, 75],
different choices of θ0 have been considered. In particular, for significantly decreased
cardinality of the particles, as obtained e.g. by setting θ0 = 180◦, the SW potential
was found to be a suitable representation of a colloidal gel former. We investigate the
structure [2, 4] of the monatomic water model and of the colloidal gel with simulations
[1], cf. Sec. 2.3, and with theoretical tools that are summarized in Secs. 3.2 and 3.3.

Further particle models

Apart from the three models that were laid out above, we also consider further fluid
types in supporting roles, where we focus primarily on studying novel types of pair
correlation functions, see Ref. [4]. We give a brief overview of the considered models in
the following.

Treating long-range interactions in many-body systems is a pertinent problem in the-
oretical and simulation work [44, 76]. While we do not deal explicitly with Coulombic
repulsion, we consider the Yukawa potential [77] as a model which incorporates screened
electrostatic interactions between charged particles. Orientational degrees of freedom
become relevant when dipolar interactions are taken into account. In this regard, we
study the soft-sphere dipolar and the Stockmayer fluid [78, 79], which both consist of a
repulsive core and a dipolar interaction term (the Stockmayer fluid includes additional
Lennard-Jones-like isotropic attraction). Besides dipolar interactions giving rise to non-
trivial orientational configurations, we also consider the uniaxial Gay-Berne interaction
potential [80], which models a class of elongated or oblate anisotropic particles. The
focus is thereby put on accounting for the pair correlations that arise in isotropic and
nematic phases of the Gay-Berne fluid.

1.3 Statistical mechanics

We complete the microscopic picture and introduce notation by laying out the statistical
mechanics of classical many-body systems [14] in the following. In general, the standard
Hamiltonian

H(rN , pN ) =
N∑

i=1

p2
i

2mi
+ U(rN ) (1.5)

is considered, where N is the number of particles with positions rN ≡ (r1, r2, . . . , rN )
and momenta pN ≡ (p1, p2, . . . , pN ), and mi is the mass of particle i. The potential
energy U(rN ) = u(rN ) + ∑N

i=1 Vext(ri) consists of the interparticle energy u(rN ) and

8



1.3 Statistical mechanics

of a contribution due to an external potential Vext(r) which depends on position r.
Specifically, for pairwise interactions,

u(rN ) =
N∑

i=1

N∑
j>i

ϕ(rij) (1.6)

with the pair potential ϕ(r) and rij = rj − ri such that rij = |rij | is the distance of
particles i and j. For particle types with additional three-body interactions, such as for
the SW potential,

u(rN ) =
N∑

i=1

N∑
j>i

ϕ2(rij) +
N∑

i=1

N∑
j ̸=i

N∑
k>j

ϕ3(rij , rik, θijk), (1.7)

where ϕ2(r) is the pairwise contribution, e.g. Eq. (1.3), ϕ3(r, r′, θ) is the three-body
interaction term, e.g. Eq. (1.4), and θijk is the intermediate angle of rij and rik.

For thermal equilibrium in the grand ensemble, the chemical potential µ, the absolute
temperature T and the volume V of the three-dimensional system are fixed. The phase
space distribution function then assumes the Boltzmann form

Ψeq = 1
Ξe−β(H−µN) (1.8)

with inverse temperature β = 1/(kBT ) and Boltzmann constant kB. The grand parti-
tion sum Ξ = Tr e−β(H−µN) normalizes the phase space distribution function and the
grand canonical trace over phase space is defined as

Tr · =
∞∑

N=0

1
N !h3N

∫
drN

∫
dpN ·, (1.9)

where h denotes the Planck constant. Averages of a phase space function Â = Â(rN , pN )
can then be evaluated via ⟨Â⟩ ≡ Tr ΨeqÂ. A prime example is the one-body density
profile ρ(r) = ⟨ρ̂(r)⟩, which follows from an average of the density operator ρ̂(r) =∑N

i=1 δ(r− ri), where δ(·) denotes the Dirac distribution.
If the canonical ensemble is considered, the particle number N rather than the chem-

ical potential µ is kept fixed. In this case, the phase space distribution function is
given by Ψeq,N = e−βH/ZN with the canonical trace TrN · = (N !h3N )−1 ∫ drN

∫
dpN ·

and the canonical partition sum ZN = TrN e−βH . The evaluation of averages remains
identical upon replacing the trace and distribution function with their canonical forms.
Note that in both ensembles, the momentum integrals can be performed analytically
for Hamiltonians of the form (1.5) if the considered observable Â = Â(rN ) does not
depend on momenta. If all particles have identical mass m, this yields the inverse of
the thermal wavelength Λ = h/

√
2πmkBT for each inertial degree of freedom.
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2 Many-body simulation methods

2.1 Monte Carlo
In equilibrium, Monte Carlo methods are an efficient tool for the simulation of many-
body systems in order to obtain averages of relevant observables [3–5, 7, 8]. The fun-
damental Monte Carlo concept is the stochastic evaluation of the phase space integrals
laid out in Sec. 1.3. We point to Ref. [44] for a detailed and pedagogical account of
these methods and summarize in the following the most pertinent aspects.

The objective of standard Monte Carlo schemes is the generation of microstates
according to their known Boltzmann weights in order to sample the thermal equilibrium
of a considered system. For this, the condition of detailed balance is usually imposed
as a sufficient prerequisite for the reproduction of the given distribution of states. One
thereby demands that the transition from a state A (e.g. a particle configuration rN )
into a new state B is exactly as probable as the reverse transition B → A, hence keeping
the equilibrium distribution intact. Therefore,

P (A)Π(A→ B) = P (B)Π(B → A), (2.1)

where P denotes the probability of a given state and Π is the “transition matrix” [81,
82]. In practice, Π(A → B) = α(A → B)acc(A → B), where α is the probability of
a trial move and acc is the probability of actually accepting a new state B given the
previous state A. For simplification, one usually chooses α to be symmetric1 such that
Eq. (2.1) becomes P (A)acc(A → B) = P (B)acc(B → A). A natural choice due to
Metropolis et al. [43] for an acceptance probability that fulfills this relation is

acc(A→ B) = min
(

1,
P (B)
P (A)

)
. (2.2)

From here, concrete expressions can be derived for a given ensemble by identifying P
with the relevant equilibrium distribution of states. In the canonical ensemble, a state
is specified by the particle configuration rN , and one arrives at

acc(rN → r̃N ) = min
(
1, e−β(U(r̃N )−U(rN ))

)
(2.3)

for the acceptance probability of moving the particles2 from rN to new positions r̃N .
1There is much freedom in constructing useful biased Monte Carlo schemes where α is not symmetric,

see e.g. Chapter 12 in Ref. [44].
2The displacement of individual particles usually occurs sequentially in so-called sweeps.
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2.2 Fundamentals of Brownian dynamics and prerequisites for adaptivity

In the grand canonical ensemble, transitions not only include particle displacements,
but also the exchange of particles with a (virtual) reservoir. Therefore, in addition to
the acceptance ratio (2.3) of changing particle positions, random particle insertions and
removals are performed as specified by the rules

acc(rN → rN+1) = min
(

1,
V

Λ3(N + 1)eβ(µ−U(rN+1)+U(rN ))
)

, (2.4)

acc(rN → rN−1) = min
(

1,
Λ3N

V
e−β(µ+U(rN−1)−U(rN ))

)
, (2.5)

where Λ is the thermal wavelength.3 The new states with one inserted and one removed
particle are denoted by rN+1 and rN−1, respectively.

2.2 Fundamentals of Brownian dynamics and prerequisites for
adaptivity

The Monte Carlo methods presented in Sec. 2.1 are useful for but also limited to the
investigation of statistical equilibrium quantities. If one wishes to explore dynamical
processes on the trajectory level, which are interesting already in equilibrium [4, 83,
84] and become particularly relevant for nonequilibrium phenomena [1, 2, 6], further
simulation methods are required.

Langevin dynamics [47, 85] provides one such approach which is suitable specifically
for the description of colloidal systems. The Langevin equation of motion

mir̈i(t) = fi(rN (t), t)− γiṙi(t) +
√

2kBTγiRi(t) (2.6)

for particle i incorporates a random force
√

2kBTγiRi(t) and the total deterministic
force fi(rN (t), t), which may generally depend on the momentary particle configuration
rN (t) and on time t; time derivatives are denoted by overdots. The forces are counter-
acted by a friction force γiṙi(t) due to the motion in the solvent,4 where γi is the friction
constant. Note that Eq. (2.6) is a second-order differential equation, which can be re-
formulated as a system of first-order equations using the momentum pi(t) = miṙi(t) of
particle i.

Crucially, to yield a sound statistical description of collisions with implicit solvent
particles, the random force must be unbiased,

⟨Ri(t)⟩ = 0, (2.7)

as well as uncorrelated between particles and in time,

⟨Ri(t)Rj(t′)⟩ = 1δijδ(t− t′), (2.8)
3In practice, one usually works in reduced units where Λ = σ = 1.
4We do not consider the mediation of hydrodynamic interactions via the solvent [49].
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2 Many-body simulation methods

where 1 is the 3×3 identity matrix, δij denotes the Kronecker delta and δ(·) is the Dirac
distribution; an outer product is implied in the correlation function on the left hand
side of Eq. (2.8). The prefactor of the random force in Eq. (2.6) arises as a consequence
of a fluctuation-dissipation theorem and yields equilibrium behavior which is consistent
with the statistical mechanics as described in Sec. 1.3.

A further simplification of the particle dynamics arises by considering the Langevin
equation in the overdamped limit [2, 6]. The inertia of the particles is thereby assumed
to vanish instantaneously such that Eq. (2.6) becomes

ṙi(t) = 1
γi

fi(rN (t), t) +
√

2kBT

γi
Ri(t), (2.9)

which is the equation of motion for (overdamped) Brownian dynamics, where the posi-
tions rN remain as the sole relevant microscopic degrees of freedom. This simplification
comes with many crucial benefits for theoretical descriptions (see e.g. Sec. 3.2), but
counterintuitively, the treatment of Eq. (2.9) in simulation is more problematic than
one might expect at first sight. In the following, we give an outline of conventional
numerical algorithms for BD before illustrating an adaptive timestepping method [1]
which overcomes many of their drawbacks.

For the implementation of Eq. (2.9) in computer simulations, one is faced with the
task of finding an appropriate discretization scheme in order to evolve the particle con-
figuration rN numerically in time. The simplest treatment of a first-order stochastic
differential equation (SDE) such as Eq. (2.9) can be derived as follows: a fixed discretiza-
tion interval ∆t is chosen, the time derivative is approximated by a finite difference and
the accumulated effect of the stochastic term during the interval ∆t is considered. After
rearrangement, this yields the standard Euler-Maruyama method [52, 86], which reads

ri,k+1 = ri,k + 1
γi

fi(rN
k , tk)∆t +

√
2kBT

γi
Ri,k (2.10)

when applied to the overdamped Langevin equation (2.9). Eq. (2.10) yields a numerical
approximation rN

k ≈ rN (tk) of the time evolution of the particle configuration at times
tk = k∆t, k > 0, iteratively from a given initial configuration rN (0) = rN

0 . The random
vectors Ri,k are drawn independently in each step and for each particle according to
Ri,k ∼ N (0, ∆t) =

√
∆tN (0, 1) from a multivariate normal distribution N with vanish-

ing mean and variance ∆t (the process of drawing a random contribution from a given
distribution is denoted by the tilde). This specific construction of the random vectors
Ri,k is in agreement with the properties (2.7) and (2.8).

As can already be guessed from its name, the Euler-Maruyama method is the gen-
eralization of the Euler method for ordinary differential equations (ODEs) to the case
of SDEs, and it differs solely in the (straightforward) addition of the random term.
Whereas the Euler method for ODEs is rarely used and has been superseded by more
accurate and more efficient schemes which are arguably textbook knowledge [87], the
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2.2 Fundamentals of Brownian dynamics and prerequisites for adaptivity

Euler-Maruyama method is still commonly applied for the numerical solution of SDEs
and in particular for conventional BD simulations. Although higher-order [50] or im-
plicit [51] timestepping may be incorporated, the treatment of the stochastic term gener-
ally remains crude when attempting to devise more advanced methods, thus somewhat
limiting their practical utility. One might wonder why this is the case, especially when
keeping many-body simulations in mind, which have significant potential of benefiting
from more efficient algorithms.

In the following, we give a brief overview of the numerical treatment of SDEs and
the subtleties which arise in the construction of improved methods (more background
can be found e.g. in Ref. [52]). For this, we first consider general SDEs of the form

dX(t) = f(X(t), t) dt + g(X(t), t) dW (t), (2.11)

where X is the dependent random variable, W is a Wiener process (i.e. Brownian
motion), and f and g are prescribed general functions. The Euler-Maruyama method
for this general SDE then becomes

Xk+1 = Xk + f(Xk, tk)∆t + g(Xk, tk)Rk, (2.12)

where a Wiener increment Rk is drawn in each step k from a normal distribution as
shown above.

A first clear distinction to the numerical treatment of ODEs arises when determining
the order of convergence of a given integration scheme, e.g. of Eq. (2.12). Since both
the true solution X(tk) as well as the approximation Xk are inherently stochastic, the
convergence of numerical methods for SDEs may be considered with respect to averages
or with respect to individual realizations of the random process. For disambiguation,
this is referred to as weak and strong convergence, respectively. The order of convergence
is then defined as the exponent p of the power law ∆tp which bounds the behavior of
the error of Xk to X(tk) in the weak or strong sense for ∆t → 0. While the order
of convergence can easily be determined for ODE methods in general, the distinction
between weak and strong convergence and the fact that p may depend on the concrete
form of the functions f and g complicates this problem for SDEs. As an example, the
Euler-Maruyama method possesses a strong order of convergence of p = 1/2 for general
forms5 of g, but p = 1 (as for the Euler method for ODEs) if the noise is additive, i.e.
g(X(t), t) = const. in Eq. (2.11). This is exactly the case for the overdamped Langevin
equation (2.9), and one can hence focus on the deterministic part6 for obtaining higher-
order schemes for BD [50, 51].

A second difficulty in the treatment of SDEs arises when the use of adaptive meth-
ods is considered, for which the discretization interval no longer remains constant in

5For general forms of g, the Milstein method [88] and Runge-Kutta methods for SDEs [52, 89] provide
numerical schemes with higher order of strong convergence. This becomes relevant in BD when
including hydrodynamic interactions for which the noise term is no longer additive.

6The properties of f can also be exploited for the construction of improved schemes. For BD,
the Leimkuhler-Matthews method [90, 91] is a feasible and simple alternative to standard Euler-
Maruyama integration if the deterministic force is known to be conservative.
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2 Many-body simulation methods

each step. Instead, automatic adjustment of ∆t shall control the discretization error
with the goal of obtaining a stable and accurate time propagation that still remains
efficient. Recall that for ODEs, a popular adaptive integration scheme is the Runge-
Kutta-Fehlberg method [92], for which two embedded Runge-Kutta steps of different
order are used to estimate the discretization error and to hence adapt the value of ∆t
optimally. A crucial mechanism in adaptive methods is the occurrence of rejections. If
a step is performed with a given discretization interval ∆t and the resulting local error
is deemed too large, the step is undone a posteriori and retried with a smaller value
of ∆t. This procedure poses fundamental challenges when applied to SDEs. Here, a
timestep includes drawing a random contribution which needs to satisfy precise sta-
tistical relations, see e.g. Eqs. (2.7) and (2.8). By naively discarding and redrawing
these contributions, the random process is altered implicitly and its desired properties
are violated, which leads to unphysical results in the case of BD simulations. Hence,
if one wishes to incorporate adaptive timestepping due to its undeniable benefits, one
must ensure the correct generation of the given random process under the premise of
occasional rejections.

2.3 Adaptive Brownian dynamics: an overview
In the following, we show that it is possible to construct an efficient adaptive method
for BD and hence summarize the main findings of Ref. [1]. Following the above consid-
erations, a simple scheme with different orders of strong convergence can be obtained
by complementing the Euler-Maruyama method with a Heun step (i.e. the trapezoidal
rule) as follows:

r̄i,k+1 = ri,k + 1
γi

fi(rN
k , tk)∆tk +

√
2kBT

γi
Ri,k, (2.13)

ri,k+1 = ri,k + 1
2γi

(
fi(rN

k , tk) + fi(r̄N
k+1, tk+1)

)
∆tk +

√
2kBT

γi
Ri,k. (2.14)

The Euler-Maruyama step (2.13) produces an intermediate configuration r̄N
k+1 at time

tk+1 = tk + ∆tk, which is taken as input to the Heun step (2.14) to yield an improved
estimate of the deterministic force which acts during the time interval [tk, tk+1]. Note
that the random contributions RN

k in Eqs. (2.13) and (2.14) are identical and that only
one additional evaluation of the particle forces fN is required in Eq. (2.14), thus con-
stituting an embedded scheme. While this numerical integration procedure could be
used as-is with a constant timestep, our main goal is the implementation of adaptivity.
Hence, the discrepancy of the Euler (r̄N

k+1) and the Heun (rN
k+1) step serves to evaluate

a scalar error measure, for which a tolerance is imposed. The adaptation of ∆tk then
proceeds similar to that of ODE integrators and further technical details of the algo-
rithm are given in Ref. [1]. In particular, if the discrepancy of r̄N

k+1 and rN
k+1 lies above

the predefined tolerance, the trial step is rejected and reevaluated after decreasing the
timestep ∆tk.
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Figure 2: (a) The microscopic force balance in the overdamped Langevin equation (2.9) for
particle i consists of a deterministic force fi and of a random force

√
2kBTγiRi, which

are counteracted by the friction force γiṙi exerted by the implicit solvent. (b) Adap-
tive BD propagates the particles according to the embedded Heun-Euler integration
scheme (2.13) and (2.14), which enables to control the accuracy of the time evolution
via a tolerance criterion that may result in rejections of trial steps. (c) In case of re-
jection, the random increment Rk is interpolated with the Brownian bridge theorem
(2.15) to retain the desired Wiener process W (t). Rejection sampling with memory
(RSwM) facilitates the efficient storage and reapplication of rejected parts of random
increments, which is illustrated here for a simplified one-dimensional random process.

The crucial part of adaptive BD is the construction of the random contributions RN
k

and their handling after such rejections. The problem of generating a given random
process iteratively while allowing rejections has also been considered by Rackauckas and
Nie [93] in 2017, and they have coined a family of “Rejection Sampling with Memory”
(RSwM) algorithms as viable solutions. Central to these methods is the Brownian
bridge theorem [52], which concretely specifies how to interpolate a Wiener process, cf.
Eq. (2.11). If the state of such a random process is known at two points, e.g. W (0) = 0
and W (∆t) = R, the Brownian bridge theorem yields

W (q∆t) ∼ N (qR, (1− q)q∆t) (2.15)

as an interpolation rule for the construction of an intermediate point W (q∆t) where
0 < q < 1. Recall that in Eq. (2.15), the arguments qR and (1 − q)q∆t prescribe the
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expectation value and the variance of the normal distribution N . Hence, the Brownian
bridge (2.15) can be used after the rejection of a Heun-Euler step (2.13) and (2.14)
with length ∆t to draw new Wiener increments for the retrial of the timestep with a
decreased discretization interval q∆t. The refined random process will then still satisfy
the desired properties (2.7) and (2.8) of Brownian motion.

Importantly, the remaining part of the rejected random increment, i.e. the contri-
bution corresponding to the time interval [q∆t, ∆t], must still be retained. For this,
RSwM provides an efficient bookkeeping scheme, which ensures that rejected random
increments are stored and reused efficiently in subsequent timesteps. The fully general
method RSwM3 [93, 94] serves as the basis for adaptive BD, and it enables contin-
uous variation of the time interval and the correct handling of edge cases such as
re-rejections.7 The use of RSwM3 in adaptive BD and further details of the algorithm
are described in Ref. [1] and an implementation is provided in Ref. [9]. An illustration
of the embedded Heun-Euler scheme in adaptive BD as well as a sketch of RSwM is
shown in Fig. 2.

Applications and results
Adaptive BD is useful especially for nonequilibrium simulations, but it turns out to be
favorable already in equilibrium and under bulk conditions. This has been shown in
Ref. [1], where different benchmarks were performed for the Lennard-Jones fluid. With
adaptive BD, the heuristic choice of a suitable timestep length ∆t is spared, and one
instead imposes a tolerance criterion for the error of individual steps, which is universal
across a broad range of relevant applications. The rapid adaptation of ∆t leads on
average to a significantly larger timestep and hence to an efficiency gain compared to
the standard Euler-Maruyama scheme, but it also ensures the stability and accuracy in
situations where the use of fixed-timestep integration methods is bound to fail. As an
example, we have investigated the behavior of a colloidal Lennard-Jones system in which
evaporation of the implicit solvent is modeled by a time-dependent external potential
[1, 95]. The successful automatic choice of ∆t reflects the changing environment as the
colloidal suspension becomes denser, and the complex stratification dynamics can be
resolved up to and within the arrangement of the colloidal particles into a lattice.

We have also employed adaptive BD for the simulation of an inhomogeneously sheared
colloidal gel [2] (see also Sec. 3.2 for the PFT point of view). This study demonstrates
that the method is particularly useful for nonequilibrium investigations and that more
complex interaction types such as the SW potential pose no difficulties for its applica-
tion. While the timestep would have to be adjusted manually in conventional methods
to accommodate for the variable strength of the applied shear force, adaptive BD au-
tomates this choice based on the quasi-universal tolerance criterion.

The benefits of automatic timestep adjustment have been particularly relevant for
the machine learning investigations (cf. Chapter 4) of Ref. [6], where training and test

7We have rectified a subtle error in the original RSwM3 algorithm regarding the treatment of re-
rejections, see Appendix B in Ref. [1] for details.

16



2.3 Adaptive Brownian dynamics: an overview

simulations of the LJ fluid have been performed with adaptive BD. As the generation of
this reference data set required 1000 simulation runs with vastly different randomized
equilibrium and nonequilibrium conditions, it would have been very cumbersome to be
obliged to rely on fixed-timestep integrators due to their lack of stability, accuracy and
efficiency.

As adaptive BD bounds the local error on the trajectory level by the comparison of
forces, the method is also suitable for the accurate measurement of force-related observ-
ables. This feature was used advantageously to obtain some of the results of Refs. [4,
5]. Specifically, different types of force correlation functions have been investigated in
simulation in order to verify their interrelation via sum rules due to Noether invariance
(cf. Sec. 3.3).

Recently, adaptive BD has also been considered in other works as a favorable alter-
native to usual fixed-timestep Euler-Maruyama integration. In particular, the method
has been used for the simulation of topologically protected colloidal transport that may
be controlled in corresponding experiments by magnetic patterns or optical tweezers
[96, 97]. Adaptive timestepping has also been discussed to play a crucial role in perfor-
mant simulations of more complex biophysical systems [98, 99], for which adaptive BD
provides a practical toolbox that may help to mitigate many of the arising subtleties.
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3 Functional techniques and thermal
Noether invariance

3.1 Density functional theory
The simulation techniques presented in Chapter 2 facilitate the measurement of one-
body quantities [1, 3, 7, 8] such as the density profile ρ(r) as well as of more intricate
correlation functions [4, 5] via sampling of many-body configurations. In equilibrium,
simulations hence provide practical access to the functional mapping from the pre-
scribed external potential to the measured density profile, i.e. Vext(r) → ρ(r), which
is in accordance with common physical intuition of cause and effect (thereby ignoring
subtleties at phase coexistence). Less obviously, and much to the benefit of theoretical
and application-oriented methods, one can show that the inverse functional relationship

ρ(r)→ Vext(r) (3.1)

is also uniquely determined for fixed but arbitrary interparticle interactions, temper-
ature and chemical potential, provided that ρ(r) is restricted to physically accessible
profiles. This landmark result, which was first proven for classical systems by Evans
[53] in 1979, serves as the bedrock of classical density functional theory (DFT).

Reformulating the statistical mechanics of many-body systems (cf. Sec. 1.3) in terms
of functional relationships with respect to ρ(r) yields a powerful framework for the de-
scription of fluid equilibria [14], and we give some details in the following. As Vext(r)
appears explicitly in the Hamiltonian and hence in the Boltzmann distribution func-
tion Ψeq, see Eq. (1.8), it is clear that the DFT map (3.1) implies a formal func-
tional relationship on ρ(r) for every related quantity. In particular, the grand potential
Ω = −kBT ln Ξ, which follows from the grand partition sum Ξ in the many-body pic-
ture, becomes a unique functional Ω[ρ] with respect to the one-body density profile
(functional relationships are indicated by square brackets). The role of Ω[ρ] as a ther-
modynamic potential remains valid, such that functional minimization determines the
true equilibrium state,

δΩ[ρ]
δρ(r) = 0 (min), (3.2)

where δ/δρ(r) is a functional derivative with respect to the density profile. More explicit
results are obtained by writing out ideal, external and internal contributions of the grand
potential according to

Ω[ρ] = Fid[ρ] + Fexc[ρ] +
∫

dr ρ(r) (Vext(r)− µ) . (3.3)
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3.1 Density functional theory

Contrary to the ideal gas free energy

Fid[ρ] = kBT

∫
dr ρ(r)

(
ln(ρ(r)Λd)− 1

)
, (3.4)

which can be derived exactly, the excess free energy Fexc[ρ] constitutes the nontrivial
part of the grand potential Ω[ρ] and it has to be determined for the specific fluid model
under consideration [3, 7, 8]. Note that the thermal wavelength in Eq. (3.4) can be set
to Λ = σ = 1 without losing generality and that the parametric dependence of Fid[ρ]
and Fexc[ρ] on temperature T is suppressed in the notation.

Using Eq. (3.3) in the minimization principle (3.2), one arrives at

ρ(r) = e−β(Vext(r)−µ)+c1(r;[ρ]), (3.5)

which constitutes the Euler-Lagrange equation of classical DFT. The effects of the inter-
nal interactions are captured in Eq. (3.5) by the one-body direct correlation functional

c1(r; [ρ]) = −δβFexc[ρ]
δρ(r) , (3.6)

which follows from functional differentiation of the excess free energy and hence retains
the functional dependence on ρ(r). By iterating multiple functional derivatives with
respect to ρ(r), the hierarchy of direct correlation functions can be accessed [7, 8]. In
particular, the two-body direct correlation function is given by

c2(r, r′; [ρ]) = δc1(r; [ρ])
δρ(r′) . (3.7)

As an important object in liquid integral equation theory [14], the two-body direct
correlation functional determines the pair structure of fluids via the Ornstein-Zernike
(OZ) equation [100]

h(r, r′) = c2(r, r′) +
∫

dr′′ c2(r, r′′)ρ(r′′)h(r′′, r′). (3.8)

Here, h(r, r′) is the total correlation function, which is associated in bulk fluids to the
radial distribution function g(r) = g(|r − r′|) = h(r, r′) + 1, see also Refs. [4, 7] for
numerical work.

The two-body direct correlation function plays a further important role in a reformu-
lation of DFT which is based on forces. This force-DFT [61] relies on the calculation
of c2(r, r; [ρ]) from a given form of Fexc[ρ] by functional differentiation, see Eqs. (3.6)
and (3.7). The two-body density ρ(2)(r, r′; [ρ]) = ρ(r)ρ(r′)(h(r, r′; [ρ]) + 1) is then ac-
cessed explicitly as a functional of ρ(r) via inversion of the OZ equation (3.8) [101],
and it serves as an auxiliary quantity during the minimization of the grand potential.
For approximate forms of Fexc[ρ], force-DFT results differ from those of conventional
(“potential”) DFT. We have investigated the subtle discrepancies of both routes for
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3 Functional techniques and thermal Noether invariance

the hard sphere fluid in Ref. [3] and have followed therein the suggestion of Ref. [61] to
construct and examine an improved hybrid scheme. Further details of the fundamentals
of force-DFT are given in Sec. 3.3 and in Refs. [3, 61].

In concrete applications of conventional DFT, Eqs. (3.5) and (3.6) are central for
the prediction of inhomogeneous fluid equilibria. The Euler-Lagrange equation (3.5)
determines the true density profile implicitly, and it can hence be solved either by
straightforward self-consistent iteration [7, 8] or by more sophisticated root-finding
methods [102]. A simple and effective scheme is the Picard iteration with mixing
parameter α, in which ρ(r) is iterated until convergence according to

ρ(r)← (1− α)ρ(r) + αe−β(Vext(r)−µ)+c1(r;[ρ]). (3.9)

Although the computational effort of a DFT minimization may be orders of magnitude
lower than in a corresponding many-body simulation, the core difficulty of DFT lies in
the necessity of finding an accurate functional expression for c1(r; [ρ]) or equivalently
for Fexc[ρ]; we recall Eq. (3.6). Since this amounts exactly to solving the many-body
problem, copious use of various approximation techniques is expected for all but the
most simple types of model fluids.1

In the following, we proceed analytically and illustrate approximations of Fexc[ρ] for
the three-dimensional hard sphere fluid as obtained from fundamental measure theory
(FMT) [103]. The terminology can be traced back to the use of fundamental properties
of spheres which reflect their purely geometric nature. Specifically, the fundamental
geometric measures of spheres are incorporated via the weight functions2

ω3(r) = Θ(R− |r|), (3.10)
ω2(r) = δ(R− |r|), (3.11)
ω2(r) = δ(R− |r|)êr, (3.12)

with R = σ/2, êr = r/|r| and additional linearly dependent weights ω0(r) = ω1(r)/R =
ω2(r)/(4πR2) and ω1(r) = ω2(r)/(4πR). Weighted densities

nα(r) = (ρ ⋆ ωα)(r) =
∫

dr′ ρ(r′)ωα(r− r′) (3.13)

follow from convolution of the density profile with the weight functions ωα(r), α =
0, 1, 2, 3, 1, 2. These serve as the basis to express the excess free energy via

Fexc[ρ] = kBT

∫
dr Φ({nα}). (3.14)

1The one-dimensional hard rod system is one of the very few fluid models for which an exact expression
of Fexc[ρ] has been found [60]. See also Ref. [8] for a survey of its analytic treatment and a perspective
on neural functional methods (cf. Chapter 4).

2Alternatively to the scalar and vectorial Rosenfeld weights [103] shown here, an equivalent represen-
tation in terms of only scalar functions is possible [104, 105].
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3.2 Power functional theory

For use in the iteration (3.9), functional differentiation of the FMT excess free energy
(3.14) yields the result

c1(r; [ρ]) = −
∑

α

(
∂Φ
∂nα

⋆
δnα

δρ

)
(r) (3.15)

for the one-body direct correlation functional, where an inner product is implied for
vectorial terms.

Concrete FMT functionals differ in the algebraic structure of the excess free energy
density Φ({nα}). In the original formulation of Rosenfeld [103],

Φ({nα}) = −n0 ln(1− n3) + n1n2 − n1 · n2
1− n3

+ n3
2 − 3n2n2

2
24π(1− n3)2 . (3.16)

An improvement over the Rosenfeld result (3.16) could be achieved with the derivation
of the White Bear and White Bear MkII functionals [106–108], whereby the latter
arguably serves as the state-of-the-art treatment of hard-core repulsion in DFT.

Applications of DFT are based on the self-consistent calculation of the density profile
(and further related quantities [109–112]) via an iteration scheme such as Eq. (3.9).
Conventionally, a suitable analytic expression for Fexc[ρ], e.g. the FMT result (3.14), has
to be specified, which gives rise to the one-body direct correlation functional c1(r; [ρ])
that appears in the Euler-Lagrange equation (3.5) and in the Picard iteration (3.9).
Prior to the actual implementation of c1(r; [ρ]), it is common practice to specialize
analytically to a simplified geometry, e.g. to planar [3, 7] or spherical symmetry as is
relevant for adsorption on model substrates and for the investigation of surface-induced
phenomena [113–117]. The convolutional structure of the FMT expression (3.15) for
c1(r; [ρ]) remains intact in both planar and spherical geometry after integrating out
over invariant coordinates [108].

As an alternative approach to analytic treatments, we present in Chapter 4 machine
learning methods for the determination of central functional objects from simulation
data and for the implementation of a corresponding neural DFT [7, 8]. For hard spheres,
the neural functional framework supersedes FMT in accuracy and it can also be readily
applied to different types of model fluids. Similarly, neural functionals can be trained
and used in nonequilibrium, where the existence of an exact functional map is estab-
lished by PFT. In the following, we outline relevant approaches for the description of
dynamical systems.

3.2 Power functional theory

Before detailing PFT, we give an overview of dynamical density functional theory
(DDFT) [3, 6, 53, 118, 119], which serves as an approximate method to investigate
time-dependent systems. The dynamical behavior is thereby assumed to be determined
by a sequence of equilibrium states, which are in turn described by DFT. The time
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3 Functional techniques and thermal Noether invariance

evolution then follows from the continuity equation

∂ρ(r, t)
∂t

= −∇ · J(r, t), (3.17)

where the current is given by

J(r, t) = −1
γ

ρ(r, t)∇ [kBT ln ρ(r, t) + Vext(r, t)− kBTc1(r, t; [ρ])] . (3.18)

The one-body direct correlation functional c1(r, t; [ρ]) is defined as before via the func-
tional derivative of Fexc[ρ], see Eq. (3.6), and it inherits the explicit time dependence
from ρ(r, t). The gradient structure of Eq. (3.18) renders DDFT oblivious to certain
types of dynamical scenarios and in particular to the effects of nonconservative force
fields as occur e.g. in sheared fluids [2, 120, 121]. Additionally, the implication of
equilibrium conditions, which is referred to as the adiabatic approximation, results in
omissions and defects that are generally hard to judge a priori [6, 122].

Alternatively to the usual functional derivative of the excess free energy, c1(r, t; [ρ])
in Eq. (3.18) can be expressed in terms of a force integral (see Sec. 3.3), which results
in a force-DDFT [3, 61]. For approximate forms of Fexc[ρ], force-DDFT yields results
slightly different from those of conventional DDFT, and explicit comparisons for the
Rosenfeld FMT functional (3.16) are presented in Ref. [3]. Interestingly, force-DDFT
enables a formal extension of DDFT to obtain an additional equation of motion for the
two-body density ρ(2)(r, r′, t), which is coupled to that of the one-body density ρ(r, t).
Applying the adiabatic approximation only at this level is practically feasible and results
in a “superadiabatic DDFT” [123, 124], which may mitigate certain limitations of the
conventional method.

Instead of climbing up the ladder of higher-order correlation functions, PFT [54, 55]
offers a formally exact framework for the investigation of nonequilibrium systems which
remains grounded on the one-body level. For overdamped motion,3 cf. Eq. (2.9), the
kinematic map of PFT invokes besides the instantaneous density profile ρ(r, t) a causal
functional dependence on the current J(r, t), i.e. on its history at all earlier times t.
Analogously to DFT, see Eq. (3.2), a minimization principle

δRt[ρ, J]
δJ(r, t) = 0 (3.19)

can be formulated, where the functional derivative of the total power functional Rt[ρ, J]
is evaluated for fixed density and at fixed time t. By writing out ideal, internal and ex-
ternal contributions [55] and performing the functional minimization (3.19), one arrives
at the force density balance

γJ(r, t) = Fint(r, t; [ρ, J]) + ρ(r, t)fext(r, t)− kBT∇ρ(r, t), (3.20)
3The assumption of overdamped BD is crucial for the existence of the functional relations presented

here. While PFT can also be formulated for inertial systems, the functional mapping then incorpo-
rates J̇(r, t), i.e. the time derivative of the current, as an additional variational field [55, 125].
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3.2 Power functional theory

which constitutes together with the continuity equation (3.17) the formally exact equa-
tions of motion of PFT. Note that all quantities in Eq. (3.20) are also defined as micro-
scopic averages ⟨∑N

i=1 aiδ(r−ri)⟩ and are hence accessible in simulation [2, 6]. In partic-
ular, setting ai to the velocity vi of particle i yields the current J(r, t) (see Ref. [126] for
sampling techniques in BD), and ai = −∇iu(rN ) determines the internal force density
Fint(r, t), where ∇i denotes the gradient with respect to coordinate ri.

The nontrivial functional dependence in Eq. (3.19) is passed down to Fint(r, t; [ρ, J])
in Eq. (3.20). In the adiabatic approximation, the functional dependence on J(r, t) is
dropped, and identification with the DDFT current (3.18) reveals that the adiabatic
force density

Fad(r, t; [ρ]) = ρ(r, t)kBT∇c1(r, t; [ρ]) (3.21)
is defined directly via the (equilibrium) one-body direct correlation functional. However,
a surplus generally remains in the full nonequilibrium internal force density, which hence
constitutes the superadiabatic part

Fsup(r, t; [ρ, J]) = −ρ(r, t)δPexc[ρ, J]
δJ(r, t) . (3.22)

Its generating functional, the superadiabatic free power functional Pexc[ρ, J], is at the
center of attention of PFT studies, as it models the genuine out-of-equilibrium effects
in many relevant applications [2, 6, 121, 122, 127]. Thus, in total,

Fint(r, t; [ρ, J]) = Fad(r, t; [ρ]) + Fsup(r, t; [ρ, J]) (3.23)

determines the dynamical behavior of a given system by entering the force density
balance (3.20). For concrete applications [2, 6], functional forms have to be provided for
both the adiabatic (see Sec. 3.1) and the superadiabatic contribution. In the following,
we specialize to nonequilibrium steady states, such that the explicit time dependence
vanishes in the previous equations and the current J(r) enters only in the form of its
stationary profile instead of its whole history.

Approximations for the superadiabatic part can be obtained analytically, e.g. by
simple semi-local expansions in terms of gradients of the one-body velocity profile v(r) =
J(r)/ρ(r) [6, 122, 128]; note that the functional minimization (3.19) may be formulated
equally with respect to v(r) instead of J(r). Further analysis enables to split the
superadiabatic force density into two additive contributions,

Fsup(r; [ρ, v]) = Fflow(r; [ρ, v]) + Fstruc(r; [ρ, v]). (3.24)

These can be distinguished uniquely with respect to their transformation properties
under motion reversal, i.e. by considering a (hypothetical) system where ρ(r) is identi-
cal but the flow direction is inverted such that v(r) → −v(r). Whereas the flow force
density Fflow(r) also flips its direction in the transformed system, the structural force
density Fstruc(r) remains unchanged. Terms of an analytic superadiabatic power func-
tional can hence be directly identified to describe flow or structural forces by considering
their order in v(r). This distinction is valuable as it allows for a clear separation of the
physical origin of the observed nonequilibrium forces [2, 6].
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Applications and results

In Ref. [2], we have performed investigations of a colloidal gel former [74, 75] as described
on the many-body level by the SW potential (1.3) and (1.4), which shows significant
superadiabatic effects in nonequilibrium steady states. External driving by a sinusoidal
shear force profile fext(r) causes the gel to form two flow channels. Via adaptive BD
simulations [1] of the stationary flow, a significant density modulation could be mea-
sured, which is maintained by a considerable structural superadiabatic force density
profile Fstruc(r). Additionally, the viscoelastic behavior of the colloidal gel leads to
the development of a superadiabatic flow force density Fflow(r) with a phenomenology
which is clearly distinct to that of viscous forces in simple fluids. In particular, Fflow(r)
acts at the sides of the flow channels in the same direction as the external force for suf-
ficient driving, which is caused microscopically by the dynamical formation of particle
chains that drag along connected strands. The resulting behavior of Fflow(r; [ρ, v]) can
be described successfully by a simple analytic power functional based on an expansion
in gradients of v(r) and ρ(r), see Eqs. (19)–(21) in Ref. [2].

Further use of PFT has been made in Ref. [6], where we have investigated machine
learning techniques which aim to capture the functional kinematic map from simulation
data. Specifically, we have considered the steady flow of the supercritical LJ fluid in
planar geometry as caused by diverse inhomogeneous external force profiles. The neural
network, which has been trained with adaptive BD [1] simulation data (see Sec. 2.3), is
capable of accurately predicting superadiabatic forces in systems that were not included
in the training, which serves as a data-driven verification of the existence of the PFT
kinematic map (3.23). Additionally, the analytic approach based on a simple gradient
expansion proves to be useful as it shows qualitative agreement across a wide range of
external force profiles.

3.3 Sum rules from applications of Noether’s theorem

As shown in Secs. 3.1 and 3.2, both DFT and PFT operate on a specific set of one-body
profiles, with ρ(r) being the sole central quantity in equilibrium. However, in certain
applications, further relevant observables are often worthwhile to consider in order to
gain additional physical insight. In particular, the consideration of one-body forces is
natural in dynamical systems, and it has also led in equilibrium to recent progress,
e.g. in the form of advanced numerical sampling schemes [44, 129–131]. One might
then wonder whether these additional quantities, which usually arise from averages of
different phase space functions, are connected in some way, and if so, how to acquire
explicit analytic constraints for their interrelation.

The application of Noether’s theorem [132, 133] to thermal many-body systems [56–
59] offers a powerful toolbox for the derivation of such sum rules, and we give an
overview of well-known and recent results [4, 5] in this section. As a general starting
point, a canonical transformation [134] is defined via a shifting field ϵ(r) which acts on
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phase space according to

ri → ri + ϵ(ri), (3.25)
pi → (1 +∇iϵ(ri))−1 · pi, (3.26)

and which conserves the phase space volume element drN dpN by construction. For-
mally, quantities in the transformed system then acquire a functional dependence
on ϵ(r). However, the transformation (3.25) and (3.26) can be viewed as a mere
reparametrization, such that results of integrals over phase space must be invariant
with respect to this coordinate change. Hence, for an arbitrary quantity A which is
obtained from phase space integration, one can conclude that A[ϵ] = A or equivalently

δA[ϵ]
δϵ(r) = 0. (3.27)

This functional derivative can be performed explicitly in equilibrium4 if A = ⟨Â⟩ is
given as an average of an arbitrary phase space function Â(rN , pN ), see Ref. [5] for the
derivation and the general result. In the following, we restrict ourselves to observables
Â = Â(rN ) that depend only on positional degrees of freedom. Evaluating Eq. (3.27)
at vanishing shifting field ϵ(r) = 0 then yields the local sum rule [5]

β
〈
F̂int(r)Â

〉
− β

〈
ρ̂(r)Â

〉
∇Vext(r) = ∇

〈
ρ̂(r)Â

〉
−
〈

N∑
i=1

(∇iÂ)δ(r− ri)
〉

. (3.28)

Useful concrete relations can be acquired by suitable choices of Â and we emphasize
first the seemingly trivial case Â = 1, which recovers the Yvon-Born-Green (YBG)
relation [14]

Fint(r)− ρ(r)∇Vext(r)− kBT∇ρ(r) = 0. (3.29)
The YBG equation (3.29) is the force density balance in equilibrium, cf. Eq. (3.20) with
J(r, t) = 0, and it emerges here fundamentally from the invariance properties of phase
space.5 Eq. (3.28) can hence be considered to form a hyperforce6 sum rule as it is the
generalization of the YBG force balance (3.29) to correlation functions including the
arbitrary configuration-dependent operator Â.

In Eq. (3.29), the internal force density is given explicitly for the case of pairwise
internal interactions as the force integral

Fint(r) = −
∫

dr′ ρ(2)(r, r′)∇ϕ(|r− r′|). (3.30)

4Many equilibrium identities can also be obtained from partial integration of carefully chosen phase
space averages.

5Alternatively, the YBG equation (3.29) can be obtained by choosing A = Ω and exploiting its
invariance in Eq. (3.27) [61]. A further standard route towards deriving the YBG relation proceeds
by integrating over N − 1 positional coordinates of the Smoluchowski equation [14].

6The terminology can be traced back to Hirschfelder’s hypervirial theorems [135], which form a set of
related but more abstract sum rules.
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By comparison to Eq. (3.21) and recalling that Fint(r) = Fad(r) in equilibrium, it is
clear that this integral offers an alternative way to obtain the one-body direct correlation
function c1(r) to be used in DFT calculations, see e.g. Eq. (3.9). This is the central
mechanism of force-DFT, which exploits Eq. (3.30) and the fact that ρ(2)(r, r′; [ρ]) is
indeed practically accessible in planar and spherical geometry as a functional of ρ(r)
by inversion of the OZ equation (3.8). Ref. [61] gives a detailed technical account
of the method and Ref. [3] conducts a quantitative comparison of conventional and
force-(D)DFT on the basis of the Rosenfeld FMT for the hard sphere fluid.

We return to the search for more general sum rules and point to Ref. [5], where explicit
results of Eq. (3.28) for various choices of Â are given. In particular, we reiterate here
the possibility of obtaining global sum rules either by spatial integration of the local
identity (3.28) across the system volume or by considering a constant shifting field
ϵ(r) = ϵ0 in the variation (3.27). As an example, this yields the vanishing of the total
internal force Ftot

int =
∫

dr Fint(r) = 0, which is expected due to Newton’s third law.
In equilibrium, expressing the internal force density in terms of the one-body direct
correlation function via Eq. (3.21) and performing a functional derivative produces the
identity [7, 8, 56]

∇c1(r) =
∫

dr′ c2(r, r′)∇′ρ(r′), (3.31)

which is an example of a sum rule that connects different members of the hierarchy of
direct correlation functions with each other. Additionally, one obtains∫

dr ρ(r)
∫

dr′ ρ(r′)∇c2(r, r′) = 0 (3.32)

as a consequence of Eq. (3.31) and Ftot
int = 0 [7, 8, 56].

Noether invariance can also be utilized to reveal further physical insight into the
nature of pair correlations in many-body systems. In this regard, novel types of two-
body correlation functions emerge from second-order invariance,

δ2A[ϵ]
δϵ(r)δϵ(r′) = 0. (3.33)

This has been considered in Ref. [4], where choosing A as the grand potential Ω, see
Sec. 1.3, leads to the bulk identity

∇∇g(r) + g∇f (r) + gff (r) = 0. (3.34)

Besides the standard radial distribution function g(r), the force-gradient and force-force
correlation functions

g∇f (r) = β

ρ2
b

〈
N∑

i=1

N∑
j ̸=i

δ(r− ri)δ(r− rj)∇ifj

〉
, (3.35)

gff (r) = β2

ρ2
b

〈
N∑

i=1

N∑
j ̸=i

δ(r− ri)δ(r− rj)fifj

〉
, (3.36)
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appear in the sum rule (3.34). These (3 × 3)-tensorial quantities are specified due to
isotropy of the bulk fluid with density ρb by a radial (∥) and two equivalent tangential
(⊥) components, such that Eq. (3.34) reduces to the scalar identities

g′′(r) + g∇f∥(r) + gff∥(r) = 0, (3.37)
g′(r)

r
+ g∇f⊥(r) + gff⊥(r) = 0. (3.38)

In particular, for pair potentials, the force-gradient correlation function can be evaluated
explicitly, which yields g∇f∥(r) = βg(r)ϕ′′(r) and g∇f⊥(r) = βg(r)ϕ′(r)/r. All quantities
in Eqs. (3.37) and (3.38) are accessible in simulation for both simple and complex fluids
and we give further details for their sampling in Appendix B. An in-depth mathematical
account of the derivations, in particular concerning the subtle treatment of kinetic
contributions, is presented in Ref. [136].

Applications and results
In Ref. [5], we demonstrate that many concrete sum rules that emerge from the hy-
perforce identity (3.28) via suitable choices of Â turn out to be useful gauges of suf-
ficient equilibration in simulations. Further, one may utilize certain relations for ad-
vanced force-sampling techniques [44, 129–131, 137, 138], which aim to acquire reduced-
variance measurements of relevant averages as compared to standard histogram-based
methods. Hence, despite their arguably formal character, Nother sum rules are relevant
in practice for the interpretation of numerical data, as a means to control both simula-
tion quality and consistency, and for the development of enhanced sampling methods.

These implications are also supported by the findings of Ref. [4], which focuses pri-
marily on the investigation of the novel correlation functions (3.35) and (3.36) and their
connection via the Noether sum rule (3.34). We have performed GCMC and adaptive
BD [1] simulations for various fluid models with affirmative results for the validity of
this identity. From a physical point of view, the quantities g∇f (r) and gff (r) carry
much information about interactions and forces between particles within the bulk fluid,
which are not easily deducible from g(r) alone. Interesting results have been obtained
especially for the colloidal gel as modeled by the SW potential, which shows markedly
different behavior to simple fluids in the force-gradient and force-force correlations. The
sum rule holds generically in equilibrium systems irrespective of the interaction type,
which has been exemplified explicitly for Yukawa, soft-sphere dipolar, Stockmayer and
Gay-Berne particles, see the supplementary material of Ref. [4] for further details.

In Refs. [6–8], Noether sum rules have proven to be useful in particular by providing
constraints for the central functionals of DFT and PFT. The global vanishing of the
internal force Ftot

int = 0 could be utilized for the construction of analytic power func-
tionals in Ref. [6], and it served to judge the quality of the trained neural network, see
also Sec. 4.2. In Refs. [7, 8], the sum rules (3.31) and (3.32) facilitated to gauge the
accuracy of the neural correlation functional in applications as well as the validity of
the neural functional calculus (cf. Sec. 4.3).
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4 Machine learning and neural functionals

4.1 Neural networks and supervised machine learning
procedures

The functional theories presented in Chapter 3 formally allow for the effective descrip-
tion of many-body systems on the level of one-body profiles. However, the crux of both
DFT and PFT lies in the determination of the central functional maps, with the focus
being usually put on the generating functionals Fexc[ρ] and Pexc[ρ, J]. Most commonly,
there is no clear path to the analytic derivation of such functionals for a given type
of fluid model. Instead, one usually needs to trace the considered problem back to a
known reference system, e.g. the hard sphere fluid (cf. Sec. 3.1), or use crude approx-
imations such as a mean-field ansatz [14] or a gradient expansion (cf. Sec. 3.2). In
this chapter, we show how neural networks and supervised machine learning routines
facilitate to extract functional relationships effectively from numerical data (we recall
the overview of simulation methods in Chapter 2). The proposed hybrid approach can
be applied to predict and design inhomogeneous fluids both in and out of equilibrium
[6], and the trained neural networks also form the foundation of a fundamental theo-
retical framework [7, 8]. We give in the following some background to relevant machine
learning techniques [139] and to the general training strategy before turning to concrete
applications.

Neural networks constitute the central objects of our machine learning method. For-
mally, they correspond to mathematical functions which map a given input to an out-
put. A standard feedforward neural network may thereby consist of multiple layers
l = 0, . . . , n− 1, which each take a vector xl as input from which an output vector

xl+1 = fl(Θl · xl + bl) (4.1)

of possibly different size is produced and subsequently passed to the next layer. The
neural network is parameterized by the matrices {Θl} and the vectors {bl} of each
layer, which are referred to as weights and biases, respectively. Activation functions
{fl} realize a nonlinear map from the input x = x0 to the output y⋆ = xn of the neural
network and they are applied separately to each node (i.e. component) within a layer.

As can be proven rigorously [140], neural networks serve as universal approximators
for a broad class of functions, such that adjustments of the weights and biases suffice to
represent virtually arbitrary input-output mappings. Within supervised machine learn-
ing, this adaptation happens on the basis of training data and it can be formulated as
an optimization problem. Given a dataset of inputs x and corresponding outputs y, the
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4.1 Neural networks and supervised machine learning procedures

trainable parameters {Θl} and {bl} are iteratively changed with the goal of minimizing
a suitable loss function (e.g. the mean squared error), which measures the discrepancy
of the neural network predictions y⋆(x) to the known target outputs y. Successful
training then results in a neural network which accurately represents the underlying re-
lationship of the training data and which is also able to generalize faithfully to unseen
inputs. Powerful optimization algorithms [141] enable the efficient1 adaptation of the
neural network parameters during training by relying on the use of automatic differenti-
ation for the backpropagation of errors. As automatic differentiation is also relevant in
Refs. [7, 8] and in Sec. 4.3 for the development of a neural functional calculus, we give
a brief overview of the concept in the following (see Ref. [142] for an in-depth account
of differentiable programming).

By applying the chain rule to a composite function, e.g. the neural network composed
of the layers (4.1), one generally obtains an iterative relation

∂y

∂x
= ∂xn

∂xn−1

∂xn−1
∂xn−2

. . .
∂x1
∂x0

(4.2)

as its derivative, where we have simplified for now to the scalar case. To evaluate the
right hand side of Eq. (4.2), the fundamental derivatives ∂xi/∂xi−1, i = 1, . . . , n, can
be collected either from the inside starting with ∂x1/∂x0 or from the outside starting
with ∂xn/∂xn−1, which constitutes forward and reverse mode differentiation, respec-
tively. We focus here on the latter, which enables to calculate derivatives with respect
to multiple variables simultaneously when considering vectorial inputs. Contrary to the
case of forward accumulation, reverse mode autodifferentiation requires two computa-
tional passes, as the function has to be evaluated first in order to perform a bottom-up
agglomeration of derivatives. For this task, implementations commonly use computa-
tional graphs to record the encountered subexpressions of a function during the first
evaluation. The chain rule (4.2) is then applied programmatically on this graph, based
on which the backwards pass (sometimes referred to as backpropagation or pullback)
is carried out. Automatic differentiation hence facilitates to obtain the derivative of
a function, which may be more general than a closed-form mathematical expression,
efficiently in the form of executable code. Importantly, albeit relying on the chain rule
(4.2) and on the evaluation of the considered function, autodifferentiation is clearly
distinct from numerical differentiation, and it also circumvents the disadvantages that
come with the manipulation of symbolic derivatives.2

The application of supervised machine learning is particularly useful for problems
where the existence of a certain mapping is guaranteed, but where conventional methods
fail to obtain useful representations. This is exactly the case in the functional treatment

1Besides the prowess of these nonlinear optimizers, modern specialized hardware and comprehensive
machine learning frameworks have supported the rapid development of artificial intelligence methods
in recent years.

2As Alan Edelman, mathematician and cofounder of the Julia [143] programming language, puts it in
one of his MIT lecture notes: “The first time I heard about automatic differentiation, it was easy
for me to imagine what it was. I was wrong.” [144]
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Figure 3: The general workflow for obtaining a neural functional is analogous for equilibrium
and nonequilibrium and it consists of a data generation and of a training step. For the
generation of reference data, many-body simulations with randomized external envi-
ronments are performed. This yields a set of one-body profiles, which serve during
training of the neural network as input and target output according to the underly-
ing functional theory. After successful training, the neural network acts as a local
representation of the respective functional mapping, and it can be applied in various
predictive tasks.

of the statistical mechanics of general many-body systems. Here one can leverage on
the existence of the functional maps laid out in Secs. 3.1 and 3.2, which are usually
very hard to determine though. To make this problem amenable to the utilization of
machine learning and neural networks, some care is required in the construction of the
specific input-output mappings, and we deviate here from procedures reported in other
recent work [145–147]. Our strategy, which results in a flexible and efficient method
for the training and application of neural functionals [7], is described in the following
and Fig. 3 serves as an illustration of the general workflow. A practical survey of the
presented techniques is given in Ref. [8] together with more theoretical and physical
background (see also Ref. [12] for a hands-on programming tutorial which focuses on
the one-dimensional hard rod fluid in equilibrium).

Contrary to most analytic treatments, the generating functionals Fexc[ρ] and Pexc[ρ, J]
are not the primary targets in our machine learning routine. Instead, we rest the investi-
gation on the generated one-body profiles c1(r; [ρ]) and Fint(r; [ρ, J]), as these quantities
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4.2 Application in equilibrium and nonequilibrium

are directly accessible in simulation.3 Specifically, Fint(r) follows from straightforward
sampling of the internal force operator [6], and c1(r) can be recovered pointwise by rear-
ranging Eq. (3.5) and inputting the sampled density profile ρ(r) together with the given
chemical and external potential [7]. Crucially, the specific form of the input-output map-
ping that reflects the functional dependence of these one-body fields is constructed in
a local manner. Rather than taking the neural network to yield whole profiles at once,
we consider the functional relationship separately at individual spatial locations, i.e. in
the sense of c1(r)[ρ] and Fint(r)[ρ, J] for each position r. This local learning approach
has numerous essential benefits [6–8]. The most important aspect during training is the
much increased data efficiency, as one can extract many input-output pairs (one pair for
each discrete location of the sampled profiles) from the data of a single simulation run.
A further practical consequence of the local nature of the resulting neural functional is
its straightforward applicability to virtually arbitrary system sizes, which is put to use
for multiscale predictions, cf. Sec. 4.2. Lastly, invoking knowledge about the physical
properties of c1(r; [ρ]) and Fint(r; [ρ, J]) helps to reduce the complexity of the functional
mapping and hence to support an efficient training process. For the considered short-
ranged interparticle potentials, the functional dependence on the input profiles quickly
decays with increasing distance, such that the input range can be restricted to a rather
narrow window around the location of interest.

4.2 Application in equilibrium and nonequilibrium

In the following, we apply the techniques laid out in Sec. 4.1 to systems in and out of
equilibrium and summarize the main results of Refs. [6, 7]. We specialize in both cases
to planar geometry, where the inhomogeneities occur along the z-axis while the x- and
y-directions remain translationally invariant. Inhomogeneous environments are realized
by imposing an external force profile which only consists of a nonvanishing z-component
fext,z(z). Recall that in equilibrium, this external force is necessarily conservative and
it is therefore generated by an external potential Vext(z) via fext,z(z) = −∂Vext(z)/∂z.

We consider this setup first in nonequilibrium, where fext,z(z) remains general and
may cause a nonvanishing current Jz(z). Note that due to the specific geometry, the
current is restricted via the continuity equation (3.17) to spatially constant profiles
Jz(z) = Jz,0. To exemplify our machine learning framework, we consider in Ref. [6]
the supercritical LJ fluid at a constant temperature of kBT = 1.5ϵ. Reference data for
training and testing of the neural network is acquired in adaptive BD simulations [1].
Specifically, we generate 1000 inhomogeneous external force profiles via randomized
combinations of Fourier components and measure in the respective simulations the
profiles ρ(z), Jz(z) and Fint,z(z). A neural network is then trained on the grounds

3In equilibrium, one could also try to base the investigation on the internal force density profile, which
is connected to the gradient of c1(r), cf. Eq. (3.21). We opt for the one-body direct correlation
function due to practical reasons, e.g. to be able to apply its neural representation directly in the
self-consistent iteration (3.9) and in the neural functional calculus (cf. Sec. 4.3).
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4 Machine learning and neural functionals

of this simulation data to capture the functional kinematic map ρ(z), Jz(z)→ Fint,z(z)
locally as given by PFT and as described in Sec. 4.1. The network realizes the nonlinear
mapping via multiple hidden layers with convolutional and fully-connected architectures
[139].

Multiple tests are performed to assess the capabilities of the resulting neural func-
tional for Fint,z(z; [ρ, Jz]). In an exemplary system with a sinusoidal density profile and
different values of the (spatially constant) current, predictions from the neural func-
tional are compared in detail to adaptive BD simulation data. The comparison reveals
the validity of the inferred results and the successful determination of adiabatic and
superadiabatic contributions, which are quantitatively in line with the reference data
and which also shed light on the qualitative agreement of analytic approximations, see
Fig. 2 in Ref. [6]. The neural functional can further be applied to determine the external
force profile which yields a specific target density and current, cf. Fig. 4 of Ref. [6]. Such
inverse design of nonequilibrium flow is feasible by rearrangement of the force balance
equation (3.20), in which the internal force density is evaluated via the neural network.
This use case hence serves as a performant alternative to the simulation-based and com-
putationally expensive custom flow method [126]. As a special case, one recovers the
adiabatic construction, i.e. the determination of an equilibrium reference system with
a density profile identical to that of a given nonequilibrium scenario. Additionally, the
deficiencies of DDFT due to the adiabatic approximation can be quantified with the
availability of the neural functional by comparing results for nonvanishing flow against
those obtained from artificially setting Jz(z) = 0. The inherent shortcomings of DDFT
turn out to be significant in many relevant scenarios. In total, the proposed machine
learning method offers a viable means of capturing the kinematic map of PFT, which
has versatile use in applications that require the accurate prediction of nonequilibrium
internal forces.

We next restrict to the case of systems in thermal equilibrium, where we investigate
the representation of c1(z; [ρ]) via a neural network. The availability of fairly accurate
analytic approximations (cf. Sec. 3.1) makes the hard sphere fluid a prime candidate for
benchmarking the machine learning framework, and we hence put our focus on this fluid
model in the following and in Ref. [7]. Reference data is obtained via GCMC simulations
(see Sec. 2.1) with randomized values of the chemical potential and inhomogeneous
external potentials that are generated from a combination of sinusoidal contributions,
linear segments and hard walls. In total, we use 450 simulations for the training of the
neural correlation functional and retain the results of 150 additional simulation runs for
tests. The specific nature of the neural correlation functional allows for a wide array of
applications, and we focus first on the self-consistent calculation of density profiles via
neural DFT. The method is based as before on a minimization scheme, e.g. the Picard
iteration (3.9), in which c1(z; [ρ]) is now evaluated with the trained neural network
instead of being given by an analytic expression. A comparison reveals that neural
DFT clearly outperforms implementations of the analytic hard sphere FMT treatment
in terms of accuracy of the resulting self-consistent density profiles, which serves as
a severe test of the underlying neural network predictions for c1(z; [ρ]). Importantly,
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4.3 Neural functional theory

computations involving the neural network remain performant on modern hardware
as they are amenable to highly parallel evaluation, e.g. on graphics processing units
(GPUs). Together with the local nature of the neural functional mapping, this allows
for a significant increase of the system size, which becomes relevant when considering
multiscale problems. We exemplify the application “beyond the box” [7] for the case of
gravitational sedimentation-diffusion equilibrium, where neural DFT reproduces both
the slowly decreasing density within the sedimentation column as well as the layered
structure at its boundaries. In contrast, performing many-body simulations of such
large-scale systems would hardly be feasible. Neural DFT hence facilitates to fuse the
numerical efficacy of DFT calculations with a simulation-based description of internal
correlations via the neural correlation functional.

Besides the application for the prediction of density profiles, much more information
about the structure and thermodynamics of the underlying fluid can be obtained both
in homogeneous and heterogeneous conditions. For this, we describe in the following
the implementation of functional calculus on the basis of the neural network, which
leads to the development and investigation of a neural functional theory.

4.3 Neural functional theory

Formally, the availability of a thermodynamic potential suffices to describe the thermal
equilibrium of a many-body system in its entirety. From the view point of conventional
DFT, the grand potential Ω[ρ], expressed as a functional of the density profile, forms
the outset for symbolic calculations in order to derive further results. The excess free
energy Fexc[ρ] thereby constitutes the nontrivial term for the description of internal
interactions. An example is given by the hierarchy of direct correlation functions,
which is obtained via (usually analytic) functional differentiation of Fexc[ρ]. As laid out
in Sec. 4.1, our machine learning method operates instead on the level of the one-body
direct correlation functional c1(r; [ρ]), and it relies on its representation via a neural
network. While this is arguably no less fundamental than an analytic expression of
Fexc[ρ], a neural-network-based functional for c1(r; [ρ]) constitutes a different starting
point for derivations, and symbolic calculations are no longer suitable to access related
quantities.

In the following, we show alternatives to standard analytic treatments in order to
implement functional differentiation and integration methods that remain applicable to
the neural correlation functional. For an efficient and accurate evaluation of functional
derivatives, we refer to the use of automatic differentiation as laid out in Sec. 4.1.
Instead of applying autodifferentiation with respect to the network parameters as was
the case during training, we here perform the derivative with respect to the input
density profile.4 This gives direct access to the two-body direct correlation functional
c2(r, r′; [ρ]) within the considered geometry up to normalization with the discretization

4Machine learning libraries provide ready-to-use implementations of reverse mode automatic differen-
tiation, which make this task feasible in a few lines of code, see Refs. [11, 12] for examples.
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4 Machine learning and neural functionals

interval of the input layer [7, 8, 11, 12].
To complete the calculus, we invoke functional line integration [7, 8, 148, 149], which

is the inverse operation of functional differentiation and which amounts formally to
performing a line integral in function space. By choosing a linear parametrization5

ρa(r) = aρ(r), one obtains

βFexc[ρ] = −
∫

dr ρ(r)
∫ 1

0
da c1(r; [ρa]) (4.3)

as an explicit and practically accessible expression to recover the excess free energy
from a given one-body direct correlation functional, which constitutes the inverse of
Eq. (3.6). The functional line integral (4.3) can be evaluated straightforwardly with the
neural network by discretization of the integrals [11, 12]. We put the neural functional
calculus to use and summarize in the following how the presented techniques enable the
formulation of a self-contained neural functional theory.

Gaining access to c2(r, r′, [ρ]) allows to investigate in detail the pair structure of a
fluid. This is already highly relevant in bulk conditions with constant density ρ(z) = ρb;
we specialize here again to the considered planar geometry. The bulk direct correlation
function c̄b

2(z) retains only one spatial degree of freedom due to translational invariance,
and it follows directly from the autodifferentiated neural network (note that we obtain
the planar projection due to our geometrical setup, which is indicated by the overbar).
By transforming to Fourier space, the total correlation function h̃(k) can be calculated
via the OZ equation (3.8), from which the static structure factor is obtained as S(k) =
1+ρbh̃(k). The latter is central for characterizing two-body correlations in a bulk fluid,
and its inverse Fourier transform is directly related to the radial distribution function
g(r). We have hence demonstrated these fundamental objects to be accessible to high
accuracy by applying the neural functional in the presented calculus [7]. In principle,
the hierarchy of direct correlation functions follows from successive autodifferentiation,
and we have exemplified this in the supplementary material of Ref. [7] by considering
the three-body member c̄b

3(z, z′) in bulk. Recall that imposing bulk conditions serves as
a nontrivial test of the neural functional since its training only included inhomogeneous
reference data.

A further quantity of interest in a homogeneous fluid is its equation of state, which can
be obtained via multiple routes [7] from the neural network, e.g. by evaluating Fexc[ρb]
with the functional line integral (4.3). Comparison to the pertinent literature reveals
that the neural equation of state for the well-studied hard sphere fluid outperforms
highly accurate analytic results such as the Carnahan-Starling equation of state [150],
cf. Fig. 4 in Ref. [7]. Additionally, we find our results to be on par with simulation-based
equations of state [151]. This serves as a further verification of the validity of the neural
functional calculus, which hence spans up the complete bulk theory of the considered
fluid.

5Different choices for the parametrization of the functional line integral are conceivable and lead in
general to different explicit results akin to Eq. (4.3).

34



4.3 Neural functional theory

In inhomogeneous environments, Eq. (4.3) remains applicable and allows to recover
precise free energy values, which demonstrates the formal equivalence of our method
to the usual treatment of Fexc[ρ] as the central functional object. The two-body direct
correlation function c̄2(z, z′; [ρ]) retains the second spatial coordinate in heterogeneous
planar environments, and it may be utilized both as a standalone object, but also for
further severe tests of the neural functional. For instance, verifying the adherence to
the symmetry requirement c̄2(z, z′; [ρ]) = c̄2(z′, z; [ρ]) and to the Noether sum rules
(3.31) and (3.32) facilitates to check the validity of the neural functional results [7, 8].
Judging the inference quality of a neural network for unseen data is in general a difficult
issue,6 and we adopt here a line of action which is arguably inverse to that of physics-
informed machine learning [155]. Instead of prescribing certain physical relations during
training, e.g. in the form of an additional loss term, we base the training solely on
the encountered simulation data and determine only a posteriori the conformance of
the neural functional to identities that arise from the underlying physics. This yields
the possibility of consistency checks at the time of inference, which gives quantitative
guidance for the accuracy and uncertainty of predictions. The merit of the neural
functional theory is therefore not only its standalone application to gain insight into
the physics of the underlying fluid, but also its pertinence for the verification of neural
network results.

6Some other machine learning techniques such as Bayesian inference methods [152] provide intrinsic
uncertainty measures and have been applied recently in a classical DFT context [153, 154].
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5 Conclusions and outlook

In this thesis and in the corresponding publications [1–8], we have studied different
means for the investigation of soft matter systems in and out of equilibrium. Specifically,
we have taken many-body simulations, functional theories and machine learning as our
methodological cornerstones and have considered applications to concrete problems as
well as the development of generic techniques to interrelate the different approaches. In
the examined soft matter systems, which range from simple reference models to complex
fluid types, we have focused on describing and predicting the arising internal forces
and correlations, in particular for cases where spatial inhomogeneity is introduced.
Accurately determining equilibrated or driven states of inhomogeneous fluids is a topical
problem that necessitates the use of various coarse-graining techniques to address the
interplay of the constituting particles that comprise the coupled many-body system.

Particle-based simulations serve as a powerful bottom-up approach for this task, and
we have given in Chapter 2 a survey of different pertinent methods. Whereas Monte
Carlo techniques are well-established for predicting equilibrium properties, going to
nonequilibrium requires to specify the dynamical behavior of the many-body system,
which can then be tackled numerically. BD provides a suitable description particularly
for the motion of colloidal particles by incorporating dissipative and fluctuating forces
of an implicit solvent in the overdamped Langevin equations of motion. However, the
stochastic nature renders numerical treatments challenging, and one is typically left
with simplistic but inefficient and oftentimes even unreliable integration schemes. We
have presented in this work adaptive BD [1] as a feasible alternative to conventional BD
simulations. The method is centered around a flexible adaptive timestepping algorithm
that incorporates the correct handling of random processes [93], which is crucial for
retaining the essential properties of Brownian motion.

The advantages of adaptive BD over conventional methods in terms of efficiency,
accuracy and stability have been exemplified both in simple [1, 5, 6] and complex
fluids [2, 4], where the latter pose no practical difficulties for its application. Useful
extensions of the method could incorporate orientational diffusion and self-propelled
motion, as is relevant e.g. for the simulation of various types of active matter [156–159].
Conceptually, the inclusion of additional forces and random processes in the equations
of motion is not detrimental to the application of the fundamental ideas of adaptive BD
(technical details such as the specific adaptation criterion might have to be adjusted).
Similarly, a possible future task is the implementation of hydrodynamic interactions [49,
160] that are mediated by the implicit solvent. While rejection sampling with memory
remains applicable for the construction of the random process, the embedded integration
schemes (2.13) and (2.14) must be reconsidered due to more intricate stochastic forces
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that influence numerical methods in their order of strong convergence.
The presented simulation methods are useful besides their standalone application also

for the verification and discovery of theoretical results. We have used simulation-based
investigations specifically in tandem with functional theories, which provide formally
exact coarse-grained descriptions both for equilibrium and nonequilibrium systems in
terms of functional relationships on the level of one-body fields. The density profile
ρ(r) is unambiguously the central quantity for determining fluid equilibria within DFT,
where the nontrivial effects of specific interparticle interactions are captured by a uni-
versal one-body direct correlation functional c1(r; [ρ]). A recent reformulation that
detours to forces (“force-DFT” [61]) provides an alternative to the conventional formal-
ism regarding the concrete evaluation of this functional. With simulation data serving
as reference, we have compared both DFT routes [3] for the case of the hard sphere
fluid. A linear combination of standard and force-based DFT [3, 61] leads to improved
results for the density profile as compared to the predictions of the individual methods,
which shows the practical utility of force-DFT besides its formal relevance. It would be
interesting in the future to evaluate force-DFT for other fluid models and to perform
further quantitative assessments of superadiabatic DDFT [123, 124], which constitutes
its nonequilibrium extension.

PFT offers a genuine functional nonequilibrium theory and it establishes a kinematic
map from the history of the density and current profiles to the instantaneous internal
force density profile Fint(r, t; [ρ, J]). For simplification, we have specialized here to pla-
nar steady states, for which PFT facilitates to investigate the arising superadiabatic
(out-of-equilibrium) force contributions, which generally consist of structural and flow
components. As compared to the case of simple fluids [120, 122], an unusual phe-
nomenology of these contributions could be observed in an inhomogeneously sheared
colloidal gel former [2] modeled by a modified Stillinger-Weber potential [74, 75]. De-
spite the intricate behavior of this complex fluid, a simple analytic power functional
obtained from a gradient expansion accounts for the occurring superadiabatic forces,
which demonstrates the generality of the PFT formalism.

Besides the development of concrete analytic functional approximations, we have also
taken advantage of fundamental invariance properties of phase space in order to derive
exact sum rules which interrelate averages of different phase space functions. The appli-
cation of Noether’s theorem lies at the core of these derivations, which result in a set of
hyperforce balance equations [5] and in relations that feature novel types of pair corre-
lation functions [4]. The hyperforce framework can be put to use in simulations, where
it is directly connected to recent developments regarding reduced-variance sampling
methods [5, 129–131]. We emphasize in this context that Noether invariance naturally
gives rise to observables that would arguably not be considered ad hoc, but which can
be endowed with well-founded physical meaning. Regarding the characterization of pair
correlations in bulk, we have showcased sum rules that contain besides the standard
radial distribution function also force-force and force-gradient correlation functions [4].
The validity of these sum rules has been verified in simulation for fluids consisting of
various isotropic and anisotropic particle models. Commonly, the novel types of pair
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5 Conclusions and outlook

correlation functions give additional insight into the structure of the underlying bulk
fluid that goes far beyond the information provided by the radial distribution function
alone.

Although conceptually powerful, the use of DFT and PFT is limited in concrete ap-
plications by the availability of suitable approximations for the central functionals. We
have hence developed generic machine learning techniques to remedy this restriction.
Specifically, neural networks act in our framework as representations of functional maps
on the one-body level after being trained with simulation data of inhomogeneous sys-
tems. The resulting neural functionals can be applied straightforwardly as surrogates
in the respective theories, which leads to substantially improved results compared to
conventional analytic treatments. In nonequilibrium, we have exemplified the machine
learning routine for a uniaxially driven Lennard-Jones fluid [6], where adaptive BD [1]
simulation data served as reference during training. Various applications of the neu-
ral network demonstrate the utility of this approach, e.g. for the accurate prediction
of superadiabatic forces and for the inverse design of nonequilibrium flow. We recall
that a crucial prerequisite for the success of this method is the local representation of
the kinematic mapping via the neural network, which hence also remains applicable to
systems of different sizes.

In equilibrium, attaining analytic density functionals from first principles for certain
reference models is not as bleak as in nonequilibrium. For instance, FMT provides a set
of accurate approximations for the description of hard sphere fluids. Nevertheless, using
the machine learning framework in conjunction with randomized GCMC simulation
data still supersedes state-of-the-art FMT in accuracy [7] when applied in the self-
consistent calculation of density profiles. Due to the local nature of the neural network,
this neural DFT generalizes straightforwardly to multiscale predictions, as is relevant
e.g. for predicting gravitational sedimentation-diffusion equilibrium. Importantly, the
neural correlation functional that represents c1(r; [ρ]) acts not only as an interpolation
device, but it rather forms a genuine mathematical object that spans up a self-contained
neural functional theory. Via automatic differentiation and functional line integration,
related quantities such as higher-order correlation functions and the free energy can be
accessed, which reveal the complete structure and thermodynamics of the fluid both
in homogeneous and heterogeneous environments [7]. We have provided a survey of
the neural functional theory also for the one-dimensional hard rod fluid [8], where we
exemplify the underlying concepts of simulation, DFT and machine learning.

The neural functional framework is particularly useful when applied to different fluid
models which lack satisfactory analytic treatments. This has been illustrated for the
supercritical Lennard-Jones fluid [7], where results clearly outperform conventional the-
oretical approaches that combine a hard sphere reference for the repulsive part of the
interactions with a mean-field description of attraction. In the ongoing research, we
aim at including the parametric temperature dependence in the neural functional the-
ory to account for the liquid-vapor phase transition, wetting and drying on substrates
[16, 114] and critical behavior. Although seemingly daunting at first sight, focusing
on a well-defined functional mapping of (commonly short-ranged) direct correlations is
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arguably a promising approach to tackle such emergent phenomena. Recall that even
simple mean-field treatments recover these effects qualitatively and sometimes even
semi-quantitatively, and that our neural functional framework offers a way to overcome
remaining quantitative discrepancies via the controlled incorporation of simulation data.
In this regard, the data-driven discovery of functional mappings bears good prospects
to address such phenomena also in beyond-simple fluids, as relevant e.g. for dealing
with the topical problem of predicting solvation in water accurately across length scales
[161, 162].

Lastly, it might be feasible to extend the neural functional framework to problems
that involve additional degrees of freedom. This is pertinent for instance to include the
orientation dependence of anisotropic particles and molecules [163, 164] as well as in
generalized spatial geometries. As an intermediate step of the latter, we retain planar
geometry in our ongoing research but incorporate nonequilibrium flow with nonvanish-
ing lateral components. Recall that in this work and in Ref. [6], we have considered
uniaxial flow, where the z-component is the only nontrivial contribution in the func-
tional mapping of the internal force density profile Fint,z(z; [ρ, Jz]). For representing
additional x- and y-components in the more general mapping Fint(z; [ρ, J]), the neu-
ral network must be modified to take the four profiles ρ(z), Jx(z), Jy(z) and Jz(z)
as functional input in order to infer the three components of the local internal force,
as given by three scalar values of the output layer. Apart from this modification, the
machine learning routines proceed analogously and yield promising results in predic-
tive applications, in the inverse design via custom flow and in an extension to include
time dependence [165]. Exploiting symmetry properties has proven to be crucial in this
constrained case already, and it is expected to be particularly relevant when consider-
ing full three-dimensional inhomogeneity both in and out of equilibrium. Besides the
use of data augmentation [139], equivariant neural networks [166, 167] and their recent
applications in the natural sciences [168, 169] seem favorable for taming the curse of
dimensionality that comes with a fully generalized geometrical setup.
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density functional theory for the drying and stratification of binary colloidal
dispersions”, Langmuir 37, 1399–1409 (2021).

45

https://doi.org/10.1063/1.441483
https://doi.org/10.1093/biomet/57.1.97
https://doi.org/10.1023/a:1013180330892
https://doi.org/10.1023/a:1013180330892
https://doi.org/10.1103/physrevlett.126.058002
https://doi.org/10.21468/scipostphys.12.4.133
https://doi.org/10.21468/scipostphys.12.4.133
https://doi.org/10.1007/bf02846028
https://doi.org/10.1007/bf02846028
https://doi.org/10.1137/1119062
https://doi.org/10.1016/s0168-9274(96)00027-x
https://doi.org/10.1016/s0168-9274(96)00027-x
https://doi.org/10.1093/amrx/abs010
https://doi.org/10.1098/rspa.2014.0120
https://doi.org/10.1007/BF02241732
https://doi.org/10.3934/dcdsb.2017133
https://doi.org/10.3934/dcdsb.2017133
https://doi.org/10.5334/jors.151
https://doi.org/10.5334/jors.151
https://doi.org/10.1021/acs.langmuir.0c02825


Bibliography

[96] N. C. X. Stuhlmüller, T. M. Fischer, and D. de las Heras, “Colloidal transport
in twisted lattices of optical tweezers”, Phys. Rev. E 106, 034601 (2022).

[97] N. C. X. Stuhlmüller, F. Farrokhzad, P. Kuświk, F. Stobiecki, M. Urbaniak, S.
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[99] A. Muñiz-Chicharro, L. W. Votapka, R. E. Amaro, and R. C. Wade, “Brownian
dynamics simulations of biomolecular diffusional association processes”, WIREs
Comput. Mol. Sci. 13, e1649 (2022).

[100] L. S. Ornstein and F. Zernike, “Accidental deviations of density and opalescence
at the critical point of a single substance”, Proc. Sect. Sci. K. Ned. Akad. Wet.
Amst. 17, 793–806 (1914).

[101] S. M. Tschopp and J. M. Brader, “Fundamental measure theory of inhomoge-
neous two-body correlation functions”, Phys. Rev. E 103, 042103 (2021).

[102] M. Edelmann and R. Roth, “A numerical efficient way to minimize classical
density functional theory”, J. Chem. Phys. 144, 074105 (2016).

[103] Y. Rosenfeld, “Free-energy model for the inhomogeneous hard-sphere fluid mix-
ture and density-functional theory of freezing”, Phys. Rev. Lett. 63, 980–983
(1989).

[104] E. Kierlik and M. L. Rosinberg, “Free-energy density functional for the inhomo-
geneous hard-sphere fluid: application to interfacial adsorption”, Phys. Rev. A
42, 3382–3387 (1990).

[105] S. Phan, E. Kierlik, M. L. Rosinberg, B. Bildstein, and G. Kahl, “Equivalence
of two free-energy models for the inhomogeneous hard-sphere fluid”, Phys. Rev.
E 48, 618–620 (1993).

[106] R. Roth, R. Evans, A. Lang, and G. Kahl, “Fundamental measure theory for
hard-sphere mixtures revisited: the White Bear version”, J. Phys. Condens. Mat-
ter 14, 12063–12078 (2002).

[107] H. Hansen-Goos and R. Roth, “Density functional theory for hard-sphere mix-
tures: the White Bear version mark II”, J. Phys. Condens. Matter 18, 8413–8425
(2006).

[108] R. Roth, “Fundamental measure theory for hard-sphere mixtures: a review”, J.
Phys. Condens. Matter 22, 063102 (2010).

[109] R. Evans and M. C. Stewart, “The local compressibility of liquids near non-
adsorbing substrates: a useful measure of solvophobicity and hydrophobicity?”,
J. Phys. Condens. Matter 27, 194111 (2015).

46

https://doi.org/10.1103/physreve.106.034601
https://doi.org/10.1038/s41467-023-43390-0
https://doi.org/10.1038/s41467-023-37801-5
https://doi.org/10.1038/s41467-023-37801-5
https://doi.org/10.1002/wcms.1649
https://doi.org/10.1002/wcms.1649
https://dwc.knaw.nl/DL/publications/PU00012727.pdf
https://dwc.knaw.nl/DL/publications/PU00012727.pdf
https://doi.org/10.1103/physreve.103.042103
https://doi.org/10.1063/1.4942020
https://doi.org/10.1103/physrevlett.63.980
https://doi.org/10.1103/physrevlett.63.980
https://doi.org/10.1103/physreva.42.3382
https://doi.org/10.1103/physreva.42.3382
https://doi.org/10.1103/physreve.48.618
https://doi.org/10.1103/physreve.48.618
https://doi.org/10.1088/0953-8984/14/46/313
https://doi.org/10.1088/0953-8984/14/46/313
https://doi.org/10.1088/0953-8984/18/37/002
https://doi.org/10.1088/0953-8984/18/37/002
https://doi.org/10.1088/0953-8984/22/6/063102
https://doi.org/10.1088/0953-8984/22/6/063102
https://doi.org/10.1088/0953-8984/27/19/194111


Bibliography

[110] T. Eckert, N. C. X. Stuhlmüller, F. Sammüller, and M. Schmidt, “Fluctuation
profiles in inhomogeneous fluids”, Phys. Rev. Lett. 125, 268004 (2020).

[111] M. K. Coe, “Hydrophobicity across length scales: the role of surface criticality”,
PhD thesis (University of Bristol, 2021).

[112] T. Eckert, N. C. X. Stuhlmüller, F. Sammüller, and M. Schmidt, “Local measures
of fluctuations in inhomogeneous liquids: statistical mechanics and illustrative
applications”, J. Phys. Condens. Matter 35, 425102 (2023).

[113] R. Evans and N. B. Wilding, “Quantifying density fluctuations in water at a
hydrophobic surface: evidence for critical drying”, Phys. Rev. Lett. 115, 016103
(2015).

[114] R. Evans, M. C. Stewart, and N. B. Wilding, “A unified description of hydrophilic
and superhydrophobic surfaces in terms of the wetting and drying transitions of
liquids”, Proc. Natl. Acad. Sci. 116, 23901–23908 (2019).

[115] M. K. Coe, R. Evans, and N. B. Wilding, “Measures of fluctuations for a liquid
near critical drying”, Phys. Rev. E 105, 044801 (2022).

[116] M. K. Coe, R. Evans, and N. B. Wilding, “Density depletion and enhanced fluc-
tuations in water near hydrophobic solutes: identifying the underlying physics”,
Phys. Rev. Lett. 128, 045501 (2022).

[117] M. K. Coe, R. Evans, and N. B. Wilding, “Understanding the physics of hy-
drophobic solvation”, J. Chem. Phys. 158, 034508 (2023).

[118] U. M. B. Marconi and P. Tarazona, “Dynamic density functional theory of fluids”,
J. Chem. Phys. 110, 8032–8044 (1999).
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6 Publications

6.1 List of publications

The following table lists all publications that contribute to this thesis. Additionally, we
give a detailed graphical categorization into the topics considered in this work (recall
the overview Fig. 1). The subject indexing is performed with respect to the types of
physical systems and phenomena as well as regarding the methodologies used for their
investigation.
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6.2 Author’s contributions

Ref.
[1] [2] [3] [4] [5] [6] [7] [8]

Systems
Simple fluids
Complex fluids
Equilibrium
Nonequilibrium
Methods
Monte Carlo
Adaptive BD
DFT
PFT
Noether invariance
Machine learning

Not considered
Some overlap
Core topic

6.2 Author’s contributions

In an initial research phase, the author recognized the lack of an adaptive timestep-
ping algorithm for overdamped Brownian dynamics simulations of many-body systems.
Based on his investigation of numerical treatments of stochastic differential equations,
he identified a recent generation scheme of random numbers [93] to be applicable to this
problem. For Ref. [1], he conceptualized and implemented the adaptive BD algorithm
and performed benchmarks for various physical model systems.

For Ref. [2], the Stillinger-Weber [71] interaction potential has been implemented and
optimized by the author in order to replicate a colloidal gel [74]. He found this gel former
to display extensive and unusual superadiabatic effects when driven by an inhomoge-
neous shear profile, as investigated with adaptive BD simulations. A power functional
theory that accounts for the observed superadiabatic phenomena of the sheared colloidal
gel was developed by the author together with his supervisor.

In Ref. [3], a recent DFT formalism based on forces [61] has been gauged via compar-
ison to many-body simulation data. The author generated these simulation results by
implementing and performing canonical and grand canonical Monte Carlo simulations
of hard sphere systems and by gathering data for the dynamical case with a preex-
isting event-driven BD program [63, 127]. A hybrid DFT scheme has further been
investigated, for which the author conducted the numerical evaluations.

Together with the coauthors, the author derived the second-order Noether sum rules
in Ref. [4] and he identified simplifications for the case of pair interactions. He developed
numerical procedures to measure the relevant correlation functions and to verify their
interrelation via adaptive BD and GCMC simulations for different types of model fluids,
many of which have been implemented specifically for this study.

For Ref. [5], the author derived in collaboration with the coauthors applications of
global and locally resolved hyperforce sum rules and he identified connections to existing
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literature. He further assisted in the preparation of computer simulations and in the
analysis of numerical results.

For Ref. [6], the author contributed in close collaboration with the coauthors to the
development of the presented machine learning framework and he conceptualized the
specific input-output data pairing to capture functional maps from local information
by a neural network. Reference data for training and testing of the neural network has
been acquired by the author via adaptive BD simulations, for which he developed an
automated generation protocol of randomized nonequilibrium environments.

For Ref. [7], the author transferred and generalized the concepts of Ref. [6] to fluid
equilibria. He developed and evaluated a supervised machine learning procedure for
training a neural network with randomized GCMC reference data, which he exemplified
in detail for the hard sphere fluid. The author investigated applications of the resulting
neural correlation functional by designing suitable functional calculus routines as well
as a neural DFT for the self-consistent determination of density profiles [11]. For the
task of comparison to analytic DFT methods, the author implemented a custom DFT
library [10] with different types of FMT functionals.

Ref. [8] gives more theoretical background and a practitioner’s account on different
aspects of the neural functional method, for which the author independently prepared
a programming tutorial as supplementary material [12]. The tutorial is provided in the
form of a Jupyter notebook with explanatory text and code examples (see Appendix C
for a typeset version). It exemplifies GCMC simulations, DFT calculations, machine
learning routines and differential programming as the building blocks of the neural
functional framework concretely for the one-dimensional hard rod fluid.

The first versions of Refs. [1, 2, 7] as well as Secs. III to V of Ref. [3] were written
independently by the author. For all publications, the author was involved significantly
in the revision of the manuscript and in the response to referee comments. The author
has also contributed to Refs. [61, 110, 112, 136], which are not part of this cumulative
thesis in order to provide thematic focus.

Software

Unless otherwise noted, many-body simulations have been performed and analyzed with
MBD [9], which is a modular program written by the author in C++ for the simulation
of many-body systems in and out of equilibrium [9]. It provides multiple types of
particle interactions which are evaluated efficiently in parallel via colored cell lists [44,
170]. Different methods for Monte Carlo as well as molecular and Brownian dynamics
simulations (in particular adaptive BD [1]) are implemented. MBD comes with tools that
simplify common use cases such as parallel runs on high performance computing clusters
and with a Python module for the analysis of output data. For Ref. [7], the Julia [143]
package ClassicalDFT.jl [10] has been developed by the author. ClassicalDFT.jl
facilitates to carry out classical DFT calculations and it contains implementations of
FMT [103, 106–108] and mean-field functionals, which can be applied to problems in
planar and in spherical geometry. Additionally, for Ref. [7], utilities for the automated
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generation of reference simulation data and for the training and evaluation of neural
functionals have been written in Python using the machine learning frameworks Keras
and TensorFlow [139]. This code is published along with simulation data and trained
models in Ref. [11]. Complementary to Ref. [8], an instructive tutorial is provided
online [12], in which simulation, DFT and machine learning techniques are illustrated
with interactive Julia code examples and exercises. A typeset version of the tutorial is
given in Appendix C, and it includes illustrations taken from Ref. [8] as well as typical
output from straightforward evaluation of the code cells.
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ABSTRACT

A framework for performant Brownian Dynamics (BD) many-body simulations with adaptive timestepping is presented. Contrary to the
Euler–Maruyama scheme in common non-adaptive BD, we employ an embedded Heun–Euler integrator for the propagation of the over-
damped coupled Langevin equations of motion. This enables the derivation of a local error estimate and the formulation of criteria for the
acceptance or rejection of trial steps and for the control of optimal stepsize. Introducing erroneous bias in the random forces is avoided by
rejection sampling with memory due to Rackauckas and Nie, which makes use of the Brownian bridge theorem and guarantees the correct
generation of a specified random process even when rejecting trial steps. For test cases of Lennard-Jones fluids in bulk and in confinement,
it is shown that adaptive BD solves performance and stability issues of conventional BD, already outperforming the latter even in standard
situations. We expect this novel computational approach to BD to be especially helpful in long-time simulations of complex systems, e.g., in
non-equilibrium, where concurrent slow and fast processes occur.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0062396

I. INTRODUCTION

Computer simulations have long become an established tool in
the investigation of physical phenomena.1–3 Complementing exper-
imental results, they build the foundation for the exploration of
increasingly complex dynamical systems. From the standpoint of
classical statistical mechanics, the simulation of a many-body sys-
tem consisting of discrete interacting particles can reveal informa-
tion about its structural correlation as well as its thermodynamic
properties. Naturally, this opens up the possibility of tackling many
problems in the fields of materials science, soft matter, and bio-
physics, such as investigating the dynamics of macromolecules,4
predicting rheological properties of fluids,5–7 or exploring non-
equilibrium processes that occur, e.g., in colloidal suspensions under
the influence of external forcing.8

With the ever-increasing capabilities of computer hardware,
a variety of different computational methods have emerged since
the middle of the last century. Conceptually, at least three distinct
classes of particle-based simulation frameworks can be identified:
(i) Monte-Carlo (MC), which relies on the stochastic exploration
of phase space; (ii) Molecular Dynamics (MD), in which the set of
ordinary differential equations (ODEs) of Hamiltonian dynamics is
integrated to obtain particle trajectories; and (iii) Langevin Dynam-
ics, where random processes are incorporated into the Newtonian

equations of motion so that the evolution of a system is obtained
by numerical integration of then stochastic differential equations
(SDEs). Brownian Dynamics (BD) can be seen as a special case of
(iii), since the underlying stochastic Langevin equation is thereby
considered in the overdamped limit where particle inertia vanishes
and only particle coordinates remain as the sole microscopic degrees
of freedom.

Notably, a broad range of refined methods have been developed
in all three categories, sometimes even intersecting those. Impor-
tant examples of such extensions are kinetic Monte-Carlo for the
approximation of time evolution from reaction rates,9 the addition
of thermostats in MD to model thermodynamic coupling,10,11 event-
driven algorithms that enable both MD and BD in hard-particle
systems,12,13 and the adaptation of molecular algorithms to modern
hardware.14 Improvements in the calculation of observables from
the resulting particle configurations have been made as well, e.g.,
by modifying their generation in MC (umbrella sampling, transition
matrix MC,15 Wang-Landau sampling16) or by utilizing advanced
evaluation schemes in MD and BD, such as force sampling17–19 or
adaptive resolution MD.20

The efficiency and accuracy of a certain algorithm are always
primary concerns, as these properties are essential for applicabil-
ity and practicability in real-world problems. One therefore aims to
design procedures that are both as fast and as precise as possible—yet
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it is no surprise that those two goals might often be conflicting. In
particular, in BD, where stochastic processes complicate the numer-
ical treatment, the development of more sophisticated algorithms
apparently lacks behind that of MD, for example, and one often
resorts to alternative or combined simulation techniques.21,22 If the
full dynamical description of BD is indeed considered, the equations
of motion are usually integrated with the simple Euler–Maruyama
method,23 where stochasticity is accounted for in each equidistant
step via normally distributed random numbers. This can lead to
inaccuracies and stability problems, making BD seem inferior to
other computational methods.

In this work, we propose a novel approach to BD simula-
tions, which rectifies the above shortcomings of conventional BD.
To achieve this, we employ an adaptive timestepping algorithm that
enables the control of the numerical error as follows. The common
Euler–Maruyama method is complemented with a higher-order
Heun step to obtain an embedded integrator pair for an estima-
tion of the local discretization error per trial step. By comparison of
this error estimate with a prescribed tolerance, the trial step is either
accepted or it is rejected and then retried with a smaller stepsize. Par-
ticular care is required after rejections so as to not introduce a bias in
the random forces, which would violate their desired properties. We
therefore use Rejection Sampling with Memory (RSwM)24 to retain
a Gaussian random process even in a scenario where already deter-
mined random increments may conditionally be discarded. RSwM
is a recently developed algorithm for the adaptive generation of ran-
dom processes in the numerical solution of SDEs, which we improve
and specialize to our context of overdamped Brownian motion and
thereby formulate a method for adaptive BD simulations.

We demonstrate the practical advantages of adaptive BD over
common BD in simulation results for prototypical bulk equilibrium
systems and for more involved cases in non-equilibrium. A notable
example that we investigate is the drying of colloidal films at pla-
nar surfaces. In particular, when dealing with non-trivial mixtures,
as, e.g., present in common paints and coatings, the dynamics of
this process can be inherently complex and its quantitative descrip-
tion turns out to be a major challenge.25,26 This stands in contrast
to the necessity of understanding and predicting stratification pro-
cesses in those systems. Stratification leads to a dried film that has
multiple layers differing in the concentration of constituent particle
species, thereby influencing macroscopic properties of the result-
ing colloidal film. Therefore, controlling this process is an impor-
tant measure to tailor colloidal suspensions to their field of applica-
tion. Advances in this area have been made experimentally,27,28 by
utilizing functional many-body frameworks like dynamical density
functional theory (DDFT),29 and with molecular simulations such
as conventional BD.30 By employing the adaptive BD method, we
are able to capture the complex dynamical processes occurring in
those systems even in the final dense state. Close particle collisions
and jammed states are resolved with the required adjustment of
the timestep, necessary for the stability and accuracy of the simula-
tion run in those circumstances. This cannot be achieved easily with
common BD.

This paper is structured as follows. In Sec. II, a brief and
non-rigorous mathematical introduction to the numerical solution
of SDEs is given. Particularly, we illustrate the prerequisites for
adaptive and higher-order algorithms in the case of general SDEs
and emphasize certain pitfalls. In Sec. III, these considerations are

applied to the case of Brownian motion. We construct the embed-
ded Heun–Euler integration scheme in Sec. III A and incorporate
RSwM in Sec. III B, which yields the adaptive BD method. Observ-
ables can then be sampled from the resulting particle trajectories
with the means illustrated in Sec. III C. In Sec. IV, simulation results
of the above-mentioned Lennard-Jones systems are shown and the
practical use of adaptive BD is confirmed. In Sec. V, we conclude
with a summary of the shown concepts, propose possible improve-
ments for the adaptation of timesteps, and present further ideas for
use cases.

II. NUMERICS OF STOCHASTIC DIFFERENTIAL
EQUATIONS

Brownian dynamics of a classical many-body system
of N particles in d spatial dimensions with positions rN(t)= (r(1)(t), . . . , r(N)(t)) at time t and temperature T is described
by the overdamped Langevin equation. The trajectory of particle i
satisfies

ṙ(i)(t) = 1
γ(i) F(i)(rN(t)) +√2kBT

γ(i) R(i)(t), (1)

where F(i)(rN(t)) is the total force (composed of external and inter-
particle contributions) acting on particle i, γ(i) is the friction coeffi-
cient of particle i, and kB is Boltzmann’s constant; the dot denotes
a time derivative. In Eq. (1), the right-hand side consists of a deter-
ministic (first summand) and a random contribution (second sum-
mand). The random forces are modeled via multivariate Gaussian
white noise processes R(i)(t) that satisfy

⟨R(i)(t)⟩ = 0, (2)

⟨R(i)(t)R(j)(t′)⟩ = Iδijδ(t − t′), (3)

where ⟨⋅⟩ denotes an average over realizations of the random pro-
cess, I is the d × d unit matrix, δij denotes the Kronecker delta, and
δ(⋅) is the Dirac delta function.

One can recognize that Eq. (1) has the typical form of an SDE,

dX(t) = f (X(t), t)dt + g(X(t), t)dW(t), (4)

if the dependent random variable X is identified with the particle
positions rN and W is a Wiener process corresponding to the inte-
gral of the Gaussian processes RN = (R(1), . . . , R(N)). As we do not
consider hydrodynamic interactions, the random forces in Eq. (1)
are obtained by a mere scaling of R(i)(t) with the constant pref-
actors

√
2kBT/γ(i). Therefore, the noise in BD is additive, since

g(X(t), t) = const. in the sense of Eq. (4). This is a crucial prop-
erty for the construction of a simple higher-order integrator below
in Sec. III.

In computer simulations, particle trajectories are obtained from
Eq. (1) by numerical integration. Contrary to the numerics of ODEs,
where higher-order schemes and adaptivity are textbook material,
the derivation of corresponding methods for SDEs poses several
difficulties that we address below. Due to the complications, SDEs
of type (4) are often integrated via the Euler–Maruyama method
instead, which follows the notion of the explicit Euler scheme
for ODEs. Thereby, the true solution of Eq. (4) with initial value
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X(0) = X0 is approximated in t ∈ [0, T] by partitioning the time
interval into n equidistant subintervals of length Δt = T/n. Then, for
0 ≤ k < n, a timestep is defined by

Xk+1 = Xk + f (Xk, tk)Δt + g(Xk, tk)ΔWk (5)

with Wiener increments ΔWk. An Euler–Maruyama step is also
incorporated in the adaptive BD method that we construct below,
applying Eq. (5) to the overdamped Langevin equation (1).

Crucially, the random increments ΔWk in each
Euler–Maruyama step (5) have to be constructed from inde-
pendent and identically distributed normal random variables with
expectation value E(ΔWk) = 0 and variance Var(ΔWk) = Δt. In
practice, this is realized by drawing a new random number R (or
vector thereof) from a pseudo-random number generator obeying
the normal distribution 𝒩 (0, Δt) = √Δt𝒩 (0, 1) in each step k and
setting ΔWk = R in Eq. (5). The process of obtaining such a scalar
(or vectorial) random increment R will be denoted in the following
by

R ∼ 𝒩 (μ, η), (6)

where 𝒩 (μ, η) is a scalar (or multivariate) normal distribution with
expectation value μ and variance η.

As in the case of ODEs, an important measure for the qual-
ity of an integration method is its order of convergence. However,
what convergence exactly means in the case of SDEs must be care-
fully reconsidered due to their stochasticity. We refer the reader to
the pertinent literature (see, e.g., Ref. 23) and only summarize the
key concepts and main results in the following.

Since both the approximation Xk and the true solution X(tk)
are random variables, one can define two distinct convergence
criteria. For a certain method with discretization Δt → 0, weak
convergence captures the error of average values, whereas strong con-
vergence assesses the error of following a specific realization of a ran-
dom process. One can show that the Euler–Maruyama method has
a strong convergence order of 0.5, i.e., when increasing or decreas-
ing the stepsize Δt, the error of the numerical solution only scales
with Δt0.5. For general g(X(t), t) in Eq. (4), the construction of
schemes with higher strong order is complicated due to the occur-
rence of higher-order stochastic integrals. Practically, this means
that the careful evaluation of additional random variables is nec-
essary in each iteration step. These random variables then enable
the approximation of the stochastic integrals. There exist schemes
of Runge–Kutta type with strong orders up to 2 although only
strong order 1 and 1.5 Runge–Kutta methods are mostly used due
to practical concerns.31,32

In order to incorporate adaptivity, one needs a means of com-
parison of two integration schemes of different strong order to for-
mulate a local error estimate for the proposed step. If the error
that occurs in a specific timestep is too large (we define below pre-
cisely what we mean by that), the step is rejected and a retrial with
a smaller value of Δt is performed. Otherwise, the step is accepted
and, based on the previously calculated error, a new optimized step-
size is chosen for the next step, which hence can be larger than the
previous one. This protocol makes an optimal and automatic con-
trol of the stepsize possible, meaning that Δt can be both reduced
when the propagation of the SDE is difficult and increased when
the error estimate allows us to do so. Similar to the case of ODEs,

it is computationally advantageous to construct so-called embedded
integration schemes, analogous to, e.g., Runge–Kutta–Fehlberg inte-
grators,33 which minimize the number of costly evaluations of the
right-hand side of Eq. (4). Developments have been made in this
direction, e.g., with embedded stochastic Runge–Kutta methods.34

There is still one caveat to consider when rejecting a step,
in that one has to be careful to preserve the properties of the
Wiener process. In the naive approach of simply redrawing new
uncorrelated random increments, rejections would alter the ran-
dom process implicitly. The reason lies in the introduction of an
undesired bias. Since large random increments (generally causing
larger errors) get rejected more often, the variance of the Wiener
process would be systematically decreased, ultimately violating its
desired properties. To avoid this effect, it must be guaranteed that
once a random increment is chosen, it will not be discarded until
the time interval it originally applied to has passed. Consequently,
when rejecting a trial step and retrying the numerical propagation of
the SDE with smaller time intervals, new random increments can-
not be drawn independently for those substeps anymore. The new
random increments must instead be created based on the rejected
original timestep such that an unbiased Brownian path is still
followed.

The formal framework to the above procedure is given by the
so-called Brownian bridge theorem,35 which interpolates a Wiener
process between known values at two timepoints. If W(0) = 0 and
W(Δt) = R are given (e.g., due to the previous rejection of a timestep
of length Δt where the random increment R has been drawn), then a
new intermediate random value must be constructed by

W(qΔt) ∼ 𝒩 (qR, (1 − q)qΔt), 0 < q < 1 (7)

such that the statistical properties of the to-be-simulated Wiener
process are left intact and a substep qΔt can be tried. The value of
q thereby sets the fraction of the original time interval to which the
Wiener process shall be interpolated. Equation (7) extends naturally
(i.e., component-wise) to the multivariate case and it hence enables
the construction of interpolating random vectors in a straightfor-
ward manner.

With this idea in mind, several adaptive timestepping algo-
rithms for SDEs have been designed.36–42 Still, most of these
approaches are quite restrictive in the choice of timesteps (e.g., only
allowing discrete variations such as halving or doubling),36,42 involve
the deterministic or random part only separately into an a priori
error estimation,39,41,43 or store rejected timesteps in a costly man-
ner, e.g., in the form of Brownian trees.36 In particular, the above
methods rely on precomputed Brownian paths and do not illustrate
an ad hoc generation, which is desirable from a performance and
memory consumption standpoint in a high-dimensional setting like
BD.

In contrast, a very flexible and performant class of adaptive
timestepping algorithms called Rejection Sampling with Memory
(RSwM) has recently been developed by Rackauckas and Nie.24

Their work provides the arguably optimal means for the adaptive
numerical solution of SDEs while still being computationally effi-
cient in the generation of random increments as well as in the han-
dling of rejections. We therefore use RSwM in the construction of an
adaptive algorithm and specialize the method to Brownian motion
in the following.
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III. APPLICATION TO BROWNIAN DYNAMICS

Based on the remarks of Sec. II, we next proceed to apply the
general framework to the case of BD with the overdamped Langevin
equation (1) forming the underlying SDE. An embedded integra-
tion scheme is constructed, which allows the derivation of an error
estimate and an acceptance criterion in each step. Furthermore, the
application of RSwM for handling rejected timesteps in BD is shown
and discussed. We also illustrate how the calculation of observables
from sampling of phase space functions has to be altered in a variable
timestep scenario.

A. Embedded Heun–Euler method
Regarding the overdamped Langevin equation (1), a major sim-

plification exists compared to the general remarks made in Sec. II.
Due to the noise term being trivial, some higher-order schemes can
be constructed by only evaluating the deterministic forces for differ-
ent particle configurations. Crucially, no iterated stochastic integrals
are needed, which would have to be approximated in general higher
strong-order integrators by using additional random variables.32 In
the following, we apply a scheme similar to the one suggested by
Lamba et al.41 for general SDEs to Eq. (1) and term it embedded
Heun–Euler method due to its resemblance to the corresponding
ODE integrators. Two different approximations r̄N

k+1 and rN
k+1 are

calculated in each trial step by

r̄(i)k+1 = r(i)k + 1
γ(i) F(i)(rN

k )Δtk +
√

2kBT
γ(i) R(i)k , (8)

r(i)k+1 = r(i)k + 1
2γ(i) (F(i)(rN

k ) + F(i)(r̄N
k+1))Δtk +

√
2kBT
γ(i) R(i)k . (9)

Equation (8) is the conventional Euler–Maruyama step and
hence constitutes the application of Eq. (5) to the overdamped
Langevin equation (1). Equation (9) resembles the second order
Heun algorithm or midpoint scheme for ODEs44 and has been for-
mally derived for SDEs in the context of stochastic Runge–Kutta
methods.45 Since the deterministic forces FN are evaluated at the
initial particle configuration rN

k in both Eqs. (8) and (9), we have
constructed an embedded integration method. This is favorable
regarding computational cost, since the numerical result of FN(rN

k )
is evaluated once in Eq. (8) and reused in Eq. (9). Only one
additional computation of the deterministic forces at the inter-
mediate particle configuration r̄N

k+1 is then needed in the Heun
step (9).

In each trial step, the same realization of random vectors RN
k

must be used in both Eqs. (8) and (9). Recall that the random
displacements have to obey the properties of multivariate Wiener
increments to model the non-deterministic forces. In conventional
BD with fixed stepsize Δtk = Δt = const., these random vectors can
therefore be drawn independently via R(i)k ∼ 𝒩 (0, Δt) for each par-
ticle i. If rejections of trial steps are possible, R(i)k must instead be
constructed as described in Sec. III B.

When the embedded Heun–Euler step (8) and (9) is applied
to BD, the improvement over the conventional method is twofold.
First, the Heun step (9) can be used as a better propagation method
as already analyzed by Fixman46 and Iniesta and García de la Torre.47

Several further higher-order schemes, mostly of Runge–Kutta type,
have been used in BD simulations.45,48 These methods often lead
to increased accuracy and even efficiency due to bigger timesteps
becoming achievable, which outweighs the increased computational
cost per step. Since the prefactor of the random force is trivial (i.e.,
constant) in the overdamped Langevin equation (1), higher strong-
order schemes are easily constructable. This situation stands in con-
trast to the more complicated SDEs of type (4) with general noise
term g(X(t), t).

Second, with two approximations of different order at hand,
assessing their discrepancy allows us to obtain an estimate of the
discretization error in each step, which is a fundamental prereq-
uisite in the construction of adaptive timestepping algorithms. For
this, we exploit the additive structure of the noise term in Eq. (1)
again and recognize that such an error estimate can be obtained by
only comparing the deterministic parts of Eqs. (8) and (9). Never-
theless, note that the random displacements are already contained in
r̄N

k+1. This makes the deterministic part of Eq. (9) implicitly depen-
dent on the realization of RN

k , which is opposed to Ref. 41 where an
error estimate is defined without involving the random increments
at all.

At a given step k→ k + 1, one can construct the automatic
choice of an appropriate Δtk. For this, the error of a trial step with
length Δt is evaluated.

We define a particle-wise error

E(i) = ∥Δr̄(i) − Δr(i)∥ = Δt
2γ(i) ∥F(i)(r̄N

k+1) − F(i)(rN
k )∥, (10)

with Δr̄(i) = r̄(i)k+1 − r(i)k and Δr(i) = r(i)k+1 − r(i)k . For each particle i,
this error is compared to a tolerance

τ(i) = ϵabs + ϵrel∥Δr(i)∥ (11)

consisting of an absolute and a relative part with user-defined coeffi-
cients ϵabs and ϵrel. Note that Δr(i) is used in Eq. (11), since it captures
the true particle displacement more accurately than Δr̄(i) due to its
higher order. Additionally, we stress that Δr(i) decreases on average
for shorter timesteps such that τ(i) indirectly depends on the trial Δt,
which limits the accumulation of errors after multiple small steps.

Then, a total error estimate

ℰ = ∥(E(i)
τ(i) )1≤i≤N

∥ (12)

can be calculated for the trial step. While the Euclidean norm is the
canonical choice in Eq. (10), there is a certain freedom of choosing
an appropriate norm ∥ ⋅ ∥ in Eq. (12). The two- or∞-norm defined
as

∥(x(i))1≤i≤N∥
2
=
¿ÁÁÀ 1

N

N∑
i=1
∣x(i)∣2, (13)

∥(x(i))1≤i≤N∥∞ = max
1≤i≤N
∣x(i)∣, (14)

respectively, may both come up as natural and valid options (note
that we normalize the standard two-norm by

√
N to obtain an

intensive quantity). However, in Eq. (12), where a reduction from
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particle-wise errors to a global scalar error takes place, this has cru-
cial implications to the kind of error that is being controlled. If
the two-norm is used, then ϵabs and ϵrel set the mean absolute and
relative tolerance for all particles. In practice for large particle num-
ber N, this can lead to substantial single-particle errors becoming
lost in the global average. Therefore, it is advisable to use the ∞-
norm for the reduction in Eq. (12) to be able to set a maximum
single-particle absolute and relative tolerance, i.e., if ℰ < 1, E(i) < τ(i)

for all i = 1, . . . , N.
Following the design of adaptive ODE solvers and ignoring

stochasticity, an expansion of an embedded pair of methods with
orders p and p − 1 shows that an error estimate of type (12) is of
order p. Thus, a timestep of length qΔt with

q= ℰ − 1
p (15)

could have been chosen to marginally satisfy the tolerance require-
ment ℰ < 1.

Considering the recommendation of Ref. 24, which discusses
the application of such a timestep scaling factor to embedded meth-
ods for SDEs, we set

q = ( 1
αℰ
)2

. (16)

Here, both a more conservative exponent is chosen than in Eq. (15)
and also a safety factor α = 2 is introduced, as we want to account for
stochasticity and for the low order of our integrators, which results
in a low order of the error estimate (12).

With the choice (16), one can distinguish two possible scenarios
in each trial step:

● q ≥ 1: Accept the trial step, i.e., set Δtk = Δt and advance
the particle positions with Eq. (9), and then continue with k+ 1→ k + 2.● q < 1: Reject the trial step and retry k→ k + 1 with a smaller
timestep.

In both cases, the timestep is adapted afterward via Δt ← qΔt.
Here and in the following, the notation a← b denotes an assignment
of the value b to the variable a.

It is advisable to restrict the permissible range of values for q
by defining lower and upper bounds qmin ≤ q ≤ qmax such that the
adaptation of Δt is done with

q← min(qmax, max(qmin, q)). (17)

While commonly chosen as qmax ≈ 10 and qmin ≈ 0.2 for ODE
solvers, due to stochasticity and the possibility of drawing “difficult”
random increments, qmin should certainly be decreased in the case
of SDEs to avoid multiple re-rejections. Vice versa, a conservative
choice of qmax prevents an overcorrection of the timestep in the case
of “fortunate” random events. We set qmax = 1.2 and qmin = 0.001 in
practical applications to achieve a rapid adaptation in the case of
rejected trial steps and a careful approach to larger timesteps after
accepted moves.

One can also impose limits for the range of values of Δt,
such as a maximum bound Δtmax ≥ Δt. Restriction by a minimum

value Δtmin ≤ Δt, however, could lead to a forced continuation of
the simulation with an actual local error that lies above the user-
defined tolerance. Thus, this is not recommended. In our test cases
described below, we see no need to restrict the timestep as the
adaptive algorithm does not show unstable behavior without such
a restriction.

Most concepts of this section can be generalized in a straight-
forward manner to non-overdamped Langevin dynamics, where
particle inertia is explicitly considered in the stochastic equations of
motion. However, the embedded Heun–Euler method (8) and (9)
might not be a suitable integration scheme in this case. We therefore
outline the modifications that are necessary in the construction of an
adaptive algorithm for general Langevin dynamics in Appendix A.

B. Rejection sampling with memory in BD
We still have to prescribe the generation of the random vectors

RN
k that appear in both Eqs. (8) and (9). For clarity, we consider a

single trial step and denote the set of corresponding random incre-
ments with R (the sub- and superscript is dropped). Obviously, R
can no longer be chosen independently in general but has to incor-
porate previously rejected timesteps as long as they are relevant, i.e.,
as long as their original time interval has not passed yet. For this,
we apply the Rejection Sampling with Memory (RSwM) algorithm
to BD. Rackauckas and Nie24 described three variants of RSwM,
which they refer to as RSwM1, RSwM2, and RSwM3 and which differ
in generality of the possible timesteps and algorithmic complexity.
We aim to reproduce RSwM3 because it enables optimal timestep-
ping and still ensures correctness in special but rare cases such as
re-rejections.

Common to all of the RSwM algorithms is storing parts of
rejected random increments onto a stack S f . We refer to elements
of this stack as future information, since they have to be considered
in the construction of future steps. This becomes relevant as soon as
a step is rejected due to a too large error. Then, a retrial is performed
by decreasing Δt and drawing bridging random vectors via Eq. (7).
The difference between rejected and bridging random vectors must
not be forgotten but rather be stored on the future information stack,
cf. Fig. 1.

On the other hand, if a step is accepted, new random vectors
have to be prepared for the next time interval Δt. If no future infor-
mation is on the stack, this can be done conventionally via drawing
Gaussian distributed random vectors according to R ∼ 𝒩 (0, Δt). If
the stack S f is not empty and thus future information is available,
then elements of the stack are popped one after another, i.e., they are
taken successively from the top. The random vectors as well as the
time interval of each popped element are accumulated in temporary
variables, which then hold the sum of those respective time intervals
and random vectors. The stack could be empty before the accumu-
lated time reaches Δt, i.e., there could still be a difference Δtgap. In
this case, one draws new random vectors Rgap ∼ 𝒩 (0, Δtgap) to com-
pensate for the difference and adds them to the accumulated ones, cf.
Fig. 2, before attempting the trial step. Otherwise, if the future infor-
mation reaches further than Δt, then there is one element that passes
Δt. One takes this element, splits it in “before Δt” and “after Δt,” and
draws bridging random vectors for “before Δt” according to Eq. (7),
which are again added to the accumulated ones. The rest of this ele-
ment (“after Δt”) can be pushed back to the future information stack
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FIG. 1. The trial step is rejected (a) and a retrial with a smaller value of Δt is
performed (b) if the discrepancy between Eqs. (8) and (9) is large. To preserve
the properties of the Brownian motion, the Brownian bridge (BB) theorem (7) is
used to interpolate the random process at the intermediate timepoint qΔt. The
difference between the bridged random sample and the rejected original random
sample is stored along with the remaining time difference onto the stack S f . This
is indicated in (b), where S f now contains one element that holds the residual
time interval (horizontal segment) and random increment (vertical arrow). Thus, in
future steps, the Brownian path can be reconstructed from elements on S f and
the properties of the Wiener process remain intact. Note that for correctness in the
case of re-rejections, one requires a second stack Su as explained below and in
Fig. 4.

and the step Δt can be tried with the accumulated vectors set as R in
Eqs. (8) and (9), cf. Fig. 3.

At this stage, we have constructed RSwM2 for BD, which is not
capable of handling all edge cases yet as pointed out in Ref. 24. If
future information is popped from the stack to prepare R for the
next step, and this next step is then rejected, we have lost all popped
information unrecoverably. To circumvent this, one adds a second
stack Su that stores information that is currently used for the con-
struction of R. We refer to elements of this stack as information in
use. If a step is rejected, the information in use can be moved back
to the future information stack so that no elements are lost in mul-
tiple retries, cf. Fig. 4. With this additional bookkeeping, correctness

FIG. 2. After an accepted step has been performed, a new random incre-
ment is prepared for the next trial step of length Δt. If available, future
information—stemming from previously rejected trial steps—has to be incorpo-
rated in the generation of new random vectors in order to retain the properties of
Brownian motion. In the shown case, the future information stack contains one ele-
ment, which is popped and accumulated to the new random increment and time
interval. The stack is now empty and a difference Δtgap to the goal timestep Δt
remains. For this gap, a new uncorrelated random increment has to be generated
from 𝒩 (0, Δtgap) to complete the preparation of the next trial step.

and generality are ensured in all cases and the RSwM3 algorithm is
complete.

Notably, with the structuring of information into stacks where
only the top element is directly accessible (“last in first out”), the
chronological time order is automatically kept intact so that one only
has to store time intervals and no absolute timepoints. Furthermore,
searching or sorting of elements is prevented entirely, which makes
all operations 𝒪 (1) and leads to efficient implementations.

We point out that the original RSwM3 rejection branch as given
in Ref. 24 was not entirely correct and draw a comparison to our rec-
tifications in Appendix B, which have been brought to attention49

and have since been fixed in the reference implementation Differ-
entialEquations.jl.50 Crucially, the correction not only applies to the
case of BD but is rather relevant for the solution of general SDEs as
well. A full pseudocode listing of one adaptive BD trial step utilizing
RSwM3 is given in Algorithm 2 in Appendix C along with further
explanation of technical details.51

C. Sampling of observables
Within BD, observables can be obtained from the sampling of

configuration space functions. As an example, consider the one-
body density profile ρ(r), which is defined as the average of the
density operator ρ̂(r, rN) = ∑N

i=1δ(r − ri).
In simulations of equilibrium or steady states, one can use a

time average over a suitably long interval [0, T] to measure such
quantities, i.e., for a general operator Â(X, rN),

A(X) ≈ 1
T∫

T

0
dtÂ(X, rN(t)). (18)

Note that the remaining dependence on X can consist of arbi-
trary scalar or vectorial quantities or also be empty. For example,
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FIG. 3. The situation is similar to Fig. 2, where a step is rejected (a) and then
retried (b). Here, the future information reaches further than the goal timestep Δt.
In this case, the Brownian bridge (BB) has to be applied for the interpolation of
an element from the future information stack. Generally, one pops the elements of
the future stack S f one after another and accumulates the random increments and
time intervals until the element that crosses Δt is reached, to which the bridging
theorem is then applied. In the shown example, the interpolation is done with the
first element of S f , since it already surpasses Δt. Similar to Fig. 1, the remainder
of the bridged increment and time interval is pushed back onto S f .

X = (r, r′) or X = r for general two- or one-body fields, X = r for the
isotropic radial distribution function, or X = ∅ for bulk quantities
such as pressure or heat capacity.

Practically, Â(X, rN) is evaluated in each step and an X-
resolved histogram is accumulated, which yields A(X) after nor-
malization. Considering the numerical discretization of [0, T] into
n timesteps of constant length Δt within a conventional BD simula-
tion, Eq. (18) is usually implemented as

A(X) ≈ 1
n

n∑
k=1

Â(X, rN
k ). (19)

In adaptive BD with varying timestep lengths, one cannot use
Eq. (19) directly, since this would cause disproportionately many
contributions to A(X) from small timesteps and would thus lead

FIG. 4. To keep track of the random increments that are used in the construction
of R, a second stack Su is introduced. In (a), the situation of Fig. 2 is shown as an
example, where R consists of an element of S f (stemming from a previous rejec-
tion) and a Gaussian contribution Rgap ∼ 𝒩 (0, Δtgap). In the case of rejection, the
elements that were popped from S f as well as newly drawn increments such as
Rgap would be lost unrecoverably. By using Su as an intermediate storage, all con-
tributions to R can be transferred back to S f such that no information about drawn
random increments is lost and the same Brownian path is still followed. These con-
siderations apply as well when random vectors are drawn via the Brownian bridge
theorem, as, e.g., in Figs. 1 and 3.

to a biased evaluation of any observable. Formally, the quadrature
in Eq. (18) now has to be evaluated numerically at non-equidistant
integration points.

Therefore, if the time interval [0, T] is discretized into n
non-equidistant timepoints 0 = t1 < t2 < ⋅ ⋅ ⋅ < tn < tn+1 = T and Δtk= tk+1 − tk,

A(X) ≈ 1
T

n∑
k=1

ΔtkÂ(X, rN
k ) (20)

constitutes a generalization of Eq. (19) for this case that enables a
straightforward sampling of observables within adaptive BD.

An alternative technique can be employed in scenarios where
the state of the system shall be sampled on a sparser time grid than
the one given by the integration timesteps. Then, regular sampling
points can be defined that must be hit by the timestepping pro-
cedure (e.g., by artificially shortening the preceding step). On this
regular time grid, Eq. (19) can be used again. In particular, in non-
equilibrium situations and for the measurement of time-dependent
correlation functions such as the van Hove two-body correlation
function,52–57 this method might be beneficial since quantities can
still be evaluated at certain timepoints rather than having to con-
struct a time-resolved histogram consisting of finite time intervals.
Note, however, that timestepping to predefined halting points is not
yet considered in Algorithm 2.

IV. SIMULATION RESULTS

To test and illustrate the adaptive BD algorithm, we investi-
gate the truncated and shifted Lennard-Jones fluid with interaction
potential

ΦLJTS(r) = ⎧⎪⎪⎨⎪⎪⎩
ΦLJ(r) −ΦLJ(rc), r < rc

0, r ≥ rc,
(21)
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where

ΦLJ(r) = 4ε[(σ
r
)12 − (σ

r
)6] (22)

and r is the interparticle distance. We set a cutoff radius of rc = 2.5σ
throughout Secs. IV A and IV B and use reduced Lennard-Jones
units that yield the reduced timescale τ = σ2γ/ε.

A common problem in conventional BD simulations is the
choice of an appropriate timestep. Obviously, a too small value
of Δt—while leading to accurate trajectories—has a strong perfor-
mance impact, hindering runs that would reveal long-time behav-
ior and prohibiting extensive sampling periods, which are desirable
from the viewpoint of the time average (20). Still, Δt must be kept
below a certain threshold above which results might be wrong or the
simulation becomes unstable. Unfortunately, due to the absence of
any intrinsic error estimates, judgment of a chosen Δt is generally
not straightforward. For instance, one can merely observe the sta-
bility of a single simulation run and accept Δt if sensible output is
produced and certain properties of the system (such as its energy)
are well-behaved. Another possibility is the costly conduction of
several simulation runs with differing timesteps, thereby cross-
validating gathered results. Consequently, a true a priori choice of
the timestep is not possible in general and test runs cannot always be
avoided.

With adaptive timestepping, this problem is entirely prevented
as one does not need to make a conscious choice for Δt at all. Instead,
the maximum local error of a step is restricted by the user-defined
tolerance (11), ensuring correctness of results up to a controllable
discretization error. This does come at the moderate cost of over-
head due to the additional operations per step necessary in the
embedded Heun–Euler method and the RSwM algorithm. However,
as we demonstrate in the following, the benefits of this method far
outweigh the cost even in simple situations.

A. Lennard-Jones bulk fluid in equilibrium
In the following, we compare results from conventional BD

to those obtained with adaptive BD. We first consider a bulk sys-
tem of size 7 × 7 × 6σ3 with periodic boundary conditions at tem-
perature kBT = 0.8ε consisting of N = 100 Lennard-Jones particles
initialized on a simple cubic lattice. In the process of equilibra-
tion, a gaseous and a liquid phase emerge, and the system therefore
becomes inhomogeneous.

With non-adaptive Euler–Maruyama BD, a timestep Δtfix= 10−4τ is chosen to consistently converge to this state. This value is
small enough to avoid severe problems that occur reproducibly for
Δtfix ≳ 5 ⋅ 10−4τ, where the simulation occasionally crashes or pro-
duces sudden jumps in energy due to faulty particle displacements.

In contrast, the timestepping of an adaptive BD simulation run
is shown both as a timeseries and as a histogram in Fig. 5. The tol-
erance coefficients in Eq. (11) are thereby set to ϵabs = 0.05σ and
ϵrel = 0.05 and the ∞-norm is used in the reduction from particle-
wise to global error (12). One can see that large stepsizes up to
Δt ≈ 6 ⋅ 10−4τ occur without the error exceeding the tolerance
threshold. The majority of steps can be executed with a timestep
larger than the value Δtfix = 10−4τ. On the other hand, the algo-
rithm is able to detect moves that would cause large errors where
it decreases Δt appropriately. It is striking that in the shown sam-
ple, minimum timesteps as small as Δt = 3 ⋅ 10−6τ occur. This is far

FIG. 5. The evolution of chosen timesteps for accepted moves is shown in (a).
To accentuate the distribution of values of Δt further, moving averages taken over
the surrounding navg points of a respective timestep record are depicted. One can
see that the timestep Δt varies rapidly in a broad range between Δt ≈ 3 ⋅ 10−6τ
and Δt ≈ 6 ⋅ 10−4τ around a mean value of Δt ≈ 2.8 ⋅ 10−4τ. In the inset of
(a), a close-up of the timestep behavior is given, which reveals the rapid reduc-
tion of Δt at jammed states and the quick recovery afterward. In (b), the relative
distribution of the data in (a) is illustrated. It is evident that the majority of steps
can be executed with a large timestep, leading to increased performance of the
BD simulation. On the other hand, in the rare event of a step that would produce
large errors, the timestep is decreased appropriately to values far below those that
would be chosen in a fixed-timestep BD run.

below the stepsize of Δtfix = 10−4τ chosen in the fixed-timestep BD
run above, which indicates that although the simulation is stable for
this value, there are still steps that produce substantial local errors
in the particle trajectories. For even larger values of Δtfix, it is those
unresolved collision events that cause unphysical particle displace-
ments, which then cascade and crash the simulation run. In compar-
ison, the adaptive BD run yields a mean timestep of Δt = 3 ⋅ 10−4τ,
which is larger than the heuristically chosen fixed timestep.

1. Performance and overhead
Per step, due to an additional evaluation via the Heun

method (9), twice the computational effort is needed to calculate
the deterministic forces compared to a single evaluation of the
Euler–Maruyama step (8). This procedure alone has the benefit of
increased accuracy though, and it hence makes larger timesteps
feasible.

The computational overhead due to adaptivity with RSwM3
comes mainly from storing random increments on both stacks and
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applying this information in the construction of new random forces.
Therefore, potential for further optimization lies in a cache-friendly
organization of the stacks in memory as well as in circumventing
superfluous access and copy instructions altogether. The latter con-
siderations suggest that avoiding rejections, and more importantly,
avoiding re-rejections, is crucial for good performance and reason-
able memory consumption of the algorithm. As already noted, in
practice, this can be accomplished with a small value of qmin that
allows for a rapid reduction of Δt in the case of unfortunate random
events and a conservative value of qmax to avoid too large timestep-
ping after moves with fortunate random increments. In our imple-
mentation, the cost of RSwM routines is estimated to lie below 10%
of the total runtime in common situations.

B. Non-equilibrium—Formation of colloidal films
While the benefits of adaptive BD are already significant in

equilibrium, its real advantages over conventional BD become
particularly clear in non-equilibrium situations. Due to the rich
phenomenology—which still lacks a thorough understanding—and
the important practical applications, the dynamics of colloidal sus-
pensions near substrates and interfaces has been the center of atten-
tion in many recent works.25–30,58 Nevertheless, the simulation of
time-dependent interfacial processes is far from straightforward,
and especially for common BD, stability issues are expected with
increasing packing fraction.

In the following, we apply adaptive BD to systems of Lennard-
Jones particles and simulate evaporation of the implicit solvent.
This is done by introducing an external potential that models the
fixed substrate surface as well as a moving air–solvent interface. As
in Ref. 29, we set

V(i)ext (z, t) = B(e−κ(z−σ(i)/2) + eκ(z+σ(i)/2−L(t))) (23)

to only vary in the z-direction and assume periodic boundary con-
ditions in the remaining two directions. The value of κ controls the
softness of the substrate and the air–solvent interface, while B sets
their strength. We distinguish between the different particle sizes σ(i)

to account for the offset of the particle centers where the external
potential is evaluated. The position L(t) of the air–solvent interface
is time-dependent and follows a linear motion L(t) = L0 − vt with
initial position L0 and constant velocity v.

In the following, systems in a box that is elongated in the z-
direction are considered. To ensure dominating non-equilibrium
effects, values for the air–solvent interface velocities are chosen,
which yield large Péclet numbers Pe(i) = L0v/D(i) ≫ 1, where D(i)

= kBT/γ(i) is the Einstein–Smoluchowski diffusion coefficient and
γ(i) ∝ σ(i) due to Stokes.

When attempting molecular simulations of such systems in a
conventional approach, one is faced with a non-trivial choice of the
timestep length Δtfix since it has to be large enough to be efficient
in the dilute phase but also small enough to capture the motion
of the dense final state of system. A cumbersome solution would
be a subdivision of the simulation into subsequent time intervals,
thereby choosing timesteps that suit the density of the current state.
This method is beset by problems as the density profile becomes
inhomogeneous and is not known a priori.

We show that by employing the adaptive BD method of Sec. III,
these issues become non-existent. Concerning the physical results
of the simulation runs, the automatically chosen timestep is indeed
closely connected to the increasing packing fraction as well as to the
structural properties of the respective colloidal system, as will be dis-
cussed below. Similar test runs as the ones shown in the following
but carried out with constant timestepping and a naive choice of Δtfix
frequently lead to instabilities in the high-density regimes, ultimately
resulting in unphysical trajectories or crashes of the program. Due
to the possibility of stable and accurate simulations of closely packed
phases with adaptive BD, we focus on the investigation of the final
conformation of the colloidal suspension.

1. Single species, moderate driving
First, a single species Lennard-Jones system is studied and

the box size is chosen as 8 × 8 × 50σ3. The Lennard-Jones par-
ticles are initialized on a simple cubic lattice with lattice con-
stant 2σ and the velocity of the air–solvent interface is set to
v = 1σ/τ. We set ϵabs = 0.01σ to accommodate for smaller particle
displacements in the dense phase and relax the relative tolerance
to ϵrel = 0.1.

As one can see in Fig. 6, the timestep is automatically adjusted
as a reaction to the increasing density. In the course of the simulation
run, the average number density increases from ∼0.07σ−3 to 1.4σ−3

although the particles first accumulate near the air–solvent interface.
Astonishingly, even the freezing transition at the end of the simula-
tion run can be captured effortlessly. This illustrates the influence
of collective order on the chosen timestep. With rising density of
the Lennard-Jones fluid, the timestep decreases on average due to
the shorter mean free path of the particles and more frequent colli-
sions. At this stage, Δt varies significantly and very small timesteps
maneuver the system safely through jammed states of the disordered
fluid. In the process of crystallization, the timestep decreases rapidly
to accommodate for the reduced free path of the particles before it
shortly relaxes to a plateau when crystal order is achieved. Addi-
tionally, the variance of Δt decreases and, contrary to the behavior
in the liquid phase, fewer jammed states can be observed. This is
due to the crystal order of the solid phase, which prevents frequent
close encounters of particles and hence alleviates the need for a rapid
reduction of Δt.

2. Single species, strong driving
If the evaporation rate is increased via a faster moving

air–solvent interface, the final structure of the colloidal suspension
is altered. Particularly, with rising air–solvent velocity v, a perfect
crystallization process is hindered and defects in the crystal struc-
ture occur. This is reflected in the timestepping evolution, as jammed
states still happen frequently in the dense regime due to misaligned
particles. Therefore, unlike in the previous case of no defects, sud-
den jumps to very small timesteps can still be observed as depicted
in Fig. 7.

If the velocity of the air–solvent interface is increased even fur-
ther, amorphous states can be reached, where no crystal order pre-
vails. Nevertheless, our method is still able to resolve the particle
trajectories of those quenched particle configurations so that the
simulation remains both stable and accurate even in such demand-
ing circumstances.
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FIG. 6. The timestepping evolution in a system with moving interface modeled
via Eq. (23) with parameters B = 7000ε, κ = 1/σ (adapted from Ref. 29), and
v = 1σ/τ is shown. We depict both the actual timeseries whose envelope visu-
alizes the maximum and minimum values of Δt and a moving average over the
surrounding navg points to uncover the mean chosen timestep. As the density
increases and the propagation of the overdamped Langevin equation becomes
more difficult, the timestep is systematically decreased. This is an automatic pro-
cess that needs no user input and that can even handle the freezing transition
which occurs at the end of the simulation. To illustrate this process, typical snap-
shots of the system are given at different timepoints, which are marked in the
timestepping plot as A, B, and C and correspond to a dilute, a prefreezing, and
a crystallized state. In particular, in the transition from B to C, frequent particle
collisions occur, which are resolved carefully by the adaptive BD method.

3. Binary mixture
Returning to stratification phenomena, we consider mixtures

of particles differing in size. Depending on the Péclet numbers of
the big (subscript b) and small (subscript s) particle species and
their absolute value (i.e., if Pe≪ 1 or Pe≫ 1), different struc-
tures of the final phase can emerge, ranging from “small-on-top”
or “big-on-top” layering to more complicated conformations.29 For
large Péclet numbers 1≪ Pes < Peb, studies of Fortini et al.58 have
shown the formation of a “small-on-top” structure, i.e., the accu-
mulation of the small particle species near the moving interface.
Additionally, in the immediate vicinity of the air–solvent boundary,

FIG. 7. Time evolution and moving average of the timestep Δt for the air–solvent
interface velocity being increased to v = 50σ/τ in a larger system of box size
10 × 10 × 100σ3. In this case, defects are induced during the crystallization pro-
cess, which prevent a perfect crystal order of the final particle configuration.
Jammed states still occur frequently, and the timestep has to accommodate rapidly
to resolve particle displacements correctly. This is depicted in the inset, which
shows that sudden jumps to small values of Δt still occur in the high-density
regime, indicating error-prone force evaluations due to prevailing defects in the
crystal structure.

a thin layer of big particles remains trapped due to their low
mobility.

In the following, a binary mixture of Lennard-Jones particles
with diameters σb = σ and σs = 0.5σ is simulated in a system of size
10 × 10 × 100σ3 and the velocity of the air–solvent interface is set to
v = 1σ/τ as before. We initialize Nb = 768 big and Ns = 4145 small
particles uniformly in the simulation domain and particularly focus
in our analysis on the structure of the final dense phase.

As the simulation advances in time, the observations of For-
tini et al.58 can be verified. A thin layer of big particles at the
air–solvent interface followed by a broad accumulation of small par-
ticles emerges. The timestepping evolution shows similar behavior
to the single species case shown in Fig. 6. On average, the value of
Δt decreases and throughout the simulation, jumps to low values
occur repeatedly when interparticle collisions have to be resolved
accurately.

As the system approaches the dense regime, the finalizing parti-
cle distribution of the dried colloidal suspension can be investigated.
One can see that a thin layer of big particles develops in close prox-
imity to the substrate, similar to the one forming throughout the
simulation at the air–solvent interface. This process can again be
explained by the lower mobility of the big particles compared to
the small ones, which prevents a uniform diffusion away from the
substrate.

Moreover, as the packing fraction increases further, the struc-
ture of the interfacial layers of the trapped big species changes. While
only a single peak is visible at first, a second peak develops in the last
stages of the evaporation process. This phenomenon occurs both at
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FIG. 8. The density profiles ρb(z) and ρs(z) of the big and small particle species
in a stratifying colloidal suspension of a binary Lennard-Jones mixture with particle
diameters σb = σ and σs = 0.5σ are shown at two timepoints of the simulation. In
(a), single layers of the big species have already emerged near the substrate and
the air–solvent interface, which enclose the dominating small particles in the mid-
dle of the box. At a later time (b) when the air–solvent interface has moved further
toward the substrate and the packing fraction has hence increased, a second layer
of the big particles forms at both interfaces and the final concentration gradient of
the small species manifests within the dried film. Crucially, the intricate details of
the final conformation demand an accurate numerical treatment of the dynamics
of the closely packed colloidal suspension, to which adaptive BD offers a feasible
solution.

the substrate and at the air–solvent interface although its appearance
happens earlier and more pronounced at the former.

Even for this simple model mixture of colloidal particles that
differ only in diameter, the final conformation after evaporation of
the implicit solvent possesses an intricate structure. Both at the sub-
strate and at the top of the film, primary and secondary layers of the
big particle species build up. Those layers enclose a broad accumula-
tion of the small particle species, which is by no means uniform but
rather develops a concentration gradient in the positive z-direction,
outlined by peaks of the respective density profile close to the big
particle layers. The formation of the described final state is illustrated
in Fig. 8, where the density profiles of both particle species are shown
for two timepoints at the end of the simulation run.

V. CONCLUSION

In this work, we have constructed a novel method for BD sim-
ulations by employing recently developed algorithms for the adap-
tive numerical solution of SDEs to the case of Brownian motion as
described on the level of the overdamped Langevin equation (1).
For the evaluation of a local error estimate in each trial step,
we have complemented the simple Euler–Maruyama scheme (8)
found in common BD with a higher-order Heun step (9). By com-
parison of their discrepancy with a user-defined tolerance (11)

composed of an absolute and a relative contribution, we were able
to impose a criterion (16) for the acceptance or rejection of the trial
step and for the adaptation of Δt. Special care was thereby required
in the reduction from particle-wise errors (10) to a global scalar error
estimate (12).

Due to the stochastic nature of Brownian motion, the rejec-
tion and subsequent retrial of a timestep could not be done naively
by redrawing uncorrelated random vectors in this case. Instead, a
sophisticated method had to be employed to ensure the validity of
the statistical properties of the random process in Eq. (1) and hence
to avoid biased random forces from a physical point of view. We
have illustrated that the Brownian bridge theorem (7) resolves this
problem formally and that RSwM24 provides a feasible implementa-
tion method based on this theorem. Hence, we specialized RSwM to
the case of Brownian motion in Sec. III B and constructed the fully
adaptive BD scheme outlined in Algorithm 2. A correction to the
original algorithm of Ref. 24 is given in Appendix B, and a gener-
alization of adaptive BD to non-overdamped Langevin dynamics is
outlined in Appendix A.

To test our framework, we applied the adaptive BD method
to both equilibrium and non-equilibrium Lennard-Jones systems
focusing on the analysis of individual trajectories. Even in the stan-
dard case of a phase-separating bulk fluid, we could verify that
the use of RSwM induced no significant computational overhead
and that a performance gain could be achieved compared to the
fixed-timestep Euler–Maruyama method. This is complemented by
practical convenience, since Δt needs not be chosen a priori.

The real advantages of adaptive BD become clear in more
demanding situations where a fixed timestep would ultimately lead
to inaccuracy and instability of the simulation without manual inter-
vention. We have shown this with non-equilibrium systems of dry-
ing colloidal suspensions and have modeled the rapid evaporation
of the implicit solvent by a moving interface as in Ref. 29. With
our method, we achieved efficient timestepping and unconditional
stability of the simulation even in the final stages where the pack-
ing fraction increases rapidly and the final structural configuration
of the dried film develops. Particularly, in a single-species Lennard-
Jones system, the freezing transition could be captured effortlessly
even if crystal defects remained as a result of strong external driving.
In the more elaborate case of a binary mixture of different-size par-
ticles, the intricate structure of the colloidal film could be resolved
accurately. Here, we reported the development of a dual layer of the
big particle species both at the substrate and at the top interface,
while a concentration gradient of the small particle species could
be observed in between. This shows that the method can be used
to predict the arrangement of stratified films efficiently and with
great detail, which could be helpful in the determination of their
macroscopic properties.

We expect similar benefits in all sorts of situations where fun-
damental changes within the system call for more accurate or more
relaxed numerical timestepping. For instance, this could be the case
in sheared systems,59,60 for sedimenting61,62 or cluster-forming63

colloidal suspensions, in microrheological simulations,64 for phase
transitions and especially the glass transition,65 in the formation of
crystals and quasicrystals,66,67 in active matter,68–71 possibly includ-
ing active crystallization,72,73 as well as for responsive colloids.74

In any respect, adaptive BD can help in a more accurate measure-
ment of observables, since the evaluation of the average (20) is not
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hampered by erroneous particle configurations, which might occur
in conventional BD. In particular, for quantities with a one-sided
bias such as absolute or square values of particle forces and veloci-
ties, the abundance of outliers in the set of samples used in Eq. (20)
is essential to yield valid results.

We finally illustrate possible improvements of the adaptive BD
method itself, where several aspects come to mind. First, the choices
of the parameters α in Eq. (16) as well as qmin and qmax in Eq. (17)
were made mostly heuristically. We note that in Ref. 24, the influ-
ence of those parameters on the performance of the algorithm has
been investigated but emphasize that results could vary for our
high-dimensional setting of Brownian motion.

Second, recently developed adaptation methods for the step-
size that employ control theory could be helpful. Thereby, Δt
is not merely scaled after each trial step by a locally deter-
mined factor q as evaluated in Eq. (16). Instead, one constructs a
proportional-integral-derivative (PID) controller for the selection of
new timesteps. This means that the adaptation is now not only influ-
enced proportionally by the error estimate of the current step, but
rather it is also determined by integral and differential contribu-
tions, i.e., the memory of previous stepsizes and the local change of
the stepsize. Adaptive timestepping with control theory has already
been applied to ODEs75–77 and SDEs.40 This method could help in
our case to reduce the number of unnecessarily small steps even fur-
ther. In our present implementation, a conservatively chosen qmax
in Eq. (17) keeps the number of rejections low because it restricts
the growth of Δt after moves with coincidentally low error. How-
ever, it also has the effect of preventing a fast relaxation of Δt after a
sudden drop, e.g., due to an unfortunate random event. Then, many
steps are needed for Δt to grow back to its nominal value because
the maximum gain in each step is limited by qmax. With a control
theory approach, a mechanism could be established, which permits
sudden drops to low values of Δt but still ensures a rapid relaxation
afterward.

Finally, the adaptive BD method could be augmented to include
hydrodynamic interactions. This requires a careful treatment of the
random forces, as they now incorporate the particle configuration
rN . Therefore, the noise is no longer additive, which complicates the
numerical scheme necessary for a correct discretization of the over-
damped Langevin equation. Still, instead of Eqs. (8) and (9), exist-
ing methods for SDEs with non-additive noise could be employed
within the presented framework to yield an adaptive timestepping
procedure for BD with hydrodynamic interactions.

In summary, to capture the dynamics of systems that undergo
structural changes such as the ones shown above, and to gain
further understanding of the implications regarding, e.g., the
resulting macroscopic properties, sophisticated simulation meth-
ods are needed. Adaptive BD provides the means to treat these
problems with great accuracy while still being computationally
feasible and robust, which is a crucial trait from a practical
standpoint.
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APPENDIX A: GENERALIZATION TO LANGEVIN
DYNAMICS

In the following, we transfer the concepts of Sec. III to general
(non-overdamped) Langevin dynamics. Thereby, the momenta of
particles with masses m(i), i = 1, . . . , N, are explicitly considered in
the Langevin equation

m(i)r̈(i)(t) = F(i)(rN(t)) − γ(i)ṙ(i)(t) +√2γ(i)kBTR(i)(t), (A1)

where the notation is that of Eq. (1). Depending on the choice of γ(i),
two special cases can be identified. BD is recovered in the diffusive
regime for large γ(i). On the other hand, for vanishing friction and
random forces, i.e., γ(i) = 0, deterministic Hamiltonian equations of
motion are obtained.

The SDE (A1) can be reformulated as a pair of first-order
equations for the particle positions rN and velocities vN = ṙN ,

m(i)v̇(i)(t) = F(i)(rN(t)) − γ(i)v(i)(t) +√2γ(i)kBTR(i)(t),
(A2a)

ṙ(i)(t) = v(t). (A2b)

From a numerical perspective, the treatment of Eq. (A2) differs
significantly from that of the overdamped Langevin equation (1),
since the second-order nature makes more involved timestepping
procedures for rN and vN possible.

This can be illustrated easily when Eqs. (A2a) and (A2b) are
considered in the Hamiltonian case. Then, via the separation of rN

and vN , simple semi-implicit methods are readily available, such as
the Euler-Cromer or the well-known velocity Verlet method that is
commonly used in MD.78,79 From a fundamental point of view, the
use of symplectic algorithms is necessary for Hamiltonian systems
to ensure the correct description of physical conservation laws and
hence to achieve numerical stability for long-time behavior. While
the above-mentioned integrators possess this property, most explicit
algorithms like the forward Euler and classic Runge–Kutta method
fail in this regard.

When going from Hamiltonian to Langevin dynamics, one is
faced with an appropriate generalization of the familiar determin-
istic integration schemes to include dissipative and random forces.
This is addressed by so-called quasi-symplectic methods, which are
integrators for SDEs of type (A2) that degenerate to symplectic
ones when both the noise and the friction term vanish.80 Still, it is
not straightforward to construct schemes that are suitable for arbi-
trary γ(i), and different strategies have been used in Langevin-based
molecular simulations.81–86

To incorporate adaptive timestepping, one must again choose
an integrator pair of different order to calculate an error estimation
per step. The above considerations suggest, however, that at least for
the higher-order method, a quasi-symplectic scheme is advisable for
optimal efficiency and accuracy as it is expected to perform better
than a naive application of the embedded Heun–Euler method (8)
and (9) to general Langevin dynamics. Nevertheless, the latter could
still be an adequate option when friction dominates.

Then, with the formalism described in Sec. III, the acceptance
or rejection of trial steps and the use of RSwM is straightforward
so that adaptive algorithms involving the Langevin equation (A1)
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could be a feasible means for the simulation of dissipative particle
dynamics in the future.

APPENDIX B: CORRECTNESS OF RSwM3 REJECTION
BRANCH

Although the effect is likely subtle or even unmeasurable in
most situations, in the original RSwM3 algorithm as described in
Ref. 24 and formerly implemented in DifferentialEquations.jl,50 the
q < 1 branch was handled incorrectly. We list a pseudocode version
thereof in Algorithm 1, where a specialization to our case of BD is
already performed for ease of comparison with Algorithm 2.

To see why Algorithm 1 fails in some cases, consider multiple
elements present on the stack Su, e.g., as depicted in Fig. 9 where
Su contains three elements. Then, in lines 2–11 of Algorithm 1, ele-
ments are transferred successively from Su back to S f and their time
intervals are accumulated in Δts as long as the remainder Δt − Δts is
still larger than the next goal timestep qΔt (this is only the case for
the green element in Fig. 9). After that, the Brownian bridge theorem
is applied to (ΔtK , RK) = (Δt − Δts, R − Rs). Therefore, the interpo-
lation includes all the remaining elements of the stack Su, i.e., the
blue and violet one in Fig. 9, which implies that intermediate val-
ues of the Brownian path are not considered if Su holds two or more
elements at this point.

To yield a valid interpolation in this situation, the Brownian
bridge must instead only be applied to the immediately following
single element at the top of Su (the blue one in Fig. 9). In Algo-
rithm 2, lines 4–19 therefore replace the logic of Algorithm 1, which
fixes the above issue by always considering only the single ele-
ment that crosses qΔt in the application of Eq. (7). This element is
then interpolated at qΔt, for which the variable ΔtM is introduced
to yield the corresponding fraction qM of the element. Note that
Su always contains at least one element when entering the rejec-
tion branch (assuming a proper initialization of the simulation, cf.
Appendix C).

ALGORITHM 1. Former q < 1 branch of RSwM3 where the bridge theorem might be
applied to a wrong interval.

1: Δts ← 0, Rs ← 0
2: while Su not empty do
3: Pop top of Su as (Δtu, Ru)
4: if Δts + Δtu < (1 − q)Δt then
5: Δts ← Δts + Δtu, Rs ← Rs + Ru
6: Push (Δtu, Ru) onto S f

7: else
8: Push (Δtu, Ru) back onto Su

9: break
10: end if
11: end while
12: ΔtK ← Δt − Δts, RK ← R − Rs

13: qK ← qΔt/ΔtK

14: Rbridge ∼ 𝒩 (qK RK , (1 − qK)qK ΔtK)
15: Push ((1 − qK)ΔtK , RK − Rbridge) onto S f

16: Δt ← qΔt, R← Rbridge

ALGORITHM 2. Embedded Heun–Euler trial step with RSwM3.

1: Calculate r̄k+1 and rk+1 via Eqs. (8) and (9)
2: Calculate q via Eqs. (10)–(12), (16), and (17)
3: if q < 1 then ⊳ cf. Fig. 1, Appendix B
4: Δts ← 0, Rs ← 0
5: while Su not empty do
6: Pop top of Su as (Δtu, Ru)
7: Δts ← Δts + Δtu, Rs ← Rs + Ru
8: if Δts < (1 − q)Δt then
9: Push (Δtu, Ru) onto S f
10: else
11: ΔtM ← Δts − (1 − q)Δt
12: qM ← ΔtM/Δtu
13: Rbridge ∼ 𝒩 (qMRu, (1 − qM)qMΔtu)
14: Push ((1 − qM)Δtu, Ru − Rbridge) onto S f
15: Push (qMΔtu, Rbridge) onto Su
16: break
17: end if
18: end while
19: Δt ← qΔt, R← R − Rs + Rbridge
20: else
21: Do step: t ← t + Δt, rk ← rk+1, Δt ← qΔt
22: Empty Su, Δts ← 0, R← 0
23: while S f not empty do
24: Pop top of S f as (Δt f , R f )
25: if Δts + Δt f < Δt then
26: Δts ← Δts + Δt f , R← R + R f
27: Push (Δt f , R f ) onto Su
28: else ⊳ cf. Fig. 3
29: qM ← (Δt − Δts)/Δt f
30: Rbridge ∼ 𝒩 (qMR f , (1 − qM)qMΔt f )
31: Push ((1 − qM)Δt f , R f − Rbridge) onto S f
32: Push (qMΔt f , Rbridge) onto Su
33: Δts ← Δts + qMΔt f , R← R + Rbridge
34: break
35: end if
36: end while
37: Δtgap ← Δt − Δts
38: if Δtgap > 0 then ⊳ cf. Fig. 2
39: Rgap ∼ 𝒩 (0, Δtgap)
40: R← R + Rgap
41: Push (Δtgap, Rgap) onto Su
42: end if
43: end if

APPENDIX C: IMPLEMENTATION OF EMBEDDED
HEUN–EULER TRIAL STEP WITH RSwM3

The embedded Heun–Euler trial step with RSwM3 is the inte-
gral part of the adaptive BD method, for which we provide a pseu-
docode implementation in the following and explain its technical
details as well as its setting in a full simulation framework. At the
beginning of the simulation, S f must be empty and a finite positive
value of the first timestep Δt is chosen heuristically (this choice is
irrelevant, however, since the algorithm immediately adapts Δt to
acceptable values). Gaussian random increments are drawn for the
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FIG. 9. A scenario is shown for which the original implementation of the RSwM3
rejection branch fails. For clarity, we only display the time intervals that reside on
the stack Su without their corresponding random vectors. In the presented case,
the wrong interval (“is bridged”) is selected in the original RSwM3 implementation
to which the Brownian bridge theorem (7) is applied. This is fixed in Algorithm 2,
where the correct element (“should be bridged”) is considered via the calculation
of ΔtM .

initial trial step via R ∼ 𝒩 (0, Δt), which are pushed onto the stack
Su. This completes the initialization of the simulation run and a loop
over trial steps can be started (until a certain simulation time or
number of steps is reached).

Then, in each trial step, which is listed in Algorithm 2, the Euler
and Heun approximations r̄k+1 and rk+1 are evaluated via Eqs. (8)
and (9) and the adaptation factor q is calculated via Eqs. (16) and
(17). This requires an error estimate (12), which is obtained from
the two approximations via Eqs. (10) and (11).

If q < 1, the proposed step is rejected and a retrial must be
performed. For a detailed description of the rejection branch (lines
4–19), we refer to Appendix B, where our changes to the origi-
nal RSwM3 q < 1 case are illustrated as well. If a step is accepted,
i.e., q > 1, the particle positions and physical time of the system are
updated accordingly (line 21) before resetting random increments R
and stack Su (line 22). Then, in lines 23–42, new random increments
are constructed for the next trial step.

For this, elements on S f stemming from previously rejected
steps have to be accounted for as long as parts of them lie within
the goal timestep Δt. Therefore, the elements are transferred suc-
cessively from S f to Su and their time intervals and random incre-
ments are accumulated in Δts and R. If at some point Δts exceeds Δt,
the corresponding element is interpolated at Δt via the Brownian
bridge theorem (7) in lines 29–34 and one proceeds with the next
trial step. Conversely, if all elements of S f were popped and a gap
Δtgap remains between Δts and the goal timestep Δt, new Gaussian
random increments Rgap ∼ 𝒩 (0, Δtgap) are drawn, added to R, and
pushed onto Su in lines 39–41 before attempting the next trial step.
Note that the values of R persist across trial steps and are only reset
after accepted moves.

Throughout the algorithm, bookkeeping of random increments
and corresponding time intervals is established by pushing those ele-
ments that are involved in the current random increment R onto
Su and by storing elements that become relevant beyond the cur-
rent step on S f . This procedure is especially important after bridg-
ing an element at the goal timestep, where the two resulting parts

are pushed onto Su and S f , respectively (lines 14, 15 and 31, 32).
Consequently, no drawn random increments are ever lost.
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ABSTRACT

We investigate the stationary flow of a colloidal gel under an inhomogeneous external shear force using adaptive Brownian dynamics sim-
ulations. The interparticle forces are derived from the Stillinger–Weber potential, where the three-body term is tuned to enable network
formation and gelation in equilibrium. When subjected to the shear force field, the system develops remarkable modulations in the one-body
density profile. Depending on the shear magnitude, particles accumulate either in quiescent regions or in the vicinity of maximum net flow,
and we deduce this strong non-equilibrium response to be characteristic of the gel state. Studying the components of the internal force parallel
and perpendicular to the flow direction reveals that the emerging flow and structure of the stationary state are driven by significant viscous
and structural superadiabatic forces. Thereby, the magnitude and nature of the observed non-equilibrium phenomena differ from the corre-
sponding behavior of simple fluids. We demonstrate that a simple power functional theory reproduces accurately the viscous force profile,
giving a rationale of the complex dynamical behavior of the system.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0130655

I. INTRODUCTION

Gelation in soft matter is a complex and important phe-
nomenon that has many practical applications ranging from the
use in household materials to advanced technological processes.1–6

A common property of gels is their ability to sustain weak
external stresses due to the formation of persistent long-range
network structures. From a microscopic point of view, it is the
nontrivial correlation of particles arising from their internal inter-
actions that gives gels their characteristic mechanical response.7–9

However, the route to the generation of the network topol-
ogy can be diverse.10 One common path to the gelation of colloids
involves the crossing of a liquid–gas spinodal, e.g., by a sudden
quench in temperature and the subsequent dynamical arrest of
heterogeneous dense regions. This arrested spinodal decomposition
is non-equilibrium in nature, and it bears similarity to the glass
transition although it is driven by interparticle attraction rather
than by repulsion.11–13 On the other hand, an equilibrium route
to gel formation lies open by careful choice of the interparticle
interactions in order to prevent macroscopic liquid–gas phase sep-
aration and to favor instead the local arrangement of particles into

interconnected clusters or chains. In this spirit, a multitude of inter-
action potentials have been investigated, which incorporate, for
example, limitation of particle connectivity,14–17 competing short-
range attraction and long-range repulsion,18,19 and anisotropy20–22

via, e.g., “patchy” interaction sites.23–25 The liquid–gas spinodal
can sometimes be pushed to very low temperatures and densities,
which enables large parts of the phase diagram to be governed
by the percolation into dilute networks, as in so called “empty
liquids.”26–28

A further class of particle models for colloidal gels that the
present work focuses on is based on the inclusion of three-body
interactions to the interparticle interaction potential, which con-
sists otherwise only of isotropic pair-interactions.29–36 It has been
shown that an appropriate choice of the three-body term reproduces
the distinctive network topology37 as well as the characteristic non-
linear response to homogeneous shear, including strain hardening
and yielding.33 Especially under external load, the dynamics of such
a gel can be intricate, e.g., exhibiting cooperative restructuring of
particle bonds31 and shear banding.33

While many studies have considered the response of gels to
a linear shear profile up to their breaking point, not much is
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known about their viscous flow behavior in inhomogeneous exter-
nal force fields. However, it can be expected that the intrinsic
features of a gel former, such as the tendency of particles to percolate,
have substantial ramifications in such out-of-equilibrium scenarios.
Specifically, one is tempted to assume that some of the genuine non-
equilibrium effects38,39 already reported for simple fluids (such as
shear migration) might even be amplified by additional three-body
interactions.

In this work, we show that gels modeled via a modified
Stillinger–Weber40 potential with a preferred three-body angle of
180○ as proposed by Saw, Ellegaard, Kob, and Sastry (SEKS)29,30

are indeed highly susceptible to these non-equilibrium effects when
sheared by a sinusoidal external force profile. For this, we numer-
ically investigate the behavior of the SEKS model with adaptive
Brownian dynamics41 (adaptive BD), which is a stable and effi-
cient method for the simulation of many-body systems governed
by the overdamped Langevin equations of motion. We find that
the properties of the emerging stationary state vary strongly with
temperature and with the amplitude of the external force profile.
Different behaviors occur in the shape of both the density and the
internal force profiles as compared to simple fluids. In particular,
we show that the superadiabatic (i.e., genuine out-of-equilibrium)
contribution to the internal force is substantial in magnitude and
that it is responsible for the structural and viscous behavior of
the stationary shear flow. This is discussed from a microscopic
point of view as well as in a coarse-grained fashion, where we
use power functional theory42,43 (PFT) to develop a quantitative
model for the superadiabatic viscous force. Besides representing a
generic situation, the sinusoidal shear flow profile could be seen
as a toy model for a mesoscopic convection roll. Convection typ-
ically occurs in sedimentation as upward streams alternate with
downward streams.44

This work is structured as follows: In Sec. II A, the modified
Stillinger–Weber potential as well as details for its efficient compu-
tation is given. The adaptive BD method and its advantages for our
non-equilibrium simulations are laid out in Sec. II B. In Sec. II C, the
protocol for the simulation of the stationary flow state is described.
In Secs. III A and III B, we show one-body profiles of the density
as well as the parallel and perpendicular components of the inter-
nal force for a range of simulation parameters and discuss their
behavior and interplay. An analogous interpretation on the level
of internal stresses is given in Appendix A. In Appendix B, we
showcase results for different values of the three-body angle of the
Stillinger–Weber potential, and in Appendix C, the unusual non-
equilibrium response of the gel is contrasted with numerical results
for the simple Lennard-Jones fluid. In Sec. III C, the description
of superadiabatic forces with PFT is illustrated and the results are
compared with those from simulation. We conclude in Sec. IV and
give an outlook to the investigation of further dynamical phenom-
ena observed in our simulations and to a more extensive analysis
with PFT.

II. SIMULATION METHOD
A. Particle model

The Stillinger–Weber potential40 has originally been used for
the simulation of solid and liquid silicon, and it has since been
optimized and adapted to other particle types.45,46 The interparticle

interactions consist of a two-body potential u2(r) that models
both isotropic attraction and repulsion depending on the dis-
tance r between two particles as well as a three-body contribution
u3(r, r′, Θ). This three-body term imposes an energetically favorable
angle Θ for three particles where a central particle is separated by the
pairwise distances r and r′ to two other particles. The directionality
of internal interactions is therefore only realized via u3. Crucially,
there is no need to explicitly incorporate orientational degrees of
freedom, which is an advantage both in simulations as well as in a
theoretical treatment.

In total, the internal energy potential possesses the form

U(rN) = N∑
i

N∑
j>i

u2(rij) + N∑
i

N∑
j≠i

N∑
k>j

u3(rij, rik, Θijk), (1)

with

u2(r) = Aϵ[B(σ
r
)p − (σ

r
)q] exp( σ

r − aσ
), (2)

u3(r, r′, Θ) = λϵ[cos Θ − cos Θ0]2
× exp( γσ

r − aσ
) exp( γσ

r′ − aσ
) (3)

for a certain particle configuration rN = {r(i), . . . , r(N)} of the many-
body system with N particles.

The parameters p, q, A, B, a, γ, λ, and Θ0 can be tuned to
alter the shape of the potential. A choice for these quantities, which
is used in the present work and varies in some aspects from the
one used originally by Stillinger and Weber,40 is given in Table I.
In particular, following previous studies of Saw et al.,29,30 we tune
Θ0 to obtain a gel former, which is described in more detail in the
following. The formulation in Eqs. (2) and (3) refrains from using
absolute units and only involves intrinsic energy (ϵ) and length(σ) scales. In an overdamped system with friction coefficient ζ, all
physical quantities can therefore be expressed in a reduced form.

We note that the parameter a sets the cutoff distance since both
u2(r) and u3(r, r′, Θ) as well as their gradients vanish smoothly
for r → aσ and r′ → aσ. The potential is therefore inherently
short-ranged (cf. the small value of a in Table I). This is a favorable
property for the treatment in computer simulations since it enables
the use of neighbor-tracking algorithms to avoid superfluous eval-
uations for particles beyond the cutoff distance, which substantially
reduces the computational cost in large systems.

The parameter Θ0 in the three-body term u3(r, r′, Θ) sets the
preferred angle of a certain particle triplet (note that u3 vanishes for
Θ = Θ0 and that it is otherwise strictly positive for particles within

TABLE I. In Eqs. (2) and (3), we adopt the parameters p, q, A, B, a, and γ of the
original Stillinger–Weber40 potential and choose the three-body strength λ as deter-
mined in Ref. 47. In accordance with Saw et al.,29,30 a preferred three-body angle of
Θ0 = 180○ then leads to the percolation of interconnected chains, enabling colloidal
gelation in equilibrium.

p q A B a γ λ Θ0

4 0 7.049 556 27 0.602 224 558 4 1.8 1.2 23.15 180○
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the cutoff distance). Most commonly, as discussed in the follow-
ing, tetrahedral configurations are desired for which one chooses
cos Θ0 = −1/3. The strength of the three-body interaction term is
adjusted via λ, which is often referred to as the tetrahedrality47 for
the above choice of Θ0.

A further computational optimization is employed, which
makes use of the concrete structure of u3(r, r′, Θ) as given in Eq. (3).
Via a rewriting of the three-body sum and the introduction of
accumulation variables, an evaluation of the total energy and of all
particle forces is possible by only iterating twice over all interacting
particle pairs. In contrast, a naive implementation would require an
iteration over particle triplets. For details of this exact reformulation,
which leads to a substantial speedup in our simulations,48 consult
Ref. 30.

In summary, the versatility and computational efficacy of the
Stillinger–Weber potential make it applicable to a wide range of
problems. An important example, which conveys its use as an
effective interaction potential for more complex particle types, is
the monatomic water model of Molinero and Moore.47 It has been
shown by these authors that thermodynamic and structural prop-
erties of water (e.g., for the study of interfacial phenomena49) can
be captured accurately by this model via an appropriate choice of
the absolute values of ϵ and σ as well as the tetrahedrality λ. By
comparison with the melting temperature of water, they determined
an optimal value of λ = 23.15, which lies between the respective
tetrahedralities of silicon and carbon and which is adopted in our
simulations.

While Eq. (3) has initially been conceptualized as a model for
tetrahedrally coordinated particles, it is entirely conceivable to alter
the preferred three-body angle Θ0. A variation of Θ0 has signifi-
cant consequences for the spatial correlations of the fluid since the
formation of droplets might become energetically unfavorable and
the self-assembly into interconnected chains that form open net-
works is enforced. Therefore, the careful choice of the values of
Θ0 and λ is a means to reduce the effective valency and to sup-
press the liquid–gas phase transition, making the Stillinger–Weber
potential (1) a suitable model for colloidal gels. In the following,
we set Θ0 = 180○ although other values of Θ0 have been shown
to support gelation as well, e.g., as reported in Refs. 29 and 30,
where a detailed investigation of the phase diagram and percola-
tion behavior was carried out for various choices of λ and Θ0. (In
Appendix B, illustrative results are presented for lower values of Θ0,
which shows that its precise value has little impact on the sheared
steady state as long as network formation can occur.) It is worth
noting that gelation has also been investigated for other choices of
two- and three-body interaction terms u2 and u3 apart from those
given in Eqs. (2) and (3); see, e.g., Refs. 31–36. For instance, to yield
stronger angular rigidity, the cosine difference in Eq. (3) can been
exponentiated.31–33

B. Adaptive Brownian dynamics
An important property of gels is their mechanical response to

externally imposed strain. As particle bonds within the network are
capable of sustaining substantial forces and torques without break-
ing, a gel exhibits elastic behavior before stiffening50 as well as
yielding at intermediate and large shear strain due to bending and
breaking of bonds, respectively.33 Numerically, these results can be

obtained, e.g., by performing a linear deformation of the simulation
box and measuring the stress tensor. When using non-equilibrium
molecular dynamics, adequate thermostatting is required,51,52 which
is not straightforward if spatially inhomogeneous deformations are
considered. This is even more problematic if cause and effect are
reversed, and an external force profile is applied, which generates
a macroscopic net flow that is, hence, not known a priori. We cir-
cumvent these issues by considering overdamped dynamics, where
thermostatting is intrinsic.

Furthermore, an advanced numerical integration scheme
known as adaptive BD41 is applied, which improves upon conven-
tional BD simulations as described in the following. We consider the
overdamped Langevin equations

ṙ (i)(t) = 1
ζ

f(i)(rN(t)) +
√

2kBT
ζ

R(i)(t), (4)

i = 1, . . . , N, as the relevant equations of motion to obtain particle
trajectories rN(t) in our system consisting of N identical parti-
cles. Here, f(i)(rN(t)) is the total force acting on particle i, which
can be split into external and internal contributions, f(i)ext(r(i)(t))
and f (i)int (rN(t)) = −∇iU(rN(t)), respectively. The friction coeffi-
cient ζ is the same for each (identical) particle, and the over dot
denotes a time derivative. The vectors R(i)(t), i = 1, . . . , N, are
Gaussian distributed and must therefore satisfy ⟨R(i)(t)⟩ = 0 and⟨R(i)(t)R( j)(t′)⟩ = Iδijδ(t − t′). Here, the angular brackets denote an
average over realizations of the random process, I is the 3 × 3-unit-
matrix, δij is the Kronecker delta, and δ(⋅) is the Dirac delta function.
Thermostatting irrespective of applied external forces and any (pos-
sibly inhomogeneous) net flow is inherent in overdamped Brownian
dynamics as the temperature-dependent prefactor of the Gaussian
random vectors in Eq. (4) determines the average magnitude of the
random displacements.

Because Eq. (4) is a set of coupled stochastic differential
equations, its numerical treatment requires particular care. Specif-
ically, the use of the Euler–Maruyama method,53 which is usually
employed in conventional BD simulations, has serious drawbacks
regarding both its stability and accuracy. This is primarily due to
using a constant timestep interval Δt, which may lead to faulty par-
ticle displacements and erroneous force evaluations when particle
collisions are not resolved with the required precision (i.e., with a
small enough Δt).

Within adaptive BD,41 the automatic choice of an appropri-
ate timestep length Δtk is ensured in each iteration k→ k + 1 by the
evaluation of an embedded Heun–Euler integrator,

r̄(i)k+1 = r(i)k + 1
ζ

f(i)(rN
k )Δtk +

√
2kBT

ζ
R(i)k , (5)

r(i)k+1 = r(i)k + 1
2ζ
(f(i)(rN

k ) + f(i)(r̄N
k+1))Δtk +

√
2kBT

ζ
R(i)k , (6)

which yields two estimates r̄N
k+1 and rN

k+1 for the new particle posi-
tions at time tk + Δtk. If large discrepancies of r̄N

k+1 and rN
k+1 are

detected, the timestep Δtk is reduced and the step k→ k + 1 is
retried. In such a case of a rejected trial step, one must carefully
choose appropriate discrete random increments R(i)k to retain the
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Gaussian nature of the target random process R(i)(t). For this,
adaptive BD utilizes Rejection Sampling with Memory (RSwM),54

which is an efficient algorithm to counteract the rejection of previ-
ously drawn random increments. RSwM, hence, guarantees the cor-
rect generation of a specified random process. With the numerical
treatment of Eq. (4) via adaptive BD, stable and accurate long-time
simulations of overdamped many-body systems are possible in equi-
librium but also under extreme non-equilibrium conditions, such as
when driving the system with a large external force fext(r). A detailed
description of adaptive BD is given in Ref. 41.

Hydrodynamic interactions that are mediated by the implicit
solvent are neglected in the equations of motion (4). From a compu-
tational standpoint, the performance of the simulations turns out to
be crucial to obtain accurate results for the quantities of interest, as
described in Sec. II C. The numerical treatment of hydrodynamic
interactions, which requires both the evaluation of long-ranged
forces as well as the generation of appropriately correlated random
displacements (e.g., via a Cholesky decomposition of the diffusion
matrix55), would have a significant impact on the required compu-
tational effort. Additionally, within adaptive BD, the Heun–Euler
pair (5) and (6) is conceived to handle only additive noise in the
underlying stochastic differential equation. Instead of the Heun
method (6), one would have to resort to an integration scheme with
a sufficient strong order of convergence for general noise terms.53

Moreover, from a physical point of view, we argue that the omission
of hydrodynamic interactions simplifies the analysis of the results
in Sec. III as all observations are ensured to stem solely from the
properties of the Stillinger–Weber particle model. In particular, we
show that its ability to form networks is the crucial mechanism that
causes the reported out-of-equilibrium response. As hydrodynamic
interactions tend to support anisotropic coagulation and transient
network states,56–58 we expect no significant qualitative change in
the reported observations.

C. Simulation protocol
In this work, we model an inhomogeneously sheared system

by imposing an external force profile fext(z) that is parallel to the
x axis and modulated in the z-direction. The x-component of the
force field is sinusoidal with amplitude K such that it complies with
the periodic boundary conditions of the cubic simulation box with
side length L, i.e.,

f ext,x(z) = K sin(2π
z
L
). (7)

With this choice, Lees–Edwards boundary conditions59 as
used in simulations with linear shear profiles60 are not required
because fext(r) and its derivatives are continuous at the periodic
boundaries. The application of the time-independent but spatially
inhomogeneous shear force (7) is not to be confused with time-
dependent oscillatory shear.61 The considered external force con-
stitutes the lowest-order Fourier mode within the simulation box,
and it can, hence, be taken as a generic model for experimentally
relevant scenarios, as occur, e.g., in convection44 or when inducing
inhomogeneous forces with a laser tweezer.

The simulation procedure is as follows: We set L = 30σ and ini-
tialize N = 1000 particles on a regular lattice, which yields a mean
number density of ρb ≈ 0.037σ−3. This configuration is randomized
for a short time (104 steps) at a high temperature of kBT = 10ϵ using

the adaptive BD method before instantaneously reducing the tem-
perature to the desired value and imposing the sinusoidal external
force profile (7). At this point, no particle bonds have formed yet
and a flow in the x-direction sets in immediately. From here, the
actual production run begins and the respective observables are sam-
pled, which is described in more detail in the following. Due to the
nature of the external force profile (7), the system retains trans-
lational invariance in the x–y-plane and forms a flow channel in
the upper and lower half of the simulation box. Since a transient
from the randomized particle distribution into this stationary flow
occurs initially, we partition the sampling of the production run
into consecutive sections of 106 steps. Thus, the sections where a
stationary flow has not been reached yet can be discarded, and the
remaining ones are averaged over. During individual runs, asym-
metric channel populations that persist for a long time are observed.
Rather than performing longer simulation runs to yield better time-
averages, we average over ∼50 distinct realizations of a simulation
until symmetric profiles are obtained. The typical simulation time of
the stationary flow in each individual run is then of the order of 105τ
with the Brownian timescale τ = σ2ζ/ϵ.

Using this protocol, a range of external modulation amplitudes
K and temperatures T is investigated. For each set of parameters,
we obtain the density profile ρ(r) as well as the force density profile
F(r) from sampling of the density operator

ρ̂(r) = ∑
i

δ(r − r(i)) (8)

and force density operator

F̂(r) = ∑
i

f(i)δ(r − r(i)), (9)

respectively. Thus, ρ(r) = ⟨ρ̂(r)⟩ and F(r) = ⟨F̂(r)⟩, where angu-
lar brackets denote an average over configurations of the stationary
flow state obtained according to the above simulation procedure.
Specifically, for the force density profile, we focus on its internal
contribution

Fint(r) = ⟨∑
i

f(i)intδ(r − r(i))⟩ (10)

to better reveal how the stationary state is stabilized by the inter-
nal interaction (1). The internal force density profiles are then
normalized by the density to acquire the internal force profile

fint(r) = Fint(r)
ρ(r) . (11)

A sufficiently large number of samples is necessary to yield
accurate results for the internal force profile as its convergence is
slower than that of the density profile.62 To investigate possible
finite-size effects, which might occur in gels specifically due to their
long-range effective correlations, we have conducted additional sim-
ulations where the side length L of the box has been doubled while
extending the external potential (7) in the z-direction by an addi-
tional shear period. No significant impact was found on the behavior
of the sheared system compared to the results shown in Sec. III for
the original choice of L.

A sketch of the system and of the flow velocity profile result-
ing from the applied shear force (7) is depicted in Fig. 1, where
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FIG. 1. Characteristic snapshots of an equilibrium gel (left) and a sheared gel in the steady state (right). An animation of the sheared gel is provided in the supplementary
material. The particles are colored according to the cluster to which they belong. The simulation box is a cube of side length L, and the temperature is set to kBT = 0.1ϵ.
For the sheared state, an external force amplitude of K = 5ϵ/σ is chosen. The forces acting on the sheared gel are schematically represented: A sinusoidal external force
pointing along the x-direction drives the flow of particles, forming two flow channels with the velocity profile (gray) closely following the external force profile (7). In the steady
state, a superadiabatic viscous internal force (cyan) emerges that locally either opposes or supports the flow. A strong density modulation (orange) develops along the
z-direction. The ideal-gas diffusive force (olive) that tends to homogenize the density profile is balanced by an internal force (pink) along the z-direction, which incorporates
both adiabatic and superadiabatic structural components.

we also show characteristic snapshots of the quiescent and of the
sheared gel. Additionally, the spatial variations of the one-body pro-
files are illustrated, and we indicate locally by arrows the directions
of the one-body force contributions. Actual simulation results are
presented and analyzed in the following, and we highlight the labels
of the one-body profiles in subsequent figures according to the colors
used in Fig. 1.

III. RESULTS
A. Variation of temperature

For certain state points and values of the amplitude of the
external force, large variations in the one-body profiles of density
ρ(r) = ρ(z) and internal force fint(r) = fint(z) are observed while the
system retains translational symmetry in the x- and y-directions. To
investigate the onset and origin of these inhomogeneities, we first
vary the temperature T and maintain a large constant amplitude
K = 5ϵ/σ of the external force profile. The results are shown in Fig. 2.

The one-body profiles remain almost featureless for kBT = 0.3ϵ.
At kBT = 0.2ϵ, an inhomogeneous structure begins to appear in the
internal force profiles fint,x(z) and fint,z(z). This becomes more
clearly visible as variations of the density profile ρ(z) from its
bulk value for kBT = 0.15ϵ. For kBT = 0.1ϵ, remarkable modulations
occur in all three quantities with spatial density variations of the
order of the mean bulk density ρb itself.

The emergence of structural features in the one-body profiles
when decreasing temperature is rapid and continuous. The spatial
modulations are significantly stronger than those observed in (non-
percolated) simple fluids,38 and we illustrate this in Appendix C via a
comparison to results for the dilute Lennard-Jones fluid. Therefore,
this effect can be linked to the percolation transition in equilib-
rium, which sets in at similar thermodynamic state points for the

considered particle model.63 We support this reasoning by an inves-
tigation of the cluster size distribution C(n), which gives the prob-
ability of finding a random particle in a cluster of size n. As is
standard, we define the agglomeration of particles into clusters to be
transitive with two particles belonging to the same cluster if their dis-
tance is below the cutoff distance aσ of the interparticle potential. In
Fig. 3, C(n) is shown for varying temperatures in a system sheared
according to Eq. (7) with K = 5ϵ/σ. One recognizes that the mean
cluster size grows with decreasing temperature and that clusters span
up to half of the system for kBT = 0.1ϵ.

Additionally, to better reveal the internal structure of the clus-
ters, we monitor the probabilities of the coordination numbers Pn,
i.e., the proportion of particles having n neighboring particles within
the cutoff distance aσ. The behavior of the coordination numbers
n = 0, 1, 2, 3 is shown in Fig. 4 as a function of inverse temperature.
It is apparent that for low temperatures, the structure of the net-
work is dominated by particle chains. Branching still occurs, which
interconnects the chains within the flow channels. This shows that
even in strongly sheared systems, microscopic correlations are dom-
inated by the three-body contribution to the internal interaction
potential (1).

B. Variation of external force amplitude
While the formation of finite-size clusters can be understood

as a relic of the equilibrium percolation transition, its effect on the
concrete structure of ρ(z) and fint(z) turns out to be substantial and
can only be explained if genuine non-equilibrium dynamics are con-
sidered. In the following, the response of the three-body gel over a
range of external force amplitudes K at constant (low) temperature
kBT = 0.1ϵ is investigated, whereby the system is driven further away
from equilibrium with increasing K. The corresponding one-body
profiles are shown in Fig. 5.
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FIG. 2. The density profile ρ(z) (a) as well as the component fint,z(z) (b) and
fint,x(z) (c) of the internal force (7) is shown. A constant shear amplitude of
K = 5ϵ/σ is maintained, and the temperature is varied with values of kBT/ϵ= 0.1, 0.15, 0.2, 0.3 (indicated by ticks on the color scale). While fint,x(z) acts par-
allel to the flow direction, fint,z(z) constitutes a force perpendicular to the flow
that leads to the observed density inhomogeneity. This is illustrated by arrows,
which accentuate, in particular, the alternating direction in both the parallel and the
perpendicular internal force component for low temperature. The onset of struc-
tural inhomogeneities in the one-body profiles is continuous and occurs rapidly for
decreasing T when the equilibrium percolation transition is encountered.

To rationalize the results, it is instructive to work on the level
of forces and to consider the one-body force balance43

ζv(r) = fint(r) + fext(r) − kBT∇ ln ρ(r). (12)

The above relation is exact for arbitrary many-body Hamiltonians,
which can be shown, e.g., via an integrating-out of the Smolu-
chowski equation or in equilibrium, where v(r) = 0, by an applica-
tion of Noether’s theorem.64 The external force fext(r) is imposed
in our system via Eq. (7), and ρ(r) as well as fint(r) is accessi-
ble from their microscopic definitions given in Eqs. (8)–(11). The

FIG. 3. The cluster size distribution C(n) is shown for different values of the
temperature (indicated by ticks on the color scale) at a constant shear amplitude
K = 5ϵ/σ. Particles tend to form chains when driven by the shear force, cf. Fig. 1,
and the mean size of the chains grows when temperature is decreased. Addi-
tionally, for kBT = 0.1ϵ, the occurrence of large clusters that span across a flow
channel and include up to half of the particles in the system is observed.

term −kBT∇ ln ρ(r) = fid(r) on the right-hand side of Eq. (12) is the
force arising from ideal-gas diffusion. Furthermore, the time depen-
dence has been dropped as we consider a stationary state where
v(r) = J(r)/ρ(r) is the time-independent one-body velocity, which
can be obtained from the one-body current J(r). The current obeys
the continuity equation ∂ρ(r, t)/∂t = −∇ ⋅ J(r, t), and it is there-
fore divergence-free in the present case since the density profile is
stationary. We recall that J(r) is an average of the microscopic oper-
ator Ĵ(r) = ∑iv

(i)δ(r − r(i)), and it is thus directly accessible from
simulation.65

We proceed similar to Ref. 39 and distinguish between adia-
batic and superadiabatic contributions to the internal force profile
fint(r) = fad(r) + fsup(r). The adiabatic force fad(r) is defined to be

FIG. 4. The probabilities Pn of particles with a coordination number of n = 0, 1, 2, 3
are shown as a function of inverse temperature β and for constant shear amplitude
K = 5ϵ/σ. For low temperatures, individual particles (n = 0) as well as particle
pairs (n = 1) are desorbed into the network as both P0 and P1 decrease. The
network structure is dominated by chains (P2 is large) and branching is still viable,
as can be deduced from the moderate value of P3.

J. Chem. Phys. 158, 054908 (2023); doi: 10.1063/5.0130655 158, 054908-6

© Author(s) 2023

6 Publications

76



The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 5. Similar to Fig. 2, the one-body profiles of velocity vx(z) (a), density ρ(z)
(b), perpendicular internal force fint,z(z) (c), and parallel internal force fint,x(z) (d)
are depicted. The temperature is now fixed to kBT = 0.1ϵ, and the amplitude of
the external force is varied with values of Kσ/ϵ = 0.1, 0.5, 1, 1.5, 2, 3, 4, 5, which
are indicated by ticks on the color scale (K = 0 corresponds to the bulk state and
is not shown). Arrows indicate the local direction of the internal force components
for the low (blue) and high (yellow) shear amplitude.

that of a reference equilibrium system, which is constructed to have
the same density profile as the original non-equilibrium state. Only
the superadiabatic part fsup(r) consists of purely out-of-equilibrium
forces, which, hence, determine both (inhomogeneous) structure

and flow of a driven colloidal suspension. By specializing to our
planar geometry, we now analyze the force profiles in Fig. 5 to
determine adiabatic and superadiabatic contributions.

Parallel to the flow, the density remains homogeneous due
to translational symmetry such that the x-component of its gradi-
ent vanishes. This also implies a vanishing adiabatic force fad,x(z)= 0. The respective component of the internal force therefore only
consists of the superadiabatic contribution, i.e., fint,x(z) = fsup,x(z).
Hence, the x-component of the force balance Eq. (12) simplifies to

ζvx(z) = f sup,x(z) + f ext,x(z), (13)

which clarifies that fsup,x(z) plays the role of a viscous force and that
it is readily available via the simulation results for fint,x(z) shown
in Fig. 5.

In the z-direction, the density varies inhomogeneously, and the
internal force therefore consists of both adiabatic and superadia-
batic contributions. To distill fsup,z(z) from the data of fint,z(z) in
Fig. 5 would require the construction and simulation of an appro-
priately chosen equilibrium system,65,66 which will be considered in
the future work. Nevertheless, due to the absence of driving and flow
in the z-direction, i.e., fext,z(z) = 0 and vz(z) = 0, the force balance
along the z axis reduces to

0 = f sup,z(z) + f ad,z(z) − kBT
∂ ln ρ(z)

∂z
. (14)

Therefore, the non-equilibrium force component fsup,z(z) is neces-
sary to stabilize the density gradient, and it can thus be referred to as
a structural superadiabatic force. Equation (14) also reveals that the
internal force density is straightforwardly related to the derivative
of the density profile due to Fint,z(z) = fint,z(z)ρ(z) = kBT∂ρ(z)/∂z,
which can be utilized as a means to “force sample”67–69 the density
profile with a reduced variance. Additionally, an analogous descrip-
tion of viscous and structural effects on the level of internal stresses
is given in Appendix A.

In simple fluids, where the constituent particles only interact
via an isotropic pair-potential, non-equilibrium viscous and struc-
tural forces have been reported to occur both in an analogous sinu-
soidal shear profile38 and in more complex two-dimensional flows.39

However, the emerging features of density and force profiles—while
being measurable and conceptually important—are rather frugal
especially in the quasi-one-dimensional case (cf. Appendix C for
results of the sheared Lennard-Jones fluid). The relative variation
in density is comparatively small even for moderate external force,
and particles consistently accumulate in regions of low shear rates,
i.e., at the center of the flow channels. The superadiabatic forces pos-
sess a sinusoidal shape such that the structural force drives particles
to the center of the channels. The viscous force is Stokes-like in a
broad range of shear amplitudes, and it is always opposed to the
flow direction. In the following, these observations are compared to
the markedly different one-body profiles of the sheared three-body
gel illustrated in Fig. 1. The results of the variation of K are shown
in Fig. 5.

For small values of the external force amplitude K, the density
is sinusoidal in shape but the amplitude is inverted as compared to
the simple fluid scenario such that particles accumulate in regions
of large velocity gradient. When K is increased, the density maxima
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shrink while the depletion at the center of the channels remains pro-
nounced. For large values of K, we observe that particles now tend
to flee the regions of high velocity gradient. However, the migra-
tion is not simply directed toward the center of the flow channels
where the local shear rate vanishes, as would be the case in sim-
ple fluids. Instead, the density profile develops a double-peak and
retains a depletion zone right at the location of maximum flow
velocity. This behavior is reflected in the form of the internal force
fint,z(z), which progresses from a sinusoidal profile for small K to a
rapidly varying quantity for large K, thereby promoting and main-
taining the observed double-peak structure of ρ(z) within the flow
channels. The purely superadiabatic viscous force fint,x(z) coun-
teracts partially the flow for low to intermediate K similar to the
behavior found in simple fluids. For large external force amplitudes,
however, fint,x(z) locally acts in the same direction as the flow veloc-
ity at the sides of the channels, which is anomalous phenomenology
for a viscous force.

The striking signal in both structural and viscous forces can be
explained as a consequence of the three-body interaction (1). As the
system is weakly sheared, particles can still percolate into a large net-
work for the chosen temperature. With increasing K, bonds are first
broken in regions of maximum external force such that particles
become mobile and evade these regions—thus, a density depletion
zone develops. At even larger K, the formation of an extensive net-
work cannot be maintained and bonds break and dynamically rejoin
across the whole system. However, driven by the three-body term
in Eq. (1), particles still tend to develop finite-size chains, which
then align parallel to the flow direction. The mobility of the individ-
ual chains enables the migration to regions of low velocity gradient,
and the density profile, hence, inverts. Within the flow channels, the
chains organize into two lanes that are slightly offset from the center
and thus lead to a double-peak structure in ρ(z). This is because their
alignment parallel to the flow is driven by inhomogeneous shear
rate, and it can therefore only occur if ∂vx(z)/∂z ≠ 0. Yet, at the
extrema of the external force profile, the gradient of the resulting
flow vanishes and particle bonds are not aligned. This explains the
spatial offset of the chain formation to regions of finite velocity gra-
dient; cf. Fig. 5. The arrangement of particles into aligned chains
also clarifies the anomalous behavior of the viscous force fint,x(z)
that is encountered in this case and that can, hence, be understood
as a dynamical “drag-along.” In summary, the inclusion of three-
body terms in the interaction potential greatly affects the response
of colloidal suspensions to inhomogeneous shear and results in
collective effects, which influence and amplify structural and
viscous forces.

C. Power functional theory
We next turn to a theoretical description of the simulation

results with PFT42,43 and give a brief summary of its core concepts
in the following. PFT is based on an exact variational principle that
reproduces the time-dependent force balance equation

ζv(r, t) = fad(r, t) + fsup(r, t) + fext(r, t) − kBT∇ ln ρ(r, t). (15)

Thereby, the nontrivial contributions fad(r, t) and fsup(r, t), which
together constitute the internal force profile fint(r, t), are made
accessible via universal generating functionals of the density profile

ρ(r, t) and current profile J(r, t). Together with the external and dif-
fusive forces (right-hand side), they are balanced by the friction of
the overdamped system (left-hand side).

More precisely, the adiabatic force fad(r, t) incorporates the
functional derivative of the intrinsic excess Helmholtz free energy
Fexc[ρ],

fad(r, t) = −∇δFexc[ρ]
δρ(r, t) , (16)

where brackets denote functional dependencies. If one uses Eq. (16)
in Eq. (15) and neglects fsup(r, t), classical dynamical density func-
tional theory (DDFT)70 is recovered as an uncontrolled approxi-
mation. In the sheared three-body gel, as was shown in Secs. III A
and B, the dynamics are governed by genuine out-of-equilibrium
effects. Being a purely adiabatic theory by construction, DDFT is
strictly unable to reproduce or describe the observed behavior in our
system.71

Instead, in order to go beyond an adiabatic description, supera-
diabatic forces fsup(r, t) have to be taken into account. Within
PFT, this is made possible by functional differentiation of the
superadiabatic excess power functional Pexc[ρ, J],

fsup(r, t) = −δPexc[ρ, J]
δJ(r, t) . (17)

The force balance Eq. (15) can then be written as

ζv(r, t) = −δPexc[ρ, J]
δJ(r, t) − ∇δFexc[ρ]

δρ(r, t)+ fext(r, t) − kBT∇ ln ρ(r, t), (18)

and it involves both adiabatic and superadiabatic interparticle forces
as systematically generated via the respective functionals.

Therefore, if Pexc[ρ, J] and Fexc[ρ] are known, PFT enables
the dynamical description of a system subjected to an arbitrary
external force profile fext(r) via Eq. (18) and the continuity equa-
tion. This reformulation, which reduces the many-body problem to
a variational principle on one-body quantities, is exact, in principle.
Crucially, both Pexc[ρ, J] as well as Fexc[ρ] are intrinsic function-
als that depend only on internal interactions and further intrinsic
properties of the system (e.g., temperature and density), but not
on the externally applied force profile fext(r, t). In practice, for a
certain interparticle interaction potential, approximations for
Pexc[ρ, J] and Fexc[ρ]must be found, which poses a nontrivial prob-
lem. For Pexc[ρ, J], the functional dependence will, in general, be
non-local both in space and in time (i.e., non-Markovian) as the his-
tory of ρ(r, t) and J(r, t) has to be considered to obtain an accurate
dynamical theory for time-dependent problems.

In the following, we use the framework of PFT to develop
a model that is capable of reproducing the found anomalous
behavior of the viscous force profile in the sheared three-body gel.
We focus on the viscous part because it is directly accessible in simu-
lation (we recall that fint,x(z) is purely superadiabatic), which, hence,
simplifies the following considerations. Recall also that a stationary
state is considered, which implies∇ ⋅ v(r) = 0 due to the continuity
equation and the chosen geometry. Since ρ(r) is time-independent,
we perform a change of variables to formulate Pexc[ρ, v] as a func-
tional of the velocity profile and use δ/δJ(r) = ρ(r)−1δ/δv(r). To
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yield an approximate explicit expression for Pexc[ρ, v], a semi-
local velocity gradient expansion72 is assumed. Due to being in a
stationary state, we can further specialize to a Markovian model
such that

Pexc[ρ, v] = ∫ dr ϕ(ρ(r),∇v(r)), (19)

with a suitable integrand ϕ(ρ(r),∇v(r)).
As in Refs. 38 and 39, we perform the general expansion up

to second order in ∇v(r) to obtain an expression for the inte-
grand ϕ(ρ(r),∇v(r)). Assuming a local dependence in space and
imposing rotational invariance, this expression can be reduced to

ϕ(ρ(r),∇v(r)) = 1
2

ηρ(r)2(∇ × v(r))2, (20)

where η is the coefficient of the superadiabatic viscous response.
This coefficient depends on intrinsic properties, such as interparticle
potential, density, and temperature, but it crucially is independent
of the imposed external force profile. Furthermore, the value of η
only alters the magnitude of the superadiabatic force profile result-
ing from Eq. (20) with its shape being fully determined by the forms
of ρ(r) and v(r).

The functional minimization (17) of Eq. (19) with the model
integrand (20) results in the superadiabatic force profile

fsup(r) = η[ρ(r)∇2v(r) − ρ(r)∇(∇ ⋅ v(r))
− 2(∇ρ(r)) × (∇ × v(r))], (21)

where the right-hand side can be evaluated for the sheared gel. For
this, we approximate v(r) ≈ fext(r)/ζ since the magnitude of the vis-
cous force is small compared to ζv(r) and take the density profile
from the simulations as the input. The x-component of Eq. (21)
then yields the viscous force, which can be compared to the actual
simulation data fint,x(z) as shown in Fig. 5. To obtain a quantita-
tive comparison, the value of the transport coefficient η is fitted to
match the magnitude of the simulation results universally for the
considered shear amplitudes. The superadiabatic force profiles for
the viscous force within this PFT description are shown in Fig. 6,
where a value of η = 5 has been used for the viscous coefficient for
all considered values of K.

It is apparent that fsup,x(z) displays a double-peak within the
flow channels and therefore differs from the simulation results,
where only a single peak is observed. However, this inaccuracy is
not surprising since the model functional (19) and (20) is obtained
merely by an expansion in gradients of the velocity profile. The den-
sity enters the functional only locally, and the model is thus expected
to fail in regions where higher derivatives (e.g., the curvature) of ρ(r)
are significant, such as in the center of the flow channels. To achieve
better results in these regions, the integrand (20) of Pexc[ρ, v] could
be augmented by an expansion in ρ(r), which will be considered in
future work.

In between the flow channels, the viscous force profiles
obtained from Eqs. (19) and (20) match the simulation results
across the range of investigated shear amplitudes K. Particularly, the
anomalous change in the sign of the viscous force, which we attribute
to a dynamical drag-along of particles, is captured by the PFT model
as well, and it shows the same K-dependent behavior as in the simu-
lation. The successful reproduction of this phenomenon exemplifies

FIG. 6. The superadiabatic viscous force fsup,x(z) is shown as obtained from the
model (19) and (20) for Pexc[ρ, v] with η = 5. For this, the expression (21) is eval-
uated with the density profiles from the simulations in Sec. III B. The velocity
profiles are approximated analytically by v(r) ≈ fext(r)/ζ. When comparing the
shown PFT results (b) with the adaptive BD simulation data (a) for fint,x(z), good
agreement is found. Solely in the center of the flow channels, the simple model
for Pexc[ρ, v] leads to deficiencies due to the complex behavior of ρ(z) in these
regions.

that even simple model functionals for the excess power are capa-
ble of resolving nontrivial superadiabatic effects and that PFT is a
concise framework for their systematic investigation.

IV. CONCLUSION AND OUTLOOK

In this work, we have studied the behavior of a colloidal gel
modeled by the Stillinger–Weber potential (1), where the three-body
interaction (3) has been modified similar to Refs. 29 and 30. The gel
is subjected to a sinusoidal external shear profile. For the numeri-
cal investigation, we have utilized adaptive BD,41 which facilitates to
carry out efficient and stable long-time simulation runs to accurately
obtain the density and internal force profile in the stationary flow
state. Markedly different behaviors have been encountered depend-
ing on the chosen temperature T and the amplitude K of the external
force profile.

The simulations over a range of temperatures revealed that
the effect of the equilibrium percolation transition—which leads
to the formation of an extended and dilute network under quies-
cent bulk conditions—transfers to situations far from equilibrium.
Thus, while a system-spanning network is not formed for suf-
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ficiently strong inhomogeneous shear, the local arrangement of
particles into finite-size chains is still viable, which we have shown
via the cluster size distribution C(n). An investigation of the prob-
abilities of the coordination numbers Pn revealed that the clusters
are dominated by chains, which interconnect via branching. This
clustering effect is crucial to describe the emergence of structure
in the density profile ρ(z) and in the parallel and perpendicular
component of the internal force fint(z)with respect to the flow direc-
tion. Note that the global temperature acts as a control parameter
for the network formation in our system. In depletion-induced
gels, a similar effect could be achieved by a variation of the con-
centration of the depletion agent to tailor the effective attraction
between colloids.11–13

For an in-depth analysis, we have further split the internal force
into adiabatic and superadiabatic contributions with the latter being
the driving mechanism for genuine out-of-equilibrium effects. Due
to the chosen planar geometry, the parallel component of the inter-
nal force could be associated directly with a superadiabatic viscous
force. The perpendicular component consists of both adiabatic and
superadiabatic contributions instead, where the latter is needed to
stabilize the emerging density inhomogeneity.

When comparing the found results of the three-body gel
with known observations of colloids consisting of simpler particle
types,38,39 we found anomalous behavior for both viscous and struc-
tural effects. This could be attributed to be a direct consequence
of the internal three-body contributions. The emerging density
modulation is much larger in magnitude and shows a richer phe-
nomenology than in simple fluids, as we have illustrated via a
comparison to the Lennard-Jones fluid in Appendix C. In particu-
lar, the accumulation of particles can occur both in regions of high
and low velocity gradient depending on the applied external force.
For large amplitudes of the latter, the formation of particle chains
occurs within a double-lane near the center of the flow channels.
The superadiabatic viscous force, which generally opposes the flow
direction in simple fluids, has been shown here to flip its usual
counteracting direction for large K in some regions of the chan-
nels. We deduced this “drag-along” to be another consequence of
the formation of particle chains. Therefore, in both components of
the internal force profile, collective effects are involved, which sub-
stantially amplify the non-equilibrium response of the system. As we
have shown, colloidal gels are very susceptible to out-of-equilibrium
phenomena, and they can, hence, be taken as a prototypical model
for future study.

By utilizing PFT, a possible route to a coarse-grained descrip-
tion of the found results was given. This was exemplified for the vis-
cous force profile, where we have shown that a simple excess power
functional suffices to reproduce the simulation results and capture
the anomalous drag-along in the three-body gel. In the future work,
more sophisticated model functionals will be investigated in order to
alleviate some deficiencies of this simple description. Building upon
the found results, a similar analysis of the structural force profile
will be considered. This requires, however, the construction of an
equilibrium reference state to perform the splitting of the respec-
tive internal force component into adiabatic and superadiabatic
contributions.

In the conducted simulations, it was observed that asymmet-
ric channel populations that persist over long time scales occur
especially for intermediate values of the shear amplitude. Hence,

another objective for future work is a study of their statistics and
stability, possibly being indicative of a dynamical phase transition
as reported already in dense colloidal suspensions of simpler parti-
cles that exhibit flow-induced ordering or layering phenomena.73,74

Further interesting research could incorporate a variation of other
parameters of the Stillinger–Weber potential besides Θ0 to study
their impact on the response of the driven system. This is espe-
cially important from a practical perspective as the tuning of
microscopic interactions to yield desired material properties is a
central concept of material science, which has also been applied to
colloidal gels under shear.75 For a quantitative prediction, hydro-
dynamic interactions might become relevant, and it would be
useful to augment adaptive BD in this regard, possibly accompa-
nied by efficient evaluation schemes of then correlated random
increments.76,77 Additionally, going beyond the steady state and
investigating time-dependent situations, such as transients in a
switching protocol of the external force,78 could reveal the nature
of non-equilibrium memory effects. This is especially interesting
from the view point of PFT as memory kernels can be directly
incorporated in the theory, such that time-dependent phenom-
ena may provide further assistance in the development of accurate
functionals.

SUPPLEMENTARY MATERIAL

See the supplementary material for an animation of the steady
shear flow of the three-body gel at temperature kBT = 0.1ϵ and shear
amplitude K = 5ϵ/σ.
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APPENDIX A: INTERNAL STRESS TENSOR

Instead of working on the level of the force balance Eq. (12)
directly, one can consider a similar decomposition of the stress
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tensor as a generator of the respective force profiles. For this, we use
the definition

∇ ⋅ σ(r, t) = ζJ(r, t) (A1)

of the total stress tensor σ(r, t). To identify its internal contribution,
we multiply Eq. (12) by the density profile ρ(r, t), which yields the
force density balance

ζJ(r, t) = Fint(r, t) + Fext(r, t) − kBT∇ρ(r, t). (A2)

Insertion of Eq. (A2) into Eq. (A1) and an analogous splitting then
gives rise to the definition

FIG. 7. The density profile (a) as well as structural (b) and viscous (c) components
of the internal stress tensor σ int(z) as obtained via Eqs. (A4) and (A5) is shown.
The components of the internal stress tensor are scaled by the squared particle
diameter divided by the energy scale (σ2/ϵ). A constant temperature kBT = 0.1ϵ
is maintained, and values of Kσ/ϵ = 0.1, 0.5, 1, 1.5, 2, 3, 4, 5 (indicated by ticks on
the color scale) are chosen for the shear amplitude as in Fig. 5.

∇ ⋅ σint(r, t) = Fint(r, t) (A3)

for the internal stress tensor σint(r, t).
In the considered stationary state, the time dependence can be

dropped. Obtaining σint(r) from the sampled force density profile
Fint(r) requires an integration of its spatial components according
to Eq. (A3). Pressure-like contributions (corresponding to integra-
tion constants) are not accessible from the force density profiles
alone and require further suitable measurements in simulation.79,80

(The standard Irving–Kirkwood81 treatment is only valid for pair-
potentials.) We omit such constants in the following and only con-
sider relative inhomogeneities of the internal stress. Additionally, a
non-unique82 divergence-free part of σint(r) remains undetermined
from the integration of Eq. (A3) and is set to zero.

We specialize to the planar geometry of our system, which
enables a straightforward integration to obtain two relevant com-
ponents of σint(z) via

σint,zz(z) = ∫ dz Fint,z(z), (A4)

σint,zx(z) = ∫ dz Fint,x(z). (A5)

Analogous to Fig. 5, where the x- and z-component of the inter-
nal force is depicted, we show results for the components σint,zz(z)
and σint,zx(z) of the internal stress tensor as obtained by Eqs. (A4)
and (A5) in Fig. 7. Here, the integration constants were chosen such
that σint,zz(z) vanishes at the boundaries of the box and σint,zx(z) is
anti-symmetric under motion reversal (v(r) → −v(r)).

It is observed that σint,zz(z) reproduces the shape of the density
profile, which is consistent with the considerations in the main text;
cf. Eq. (14). For σint,zx(z), a sinusoidal shape is obtained at low shear
amplitudes. When increasing K, the zx-component of the internal
stress tensor develops a secondary structure. This is indicative of the
non-linear response of a colloidal gel to applied shear, which mani-
fests itself for inhomogeneous shear in an anomalous behavior of the
viscous contribution.

APPENDIX B: VARIATION OF THE THREE-BODY
ANGLE

In Fig. 8, we show illustrative results of the sheared three-body
gel for different values of the preferred three-body angle Θ0. For
lower values of Θ0, it is increasingly difficult to obtain symmet-
ric profiles. We choose Θ0 = 150○ as the lowest value to keep away
from the liquid–gas binodal and to prevent the formation of droplets
within the flow channels, which hinder an accurate sampling. It is
apparent from the results that the choice of Θ0 = 180○ in the main
text is not artificial and that similar behavior can be achieved also
for lower values of Θ0 as long as gelation is enforced. When decreas-
ing Θ0, one even observes larger local forces at the sides of the flow
channels [cf. fint,z(z) and fint,x(z) in Fig. 8] as the desorption of par-
ticle strands is enhanced due to the increased ability of branching.
We refer to Refs. 29 and 30 for an investigation of the equilibrium
behavior of the three-body gel for different values of the three-body
angle Θ0 and the three-body interaction strength λ.
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FIG. 8. The density profile ρ(z) (a) as well as the perpendicular (b) and parallel (c)
component of the internal force profile fint(z) is shown for the sheared three-body
gel with modified preferred three-body angles of Θ0 = 175○, 170○, 160○, 150○
(indicated by ticks on the color scale). We set a temperature of kBT = 0.1ϵ and
a shear amplitude of K = 5ϵ/σ. As network formation also occurs for the above
values of Θ0 and as it is the driving mechanism for the strong superadiabatic
response, one can observe similar behavior as for the choice of Θ0 = 180○ in the
main text. Below a value of Θ0 = 150○, an accurate sampling of the steady state
was hindered by the formation of droplets in the flow channels.

APPENDIX C: COMPARISON TO THE LENNARD-JONES
FLUID

For comparison, we show the behavior of the truncated
Lennard-Jones fluid under an analogous shear protocol as for
the three-body gel. The Lennard-Jones interaction potential only
consists of the radially isotropic pairwise contribution

u2(r) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

4ϵ[(σ
r
)12 − (σ

r
)6], r ≤ rc,

0, r > rc,
(C1)

with the cutoff distance rc = 2.5σ, and it can, hence, be taken as an
example of a simple fluid or colloidal suspension.

In Fig. 9, the density profile as well as the parallel and per-
pendicular contribution of the internal force profile is shown for
a temperature of kBT = 1.5ϵ and for various (large) shear ampli-
tudes K. All other system parameters are adopted from the simu-
lations of the sheared gel, which yields the same low mean density
of ρb ≈ 0.037σ−3. One recognizes that the superadiabatic response
of the Lennard-Jones fluid differs starkly from that of the three-
body gel; cf. 5. The density inhomogeneity of the simple liquid is
orders of magnitude smaller and possesses a sinusoidal shape that
does not change qualitatively for different shear amplitudes. Note
that despite driving the Lennard-Jones system with much stronger

FIG. 9. The steady state behavior of a sheared low-density Lennard-Jones fluid
is shown for a temperature of kBT = 1.5ϵ and for various shear amplitudes
Kσ/ϵ = 5, 10, 20, 50, 100 (indicated by ticks on the color scale). The superadi-
abatic response of this representative simple fluid is much weaker than in the
sheared three-body gel. The migration of particles always occurs toward the center
of the flow channels, where the velocity gradient vanishes, as can be deduced from
the density profile ρ(z) (a) and the perpendicular internal force profile fint,z(z) (b).
The viscous superadiabatic force fint,x(z) (c) counteracts the flow direction, and
unlike in the three-body gel, no drag-along is observed.
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external forces, the onset of notable superadiabatic effects occurs
only for sufficiently large inhomogeneous shear as opposed to the
three-body gel, where a substantial density inhomogeneity devel-
ops also for low values of K. In particular, no inversion of the
extrema in the density profile ρ(z) is observed, as was the case for
the three-body gel when transitioning from low to high shear. The
internal force components reflect this situation with both fint,z(z)
and fint,x(z) being much smaller and showing less features than in
the three-body gel. Especially for fint,x(z), no anomalous drag-along
is observed as the superadiabatic viscous force in the Lennard-Jones
fluid always counteracts the flow.
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We reexamine results obtained with the recently proposed density functional theory framework based on
forces (force-DFT) [S. M. Tschopp et al., Phys. Rev. E 106, 014115 (2022)]. We compare inhomogeneous
density profiles for hard sphere fluids to results from both standard density functional theory and from computer
simulations. Test situations include the equilibrium hard sphere fluid adsorbed against a planar hard wall and the
dynamical relaxation of hard spheres in a switched harmonic potential. The comparison to grand canonical Monte
Carlo simulation profiles shows that equilibrium force-DFT alone does not improve upon results obtained with
the standard Rosenfeld functional. Similar behavior holds for the relaxation dynamics, where we use our event-
driven Brownian dynamics data as benchmark. Based on an appropriate linear combination of standard and force-
DFT results, we investigate a simple hybrid scheme which rectifies these deficiencies in both the equilibrium and
the dynamical case. We explicitly demonstrate that although the hybrid method is based on the original Rosenfeld
fundamental measure functional, its performance is comparable to that of the more advanced White Bear theory.

DOI: 10.1103/PhysRevE.107.034109

I. INTRODUCTION

Whether any theoretical approach is useful in practice of-
ten stems from the accuracy and reliability of its predictions
versus the analytical and computational effort it requires.
Classical density functional theory (DFT) [1,2] fares very
well, ranging from simple local density and square gradi-
ent approximations [1,2], which are sufficiently accurate in
appropriate circumstances (see, e.g., Refs. [3–5] for studies
of colloidal sedimentation) to the nonlocal and nonlinear
prowess of Rosenfeld’s fundamental measure theory (FMT)
[6,7] to capture hard sphere correlations.

Applying DFT in practice involves solving a variational
(minimization) problem, which typically requires the
numerical treatment of an implicit integral equation. One
obtains static quantities or performs adiabatic time evolution
within dynamical DFT (DDFT). The latter task is often done
with a simple time-forward integrator, but more advanced
methods [8,9] allow to address dynamical optimization
problems. Similarly, computational grids in real space range
from simple and often very relevant effective one-dimensional
geometries [10] to full three-dimensional resolution [11] and
pseudospectral methods [8]. Increasing the complexity of
the underlying microscopic model trades off well with the
achieved broader physical scope, as is the case in including
orientational degrees of freedom in liquid crystal formation
[12,13] and molecular DFT [14–16] for realistic modeling of
molecular liquids.

DFT offers a complete theoretical framework for address-
ing static problems in many-body statistical physics. The
theory is founded on the concept of potentials, including the
chemical potential μ as a control parameter, an external poten-
tial that adds local variation to μ, and an intrinsic part, which

*Matthias.Schmidt@uni-bayreuth.de

arises from the interparticle interactions and which induces
the coupling of the microscopic degrees of freedom.

In contrast to this basis in potentials, the concept of forces
seems almost alien to the framework, or at least redundant.
Nevertheless, in a variety of very different fields there ap-
pears to be new interest in this old workhorse. We mention
the recent and unexpected advances in simulation methodol-
ogy based on force sampling [17–20] and in the related but
different realm of quantum DFT [21–25], as well as in the
power functional approach to nonequilibrium many-body dy-
namics [26]. Both the classical and the quantal force balance
were proven to be direct consequences of a thermal Noether
symmetry of the system [27,28]. Forces are also central in
the recent treatment of motility-induced phase separation by
Brady and coworkers [29].

Recently, Tschopp et al. [27] developed a force-based al-
ternative to implement density functional theory. Their “force-
DFT” comes at an increased computational cost, as two-body
functions appear explicitly and need to be manipulated. Nev-
ertheless, the framework still retains formal one-body purity
with the two-body density playing the role of an auxiliary
variable. The difference between the standard approach to
DFT and the force-DFT appears similar to the difference
between the virial and compressibility route to determine the
equation of state in bulk fluids [2], e.g., on basis of the cele-
brated Percus-Yevick approximation for the hard sphere fluid.
Actually, as could be shown by Tschopp et al. [27] via an
investigation of the hard wall contact theorem, standard DFT
corresponds in this case to the compressibility equation of
state while force-DFT satisfies the virial equation of state.

Here we address the question of where the balance of
complexity and accuracy tips for the force-DFT. We com-
pare the theoretical results of Ref. [27] against new computer
simulation data, involving canonical, grand canonical, and
event-driven methods, as is appropriate for carrying out a
systematic comparison, as we detail below. We find that the
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force-DFT per se does not improve on standard DFT in the
considered cases, but that an appropriate linear combination
of results from the two approaches, which constitutes a simple
hybrid scheme, gives much improved results as compared
to the standard framework. We hence follow the suggestion
raised in the outlook of Ref. [27] that “the virial and com-
pressibility routes could be mixed in the spirit of liquid-state
integral-equation theories, using approximations analogous to
the Rogers-Young or Carnahan-Starling theories.”

The paper is organized as follows. In Sec. II, a brief
summary of the core concepts of DFT is given. Particularly,
we highlight the conceptual differences of the force-DFT ap-
proach and describe how both routes can be used to formulate
a dynamical DFT. In Sec. III, we conduct a thorough reinves-
tigation of the force-DFT results for the model applications
of Ref. [27], thereby comparing these data to results from
standard DFT and from simulation. Throughout this work,
the hard sphere fluid is considered and the force-DFT results
are those that were obtained with the Rosenfeld [6] FMT
functional in Ref. [27]. We first turn to the case of imposing a
planar hard wall in Sec. III A where the respective connec-
tion of standard and force-DFT to the compressibility and
virial route is established via the hard wall contact theorem.
To obtain numerically accurate results for this equilibrium
situation, we perform grand canonical Monte Carlo (GCMC)
[30] simulations which are systematically adjusted to enable a
comparison with both DFT routes. In Sec. III B, the dynamical
behavior of the hard sphere fluid in a switched harmonic
potential is considered. For the numerical reproduction of
the exact time evolution, we employ event-driven Brownian
dynamics simulations (EDBD) [31] that are initialized with
particle configurations from canonical Monte Carlo (MC)
simulation. The time-dependent density profile obtained with
this procedure is compared to results from standard and from
force-DDFT. Based on the observations of Secs. III A and
III B, we investigate a hybrid scheme in Sec. IV as a means to
substantially improve the resulting density profiles via a linear
combination of results from the standard and force route. This
is illustrated both for the equilibrium and for the dynamical
case, where we find much better agreement with simulation
results. In particular, we show that hybrid Rosenfeld DFT can
compete with standard DFT on the basis of the high-accuracy
White Bear [32,33] functionals for the hard wall test case. We
conclude in Sec. V and give an outlook to further possible
applications of force-DFT and the hybrid scheme.

II. CONCEPTS OF STANDARD DFT AND FORCE-DFT

One of the main goals and motivations behind the de-
velopment of force-DFT is the possibility to improve upon
the results from standard DFT calculations. Usually improve-
ments of DFT involve refinements of the assumed free energy
density functional. Two prominent examples are the advanced
White Bear versions of FMT [7,32,33]. In contrast, the imple-
mentation of force-DFT acknowledges the fact that the exact
density functional is not within reach for relevant physical
systems and that intoducing approximations leads to a theory
that is not entirely self-consistent. Starting from the same
functional but using different routes to calculate a physical

variable will yield different results except in the formal case
of an exactly known functional.

The starting point of both the standard DFT and the
force-DFT approach is determining the density ρ(r) self-
consistently from solving the Euler-Lagrange equation

ln ρ(r) − β[μ − Vext(r)] − c1(r) = 0, (1)

where β = (kBT )−1 denotes the inverse temperature with kB

being Boltzmann’s constant, and μ is the chemical potential.
While the thermodynamic state point as well as the external
potential Vext(r) act as control parameters, the one-body direct
correlation function c1(r) arises from internal interactions and
it has to be approximated in practice.

Given a suitable approximation for the excess free en-
ergy density functional Fexc[ρ], where the brackets indicate
functional dependence, one determines the one-body direct
correlation function via functional differentiation according to

c1(r) = −β
δFexc[ρ]

δρ(r)
. (2)

In force-DFT one retains Eq. (1) but calculates the direct
correlation function from the force integral

c1(r) = −∇−1 ·
∫

dr′ ρ2(r, r′; [ρ])

ρ(r)
∇βφ(|r − r′|), (3)

where ∇−1 =1/(4π )
∫

dr′(r − r′)/|r − r′|3 indicates an inte-
gral operator (see, e.g., Refs. [17,18]) and φ(r) is the pair in-
teraction potential as a function of the interparticle distance r.
At face value the expression (3) is based on the two-body level
as it depends on the two-body density ρ2(r, r′; [ρ]). However,
starting from an approximative excess free energy functional
Fexc[ρ], the two-body density ρ2(r, r′; [ρ]) is determined by
functionally differentiating twice to get the two-body di-
rect correlation function c2(r, r′) = −βδFexc[ρ]/δρ(r)δρ(r′)
and then solving the inhomogeneous Ornstein-Zernike (OZ)
equation self-consistently [27]. The last step can be done nu-
merically in planar and spherical geometry (see Refs. [34–36]
for the technical details).

Solving the inhomogeneous OZ equations has relevant ap-
plications in the study of the structure factor of thin films [37],
of capillary waves, and of the wave-number-dependent sur-
face tension [38,39] in lateral systems. Due to this additional
self-consistency step and by working on the two-body level,
the force-DFT is technically and computationally more com-
plex than standard implementations of DFT based on Eq. (2).

The alternative force route also transfers directly to DDFT,
which is then called force-DDFT. Standard DDFT provides
a statistical mechanical approach to describe inhomogeneous
fluids in nonequilibrium, including the dynamics of adsorp-
tion [40,41], lane formation [42,43], or the motion of active
microswimmers [44,45] (see the review [46] for a recent and
broad overview). This theory is the dynamic extension of
DFT and it is intrinsically based on the adiabatic approxima-
tion. Efforts to improve the implied approaches [47] include
the in principle exact power functional theory, which goes
beyond the adiabatic approximation by taking all superadi-
abatic (above adiabatic) contributions into account [26,48].
Recently, a concrete implementation of a two-body DDFT
[49], which is deeply founded on the force route investigated
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in this work, has been shown to incorporate superadiabatic
effects on the one-body level, thus providing a way to improve
upon standard DDFT. Reference [50] discusses the shortcom-
ings of standard DDFT and describes possible ways forward.

The transition from the equilibrium DFT to the nonequi-
librium DDFT is in both cases simply based on the continuity
equation

∂ρ(r, t )

∂t
= −∇ · J(r, t ). (4)

The current J(r, t ) is equal (up to the friction constant) to
the force density and takes into account its internal, exter-
nal, and diffusive ideal gas contribution. The internal force
fint (r, t ) is then assumed, as in equilibrium, to be obtained
by the gradient of the one-body direct correlation function
fint (r, t ) = kBT ∇c1(r, t ), which neglects superadiabatic force
contributions [26]. Evaluation of c1(r, t ) can proceed via
Eq. (2) for the DDFT route and via Eq. (3) in case of the
force-DDFT approach, and differences are expected to occur
for approximate forms of the excess free energy functional.

III. COMPARISON TO SIMULATION RESULTS

A. Equilibrium: Hard sphere fluid at a hard wall

We proceed with a comparison of results from both DFT
routes to simulation data for the standard case of an equilib-
rium hard sphere fluid at a hard wall as previously investigated
by Tschopp et al. [27]. For the DFT treatment of the hard
sphere fluid, these authors resorted to the Rosenfeld [6] funda-
mental measure theory (FMT) functional for modeling Fexc[ρ]
in both standard and force-DFT. As this functional is an ap-
proximation, we showcase in the following the deviation to
numerically exact grand canonical Monte Carlo [30] (GCMC)
data.

Imposing a planar hard wall is a conceptually important
test case for two reasons. First, large density inhomogeneities
are induced in the vicinity of the wall, which reveal deviations
of approximative theories very clearly [10]. Second, for arbi-
trary fluids at a hard wall, the contact theorem

ρ(0+) = βP (5)

establishes a connection of the bulk pressure P of the fluid
to the contact value ρ(0+) of the density profile. This holds
beyond simple fluids as governed by a pair potential because
DFT is formally valid for many-body interparticle interac-
tions. As was shown in Ref. [27], standard and force-DFT can
be associated respectively in this regard to the compressibility
and virial route of liquid integral equation theory [2]. More
precisely, it could be proven [27] that

ρs(0
+) = βPc, (6)

ρ f (0+) = βPv, (7)

where ρs(z) indicates the density profile as obtained from
standard DFT, whereas ρ f (z) is the density profile obtained
with force-DFT as a function of the distance z from the wall.
Equations (6) and (7) can be derived by explicit analytical
calculation and they connect the respective contact densities
(z = 0+) to the compressibility (Pc) and virial (Pv) forms of
the pressure which are well-known bulk results from liquid

TABLE I. The values of the chemical potential μsim for the
GCMC simulations that yield matching bulk densities ρb with the
DFT results (cf. Fig. 1). The reference chemical potentials μc that
were used in the standard DFT calculations (corresponding to the
compressibility route) are listed as well.

ρbσ
3 0.4890 0.6032 0.6908

βμc 3 5 7
βμsim 2.9572 4.8930 6.7983

integral equation theory. The two DFT routes thus make these
differences accessible locally and away from the wall on the
level of the inhomogeneous density profile. As the force-DFT
is inherently tailored to simple fluids that are governed by
pairwise interparticle interactions [recall Eq. (3)], the force-
DFT contact theorem (7) also only holds for simple fluids,
whereas Eq. (6) is general. For details of the respective proofs
we refer the reader to Ref. [27].

In the present case, the Rosenfeld FMT functional repro-
duces by construction the Percus-Yevick bulk fluid results. In
particular, we recall [2] the compressibility equation of state

Pc = ρb

β

1 + η + η2

(1 − η)3
(8)

and the virial equation of state

Pv = ρb

β

1 + 2η + 3η2

(1 − η)2
, (9)

where ρb is the bulk density and η = ρbσ
3π/6 is the packing

fraction. The standard Rosenfeld FMT when evaluated at a
constant density gives a free energy which is consistent with
Pc [7].

In Ref. [27], the comparison was carried out as follows.
First, standard DFT calculations were performed for vari-
ous values of the reduced chemical potential βμ = 3, 5, 7,
which respectively correspond to bulk densities of ρbσ

3 =
0.4890, 0.6032, 0.6908 (cf. Table I). Then, corresponding
force-DFT calculations were carried out, which were set up to
yield identical bulk densities for providing a valid comparison
via Eqs. (6)–(9). As the control parameter of force-DFT is
the mean number of particles 〈N〉, instead of the chemical
potential μ as is the case in standard DFT, the results for 〈N〉
obtained from the standard DFT calculations were taken as
input for the force-DFT. With this protocol, it could be verified
that the contact densities of standard and force-DFT indeed
correspond to the compressibility and virial pressures (8) and
(9), respectively.

For the following investigations via GCMC simulations,
we also want to ensure that the bulk densities match the
ones chosen in the DFT calculations. However, as the Percus-
Yevick result (8) deviates slightly from the true equation of
state, one cannot merely consider a GCMC simulation with
the same value of the chemical potential μ as in the standard
DFT case. Instead, the value of μ has to be adjusted to obtain
the same bulk density as in both DFT routes. For this, we per-
form preliminary simulation runs of the system which yield
the numerically accurate equation of state for the hard sphere
fluid; results are shown in Fig. 1. This numerical equation of
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FIG. 1. The equation of state of the hard sphere fluid is shown
as obtained from the Percus-Yevick approximation both via the com-
pressibility and the virial route as well as from GCMC simulations
(as indicated). Thereby, ρb denotes the bulk density and ρ(0+) = βP
is the contact density at the hard wall, which can be associated with
the bulk pressure P. The upper scales illustrate differences in the
chemical potential with respect to the simulation values μsim that
result from the approximative equations of state via the compress-
ibility (μc) and virial (μv) route (analytical expressions are given
in Appendix). Therefore, to yield a valid comparison of the density
profiles, μ has to be tuned appropriately in the GCMC simulation to
match the considered bulk densities of the standard and force-DFT
results, which is illustrated by the gray vertical lines.

state is interpolated at the desired values for the bulk density,
which then yields the target values of chemical potential for
the actual comparison runs (the numerical values are given in
Table I).

The density profiles from the thus prepared GCMC simu-
lations and their comparison to both standard and force-DFT
results are shown in Fig. 2. It is observed that the deviation
of the contact values at the hard wall indeed reflects the inac-
curacies of the Percus-Yevick equation of state. As expected
from the bulk results shown in Fig. 1, the GCMC density
profile in the vicinity of the wall is enclosed from above and
from below by the two DFT profiles. The standard DFT result
thereby agrees better with the simulation data. At intermediate
separations from the wall, both routes are able to capture the
inhomogeneities of the density profile with quite reasonable
precision. Although the simulated density profile lies within
the two DFT profiles in most parts of the system, there are
also regions where the DFT results do not act as a respective
upper and lower bound of the true local density. This is most
clearly visible for large values of μ [e.g., in Fig. 1(c)] and
close to the first density maximum, where both DFT routes
underestimate the values of ρ(z) locally. The shape of the

first density maximum of a hard sphere fluid at a hard wall
is particularly difficult to reproduce in DFT even when using
more elaborate free energy functionals [10,32,33,51] (we re-
turn to this point below). While providing a means to yield an
additional approximation of ρ(z), force-DFT is not capable to
systematically rectify this deficiency in the considered case of
the hard sphere fluid adsorbed against a planar hard wall.

B. Dynamics: Hard sphere fluid in a switched harmonic trap

Tschopp et al. [27] extended their force-DFT method to
out-of-equilibrium situations by replacing the standard form
of the one-body direct correlation function c1(r) by the force
integral (3) in the DDFT equation of motion. This yields
a dynamical description that is still purely adiabatic, i.e., it
approximates the time evolution of the system as a series of
equilibrium states. Nevertheless, due to the discrepancies of
the two forms of c1(r) for a given approximate Helmholtz
free energy functional, the two routes will in general lead
to different dynamical behavior. This has been exemplified
in Ref. [27] for the model situation of a hard sphere fluid
in a harmonic external potential Vext (z) = A(z − 5σ )2, where
the strength of the harmonic trap is switched from A =
0.75kBT/σ 2 to A = 0.5kBT/σ 2 at the initial time t = 0.

For a precise numerical investigation of the true time
evolution of the system, we employ event-driven Brownian
dynamics (EDBD) simulations [31]. Unlike in the equilibrium
hard wall comparisons, where the bulk densities of the sim-
ulations and the DFT routes were matched to focus solely
on structural differences, we now set the total number of
particles per lateral system area equal to the corresponding
values of the DDFT calculations. Therefore, differences that
arise solely from inaccuracies of the associated equations of
state are expected and will be most prominent at the center
of the trap, where the local density is large. To achieve an
accurate and fast initialization of each EDBD run, a prelimi-
nary canonical Monte Carlo simulation with identical system
parameters is carried out, by which appropriately distributed
particle configurations of the initial equilibrium state are
obtained. In total, 104 EDBD runs are initialized with the
above configurations, and the relaxation dynamics after the
switching of the harmonic trap is simulated for 0 � t/τ � 1
with the Brownian timescale τ = σ 2γ /kBT where γ is the
friction coefficient. The time evolution of the density profile,
attained as an average over all runs, is shown in Fig. 3 for
t/τ = 0, 0.05, 0.1, 0.2, 0.5, 1. Additionally, density profiles
for the initial and for the final equilibrium states as obtained
via canonical Monte Carlo simulations are depicted.

It is apparent that discrepancies which stem from the ap-
proximative form of Fexc[ρ] emerge for the two DDFT routes.
In the considered system, force-DDFT generally yields larger
densities at the center of the harmonic trap. For the initial
and final equilibrium states, standard DFT provides more
accurate results in this region. After toggling the strength
of the harmonic potential, both DDFT methods yield simi-
lar relaxation dynamics towards their respective equilibrium
state. Compared to the simulation results, the density re-
laxation is marginally too fast in both routes, as is visible
especially shortly after switching the potential (cf. Fig. 3,
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FIG. 2. Density profiles ρ(z) of a hard sphere fluid at a planar
hard wall are shown for values ρb = 0.4890σ−3 (a), ρb = 0.6032σ−3

(b), and ρb = 0.6908σ−3 (c) of the bulk density. We compare the
results of standard (orange) and force-DFT (blue) to numerically
exact density profiles from GCMC simulations (gray). For each value
of μ, the absolute error �ρ(z) of the density profiles compared to
the simulation result is shown in the respective bottom panel, and
the inset plot zooms in on the differences of the two DFT routes
close to the hard wall. The simulations were set up to yield the
same bulk density as in the DFT results via an appropriate choice
of the chemical potential (cf. Fig. 1 and Table I) for a systematic
comparison of the resulting contact densities.

t/τ = 0.05, 0.1, 0.2). This is indicative of nonequilibrium
forces that go beyond the adiabatic approximation [26,52] and
that are neither captured in standard nor in force-DDFT.

FIG. 3. Time evolution of the density profile ρ(z) of a hard
sphere fluid in a harmonic external potential Vext (z) = A(z −
5σ )2 after switching its strength from A = 0.75kBT/σ 2 to A =
0.5kBT/σ 2 at time t = 0. The relaxation dynamics calculated with
standard (orange) and force-DDFT (blue) are shown for t/τ =
0, 0.05, 0.1, 0.2, 0.5, 1 and are compared to EDBD simulation re-
sults (gray). The initial and final equilibrium profiles (silver) as
obtained via MC simulations for both values of A are indicated in
each panel for reference.

IV. HYBRID SCHEME

The above comparison of the force-DFT route to stan-
dard DFT and simulations reveals that there is no systematic
improvement in the resulting density profiles neither in
equilibrium (DFT) nor for the dynamical problem (DDFT)
considered. Instead, force-DFT and force-DDFT can be
viewed as an alternative to the standard formalism for calcu-
lating the density profile from a given Helmholtz free energy
functional. If this functional is not exact, as is the case for
the Rosenfeld FMT functional for the hard sphere fluid, the
results of both routes will in general differ, as we have
exemplified above. The comparison also uncovers that the
numerically exact simulation results are commonly bracketed
by standard and force results for the considered hard sphere
fluids.

In this spirit, a systematic improvement of the density
profile both in equilibrium and in the dynamical scenario is
conceivable by an appropriate combination of the two routes,
which constitutes a hybrid implementation of DFT. For this,
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we construct an approximation of the density profile accord-
ing to

ρh ≡ αρs + (1 − α)ρ f , (10)

where the subscripts indicate the results from the hybrid
scheme (h), from the standard DFT (s), and from the force-
DFT ( f ). The interpolation parameter α can be tuned to favor
standard (α = 1) or force-DFT (α = 0).

To arrive at an appropriate choice of α for the considered
hard sphere fluids, we recall the Carnahan-Starling [53] equa-
tion of state

PCS = ρb

β

1 + η + η2 − η3

(1 − η)3
(11)

as a superior alternative to the Percus-Yevick results (8) and
(9). In particular, similar to the combination in Eq. (10),
Eq. (11) can be obtained from the compressibility (PPY

c ) and
virial (PPY

v ) Percus-Yevick equations of state via the linear
combination [2]

PCS = 2
3 PPY

c + 1
3 PPY

v . (12)

Due to Eq. (12) and the connection of standard and force-
DFT to the compressibility and virial pressure [cf. Eqs. (6)
and (7)], we choose α = 2

3 in the following considerations
as a means to obtain improved estimates ρh(r) of the density
profile via Eq. (10).

The result of this combination of both DFT methods is
shown for the hard sphere fluid in equilibrium at the hard wall
in Fig. 4. Note that we do not alter the utilized functional,
as the hybrid density profile is obtained consistently from a
combination of standard and force results (cf. Fig. 2), which
were both acquired with the Rosenfeld functional. The local
error of the hybrid Rosenfeld density profile decreases in large
parts of the system and particularly in the vicinity of the
hard wall as compared to the error of the density profiles
obtained via the individual routes. Hence, hybrid DFT can
be considered as a viable means to improve resulting density
profiles while avoiding the often difficult task of refining
the Helmholtz excess free energy functional. We further ex-
emplify this in Fig. 4 by depicting additionally the density
profiles obtained from standard DFT when using the more
advanced White Bear [32] and White Bear MkII [33] func-
tionals, which serve as a benchmark to a common (and the
current de facto standard) DFT treatment of the hard sphere
fluid. Notably, the hybrid scheme yields similar accuracy as
compared to these results, albeit being obtained with the in-
ferior Rosenfeld approximation for Fexc[ρ]. In the vicinity of
the first density maximum, the hybrid route is still not capa-
ble of mitigating the well-known shortcomings of standard
FMT completely. Surprisingly, however, the density profile
calculated via Eq. (10) match the numerical density profile
equally well as both the White Bear and the White Bear MkII
functionals employed in standard DFT, in particular for small
distances to the hard wall. Close to the first maximum, the
agreement to simulation is even better for the former than
in the standard White Bear and White Bear MkII treatment.
This shows that an appropriate combination of standard and
force-DFT via Eq. (10) to yield a hybrid method is a viable
means to improve deficiencies of an approximate excess free
energy functional, and that its impact on the density profile

FIG. 4. Hybrid DFT density profiles ρ(z) (purple) for a hard
sphere fluid at a hard wall are compared to simulation results as
in Fig. 2 (the standard Rosenfeld DFT is replotted in orange).
In most parts of the system, this combination of standard and
force-DFT via Eq. (10) enables a systematic improvement of the
resulting density profile while retaining the Rosenfeld FMT treat-
ment of Fexc[ρ]. The largest discrepancy to the numerical GCMC
density profiles (gray) still occurs in the vicinity of the first density
maximum. For comparison, standard DFT results for the supe-
rior White Bear (olive) and White Bear MkII (cyan) functionals
are depicted, and an error comparable to hybrid Rosenfeld DFT
is found.
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FIG. 5. Hybrid DDFT density profiles ρ(z) (purple) via Eq. (10)
for the relaxation of a hard sphere fluid in a harmonic potential as
in Fig. 3. The time evolution is again compared to EDBD simulation
results (gray) and the initial and final equilibrium profiles are indi-
cated for reference (silver). As in Fig. 4, the combination procedure
(10) of standard and force-DDFT yields much better results than the
individual routes alone.

may be as significant as when using a superior functional.
A tangible choice of the interpolation parameter in Eq. (10)
may be obtained via known results for bulk fluids, e.g., by
comparison of associated equations of state. While this choice
was made analytically with Eq. (12) for the hard sphere
fluid above, bulk simulation results might provide guidance
to go beyond Carnahan-Starling results or to apply the hybrid
scheme to other particle models.

For the dynamical case, the evolution of ρh(z, t ) in the
switched harmonic potential is shown in Fig. 5. We observe
that the initial state is captured via the hybrid method much
more accurately than by the individual DFT routes. This trend
transfers to the relaxation dynamics, where arguably better
results can be achieved than with standard and force-DDFT
alone. Still, hybrid DDFT remains adiabatic, such that effects
beyond the adiabatic assumption are not incorporated by con-
struction. In the considered case, however, this approximation
turns out to be reasonable, and the resulting density evolution
calculated within DDFT can hence be improved by the combi-
nation procedure (10) as we had shown before for equilibrium
DFT.

V. CONCLUSIONS AND OUTLOOK

In this work, the recent force-DFT method developed
by Tschopp et al. [27] was compared in depth to standard
DFT and simulation results. For this, we have reexamined
the results of Ref. [27] for a hard sphere fluid both in

equilibrium at a hard wall as well as for its relaxation
dynamics in a switched harmonic trap. Numerically exact
many-body simulations have been carried out to enable the
comparison of density profiles from standard and force-DFT
calculations with reference data.

We first turned to the prototypical case of subjecting the
hard sphere fluid to a hard wall, thereby inducing large density
modulations. As shown by Tschopp et al. [27] standard and
force-DFT are connected via the hard wall contact theorems
(6) and (7) to the compressibility and virial expression of the
pressure, respectively, which was exemplified in their work
with the Rosenfeld FMT functional and the corresponding
Percus-Yevick equation of state. Here, we have augmented
this investigation with numerically accurate density profiles
from GCMC simulations, which have been adjusted to repli-
cate the same bulk density as used in both DFT methods. As
expected from the theoretical results of Ref. [27], the numer-
ical contact density is enclosed by the results from standard
and from force-DFT and fits more accurately to the former.
More importantly, however, with the GCMC data being avail-
able, the comparison could be carried out in this work for the
complete inhomogeneous structure of the density profile. For
intermediate distances from the wall, the numerical density
profile shows discrepancies to the results of both DFT routes.
In large parts of the system, the GCMC density profile is
bracketed by standard and force-DFT results. In the vicinity
of the first density maximum, which is difficult to repro-
duce in standard DFT [10], force-DFT yields no systematic
improvement.

We next considered the dynamical relaxation of the hard
sphere fluid in a harmonic potential when its strength is instan-
taneously decreased. In order to complement the force-DDFT
results of Ref. [27] with numerical data, we have employed
EDBD as an accurate dynamical simulation method for hard
sphere fluids under nonequilibrium conditions. Hence, we
have initialized 104 EDBD runs with particle configurations
obtained via canonical MC simulations and have reproduced
the relaxation dynamics after the switching of the harmonic
trap. The total number of particles as given by the integrated
density profile has been matched to the DDFT calculations.
We observed that the inaccuracies of the Rosenfeld FMT
functional transfer to the dynamical case, such that the numer-
ical density profile lies in-between the results of both DDFT
routes. At the center of the trap, force-DDFT overestimates
the local value of the density while standard DDFT yields
values that are slightly too low. As the dynamical description
with force-DDFT is still adiabatic by construction, the relative
relaxation dynamics differs only marginally to that in standard
DDFT.

With the previous observations for both routes in equi-
librium and in the dynamical case, we have investigated
a hybrid method via an appropriate linear interpolation of
standard and force results as was suggested in Ref. [27].
For the hard sphere fluid modeled with the Rosenfeld FMT
functional, an interpolation parameter could be found by con-
sidering the associated Percus-Yevick results (8) and (9) and
their well-known combination (12) to yield the improved
Carnahan-Starling equation of state. We have shown that
the application of an analog combination procedure to stan-
dard and force results yields substantially improved density
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profiles both in equilibrium and in the dynamical scenario. In
equilibrium at the hard wall, we have compared the hybrid
method with the Rosenfeld functional both to GCMC data
and to density profiles calculated with standard DFT when
using the highly accurate White Bear and White Bear MkII
functionals. It was shown that the hybrid Rosenfeld scheme
mitigates many deficiencies of the individual DFT routes. Its
deviations from the GCMC data are comparable to those of the
standard White Bear and White Bear MkII DFT treatments.

In the time-dependent problem, the hybrid implementation
of DDFT captures the relaxation of the hard sphere fluid
much better than standard and force-DDFT alone, which
we attribute to the more accurate reproduction of the equa-
tion of state. Still, the hybrid scheme is purely adiabatic
by construction. This is an acceptable approximation in the
presented case, but will be inappropriate in other dynamical
systems.

In the future, it would be interesting to use more accu-
rate functionals such as White Bear and White Bear MkII
in force-DFT and in the hybrid method. As hybrid Rosenfeld
DFT already significantly improves upon the individual DFT
routes, it is conceivable that a hybrid White Bear (MkII) DFT
will lead to a further systematic gain in the accuracy of the re-
sulting density profiles. Moreover, the method could be useful
in other systems that may consist of different particle types
than the hard sphere fluid, where the derivation of accurate
Helmholtz excess free energy functionals poses an even more
difficult problem. On the other hand, both standard DFT and
force-DFT are equivalent if one can start with the exact free
energy functional. Hence, carrying out explicitly an investi-
gation for the one-dimensional hard core (“hard rod”) system
using Percus’ exact functional [54] as a practical verification
of the formal equivalence of both DFT routes could be a
worthwhile future research task. This could be augmented by
a force-DFT investigation of the two-dimensional hard disk
system, where both highly accurate FMT functionals [55]
as well as highly reliable simulation results [56] have been
reported.

From a conceptual point of view, force-DFT opens up the
possibility to gain further insight into the inner workings of
DFT, especially by making the two-body density correlation
function directly accessible. This could be used, e.g., in an
investigation of the hard sphere pair correlations at the con-
tact shell. Furthermore, one could obtain one-body fluctuation
profiles [57] such as the local compressibility [58,59] from
integrating over the two-body pair correlation function. This
offers an alternative way to access this information besides
the common parametric differentiation of the density pro-
file. Of course, standard DFT also allows to compute the
pair structure via the inhomogeneous OZ equation (see, e.g.,
the work carried out by Dietrich and coworkers [34,37,38]).
We further point out that higher densities than showcased in
this work could be investigated, which becomes a concep-
tually demanding test case when approaching the freezing
transition. Additionally, more advanced hybrid schemes are
conceivable, e.g., by using a local mixing parameter α(r), and
from a theoretical perspective, self-consistency of standard
and force-DFT could be a useful prerequisite in the derivation
of accurate excess free energy functionals. This is especially
interesting from the viewpoint of FMT, where the construction

and choice of appropriate nonlocal measures is an ongoing
research task [60–62]. One could hope that force- and hybrid
DFT shed light on the clearly noticeable deficiencies of FMT
and provide aid in the derivation of improved hard sphere
functionals.

When dynamics are considered, the prospects arising from
the force route are even more promising than in equilibrium.
A fundamental advantage of the force-DDFT formalism is
the possibility to include higher orders in the many-body
hierarchy. Recently, Tschopp and Brader [49] exploited this
idea by considering the dynamics of the two-body density
explicitly via its continuity equation. Applying the adiabatic
approximation only at this higher order then yields a system-
atic extension of standard DDFT that is no longer adiabatic
on the one-body level. Further possibilities to break free of
the inherent restrictions of standard DDFT are discussed in
Ref. [50].
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APPENDIX: CHEMICAL POTENTIAL
FROM THE PERCUS-YEVICK EQUATION OF STATE

We briefly give some classical results and point out
Ref. [64] for an extensive and well-accessible collection of an-
alytical relations for the hard sphere fluid. The Percus-Yevick
equation of state

Pc,v = ρb

β
fc,v (η) (A1)

can be obtained either via the compressibility (subscript c)
or the virial (subscript v) route. The explicit forms of the
functions fc,v (η) are given in Eqs. (8) and (9) in the main text.

We consider the Helmholtz free energy F and insert
Eq. (A1), which yields

F = −
∫

dV P = N

β

∫
dρb

f (η(ρb))
ρb

. (A2)

The chemical potential is then obtained via

μ = ∂F

∂N
= ∂F/V

∂ρb
= 1

β

(
f (η) +

∫
dρb

f (η(ρb))
ρb

)
. (A3)

Thus,

βμc = ln(ρb) + fc(η) + 3

2(1 − η)2
− ln(1 − η) − 5

2
, (A4)

βμv = ln(ρb) + fv (η) + 6η

1 − η
+ 2 ln(1 − η) − 1. (A5)
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Liquid structure carries deep imprints of an inherent thermal invariance against a spatial transformation
of the underlying classical many-body Hamiltonian. At first order in the transformation field Noether’s
theorem yields the local force balance. Three distinct two-body correlation functions emerge at second
order, namely the standard two-body density, the localized force-force correlation function, and the
localized force gradient. An exact Noether sum rule interrelates these correlators. Simulations of Lennard-
Jones, Yukawa, soft-sphere dipolar, Stockmayer, Gay-Berne and Weeks-Chandler-Andersen liquids, of
monatomic water and of a colloidal gel former demonstrate the fundamental role in the characterization of
spatial structure.
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It is a both surprising and intriguing phenomenon that the
liquid phase occurs in the phase diagram at and off
coexistence with the gas or the solid phase. Famously it
has been argued [1,2] that it needs relying on observations
rather than mere theory alone to predict the existence of
liquids, as neither the noninteracting ideal gas nor the
Einstein crystal form appropriate idealized references. The
liquid state [3–6] comprises high spatial symmetry against
global translations and rotations, together with the correlated
and strongly interacting behavior of the dense constituents,
whether they are atoms, molecules, or colloids.
Among the defining features of liquids are the ability to

spontaneously form an interface when at liquid-gas coex-
istence, the viscous response against shearing motion, and
the rich pair correlation structure. While the one-body
density distribution is homogeneous in bulk (in stark contrast
to the microscopic density of a crystal), the joint probability
of finding two particles at a given separation distance r is
highly nontrivial in a liquid. The pair correlation function
gðrÞ [4], as accessible, e.g., via microscopy [7–10] and
scattering [4,11–14] techniques, quantifies this spatial struc-
ture on the particle level. At large distances r, the asymptotic
decay of gðrÞ falls into different classes [15–18] with much
current interest in electrolytes [19]. The spatial Fourier
transform of gðrÞ yields the static structure factor [4,11–14].
It is a common strategy to exploit the symmetries of a

given physical system via Noether’s theorem of invariant
variations [20,21]. From symmetries in the dynamical
description of the system one systematically obtains con-
servation laws. Typically the starting point is the action
functional, as generalized to a variety of statistical mechani-
cal settings [22–30]. In contrast, we have recently applied
Noether’s concept directly to statistical mechanical func-
tionals, such as the free energy [31–34]. This allows us to
exploit a specific thermal invariance property ofHamiltonian
many-body systems against shifting as performed globally
[31–33] or locally resolved in position [34,35].

In this Letter we demonstrate that at the local second-
order level the thermal Noether invariance leads to exact
identities (“sum rules” [4,36–43]) that form a comprehen-
sive statistical two-body correlation framework. We use
simulations to demonstrate the relevance for the inves-
tigation of the structure of simple, beyond-simple, and
gelled liquids.
We consider systems of N classical particles in three

dimensions with positions r1;…; rN ≡ rN and momenta
p1;…;pN ≡ pN . The Hamiltonian consists of kinetic,
interparticle, and external energy contributions,

H ¼
X
i

p2
i

2m
þ uðrNÞ þ

X
i

VextðriÞ; ð1Þ

where the indices i ¼ 1;…; N run over all particles, m
indicates the particle mass, uðrNÞ is the interparticle
interaction potential, and VextðrÞ is a one-body external
potential as a function of position r.
We consider a canonical transformation [44], where

coordinates and momenta change according to the follow-
ing map [35]:

ri → ri þ ϵðriÞ; ð2Þ

pi → ½1þ∇iϵðriÞ�−1 · pi: ð3Þ

Here ϵðrÞ is a spatial “shifting” field that parametrizes the
transform, 1 indicates the 3 × 3-unit matrix, the superscript
−1 of a matrix is its inverse, and ∇i indicates the derivative
with respect to ri, such that ∇iϵðriÞ is a 3 × 3 matrix. The
transformation (2) and (3) preserves both the phase space
volume element and the Hamiltonian [35,44]; its self-
adjoint version is applicable to quantum systems [34].
The form of the vector field ϵðrÞ must be such that the
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transformation between original and new coordinates is
bijective [34].
We consider the shifting field and its gradient to be small

and hence Taylor expand. The coordinate transformation (2)
is already linear in the displacement field and is hence
unaffected. The momentum transformation (3), when
expanded as a geometric (Neumann) series to second
order, is

½1þ∇iϵðriÞ�−1 ¼ 1 −∇iϵðriÞ þ ½∇iϵðriÞ�2 −…; ð4Þ

where the exponents on the right-hand side imply matrix
products such that ½∇iϵðriÞ�2 ¼ ½∇iϵðriÞ� · ½∇iϵðriÞ�, etc.
When expressed in the new variables, the Hamiltonian
acquires a functional dependence on the shifting field, i.e.,
H → H½ϵ�. It is then straightforward to show [34,35] that the
locally resolved one-body force operator F̂ðrÞ follows from
functional differentiation according to

−
δH½ϵ�
δϵðrÞ

����
ϵ¼0

¼ F̂ðrÞ; ð5Þ

where δ=δϵðrÞ indicates the functional derivative with
respect to the shifting field ϵðrÞ. As indicated, ϵðrÞ is set
to zero after the derivative has been taken. Similar to the
structure of the Hamiltonian (1), the one-body force
operator F̂ðrÞ contains kinetic, interparticle, and external
contributions:

F̂ðrÞ ¼ −∇ ·
X
i

pipi

m
δðr − riÞ þ F̂intðrÞ − ρ̂ðrÞ∇VextðrÞ:

ð6Þ

Here δð·Þ indicates the (three-dimensional) Dirac distribu-
tion, F̂intðrÞ¼−

P
iδðr−riÞ∇iuðrNÞ is the interparticle one-

body force operator [45], and ρ̂ðrÞ ¼ P
i δðr − riÞ is the

standard one-body density operator [4,5]. All considerations
so far are general and hold per microstate.
We complement this deterministic description by the

statistical mechanics of the grand ensemble at chemical po-
tential μ and temperature T. The grand potential is Ω ¼
−kBT lnΞ, with the grand partition sum Ξ ¼ Tr e−βðH−μNÞ.
Here kB indicates the Boltzmann constant, β ¼ 1=ðkBTÞ
denotes inverse temperature, and the classical “trace”
operation in the grand ensemble is given by Tr·¼P∞

N¼0ðN!h3NÞ−1R dr1…drN
R
dp1…dpN ·, where h denotes

the Planck constant. The corresponding grand probability
distribution is Ψ ¼ e−βðH−μNÞ=Ξ and thermal averages are
defined via h·i ¼ TrΨ·, as is standard.A primary example of
a thermal average is the density profile being the average of
the one-body density operator, i.e., ρðrÞ ¼ hρ̂ðrÞi.
Via the transformed Hamiltonian H½ϵ�, the grand parti-

tion sum acquires functional dependence on the shifting
field [34,35], i.e., Ξ½ϵ�, and so does the grand potential, i.e.,

Ω½ϵ�. Noether invariance [31,32], however, implies that the
grand potential does not change under the transformation,
and hence

Ω½ϵ� ¼ Ω; ð7Þ
irrespectively of the form of ϵðrÞ. The first functional
derivative of Eq. (7) with respect to the shifting field ϵðrÞ
then yields [34,35] the locally resolved equilibribum force
density balance relation FðrÞ ¼ hF̂ðrÞi ¼ 0 [4,45].
Here we work at the second-order level and hence

consider the second derivative of Eq. (7), which yields

δ2Ω½ϵ�
δϵðrÞδϵðr0Þ

����
ϵ¼0

¼ 0: ð8Þ

Evaluating the functional derivative on the left-hand side
gives

δ2Ω½ϵ�
δϵðrÞδϵðr0Þ ¼ −βcov

�
δH½ϵ�
δϵðrÞ ;

δH½ϵ�
δϵðr0Þ

�
þ
�

δ2H½ϵ�
δϵðrÞδϵðr0Þ

�
;

ð9Þ
where the covariance of two observables (phase space
functions) Â and B̂ is defined in the standard way as
covðÂ; B̂Þ ¼ hÂ B̂i − hÂihB̂i. Rewriting the derivative
δH½ϵ�=δϵðrÞ as the negative force density operator via
Eq. (5), inserting Eq. (9) into Eq. (8), and rearranging gives
the following locally resolved two-body Noether sum rule:

βhF̂ðrÞF̂ðr0Þi ¼
�

δ2H½ϵ�
δϵðrÞδϵðr0Þ

�����
ϵ¼0

: ð10Þ

We have replaced covðF̂ðrÞ;F̂ðr0ÞÞ¼hF̂ðrÞF̂ðr0Þi, because
hF̂ðrÞi ¼ 0 in equilibrium [4,45]. The sum rule (10)
relates the force-force correlations at two different posi-
tions (left-hand side) with the mean curvature of the
Hamiltonian with respect to variation in the shifting field
(right-hand side). That such physically meaningful aver-
ages are related to each other, at all positions r and r0, is
highly nontrivial.
We can bring the fundamental Noether two-body sum

rule (10) into a more convenient form by multiplying by β,
splitting off the trivial kinetic contributions, and introduc-
ing the potential energy force operator F̂UðrÞ, which
combines interparticle and external forces according to
F̂UðrÞ ¼ F̂intðrÞ − ρ̂ðrÞ∇VextðrÞ. Furthermore we focus on
the distinct contributions (subscript “dist”) such that
only pairs of particles with unequal indices are involved
and double sums reduce to

P
ijð≠Þ≡P

N
i¼1

P
N
j¼1;j≠i. This

allows us to identify from Eq. (10) the following exact
distinct two-body Noether identity:

hβF̂UðrÞβF̂Uðr0Þidist ¼ ∇∇0ρ2ðr; r0Þ

þ
�X

ijð≠Þ
δðr − riÞδðr0 − rjÞ∇i∇jβuðrNÞ

�
: ð11Þ
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Here the two-body density is defined as is standard:
ρ2ðr;r0Þ¼ hρ̂ðrÞρ̂ðr0Þidist¼hPijð≠Þδðr−riÞδðr0−rjÞi. The
relationship between the different correlators, as graphi-
cally illustrated in Fig. 1, holds in general inhomogene-
ous situations with no need for specific simplifying
symmetries.
We demonstrate that this framework has profound

implications already for a bulk liquid, where ρðrÞ ¼ ρb ¼
const and VextðrÞ ¼ 0, such that F̂UðrÞ ¼ F̂intðrÞ. In view
of the form of the distinct sum rule (11), we use the pair
correlation function gðjr − r0jÞ ¼ ρ2ðr; r0Þ=ρ2b, and intro-
duce both the force-force pair correlation function
gffðjr − r0jÞ ¼ β2hF̂intðrÞF̂intðr0Þidist=ρ2b, and the force gra-
dient correlator g∇fðjr−r0jÞ¼−hPijð≠Þδðr−riÞδðr0−rjÞ
∇i∇jβuðrNÞi=ρ2b, which is also the negative mean po-
tential curvature. The identity (11) can then be written
succinctly as

∇∇gðrÞ þ g∇fðrÞ þ gffðrÞ ¼ 0; ð12Þ

where r ¼ jr − r0j denotes the separation distance
between the two positions. Both gffðrÞ and g∇fðrÞ
have tensor rank two, i.e., they are 3 × 3 matrices.
Given the central role that gðrÞ plays in the theory of
liquids [4], Eq. (12) is highly remarkable as it allows us
to express gðrÞ via spatial integration of two seemingly
entirely different (force-gradient and force-force) cor-
relators. Because of the rotational symmetry of the
bulk liquid, the only nontrivial tensor components are

parallel (k) and transversal (⊥) to r − r0, such that
Eq. (12) reduces to

g00ðrÞ þ g∇fkðrÞ þ gffkðrÞ ¼ 0; ð13Þ

g0ðrÞ=rþ g∇f⊥ðrÞ þ gff⊥ðrÞ ¼ 0; ð14Þ

with the prime(s) denoting the derivative(s) with respect
to r. In the chosen coordinate system the matrices are
diagonal, diagðk;⊥;⊥Þ, with the first axis being parallel
to r − r0. For molecular liquids of particles with orienta-
tional degrees of freedom [4,46–48] our theory, includ-
ing Eqs. (13) and (14), remains valid upon equilibrium
orientational averaging.
For simple fluids, where the particles interact mutually

only via a pair potential ϕðrÞ, the force gradient correlator
reduces to g∇fðrÞ ¼ βgðrÞ∇∇ϕðrÞ such that

g∇fkðrÞ¼ βgðrÞϕ00ðrÞ; g∇f⊥ðrÞ¼ βgðrÞϕ0ðrÞ=r: ð15Þ

This simplification is due to the reduction of the mi-
xed derivative ∇i∇juðrNÞ ¼ ∇i∇j

P
klð≠Þ ϕðjrk − rljÞ=2 ¼

∇i∇jϕðjri − rjjÞ, for i ≠ j. This allows us to rewrite the
curvature correlator in Eqs. (13) and (14), which attain
the form g00ðrÞ þ βϕ00ðrÞgðrÞ þ gffkðrÞ ¼ 0 and g0ðrÞ=rþ
βϕ0ðrÞgðrÞ=rþ gff⊥ðrÞ ¼ 0. In the gas phase the validity
can be analytically verified on the second virial level, where
gðrÞ ¼ exp½−βϕðrÞ� and the force-force correlations are
due to the antiparallel direct forces between a particle pair:
gffkðrÞ ¼ −gðrÞ½βϕ0ðrÞ�2. Furthermore gff⊥ðrÞ ¼ 0 due to
the absence of a third particle at ρb → 0 that could mediate
a transversal force.
We substantiate this Noether correlation framework with

computer simulations using adaptive Brownian dynamics
[49], which is an algorithm that is both fast and allows for
tight control of force evaluation errors. We first investigate
the Lennard-Jones (LJ) liquid, the purely repulsive Weeks-
Chandler-Andersen (WCA) liquid, monatomic water
[50,51], and a three-body colloidal gel former [52,53].
The results are summarized in Fig. 2; the top line gives the
respective values of T and ρb ¼ N=V with box volume
V ¼ ð10σÞ3; the LJ potential is truncated at r=σ ¼ 2.5 with
σ denoting the respective particle size. We first discuss the
two simple liquids. Both the LJ and the WCA liquid feature
pair correlation functions gðrÞ that display the familiar
strongly structured, damped oscillatory form [4,15,16],
with a prominent first peak indicating a nearest neighbor
correlation shell and subsequent, increasingly washed out
oscillations at larger distances. In stark contrast, both the
force-gradient (potential curvature) correlator g∇fðrÞ and
the force-force correlator gffðrÞ have very different forms
than gðrÞ itself. The curvature correlator has very strongly
localized positive (k) and negative (⊥) peaks near r ¼ σ.
This feature is due to the strong first peak of gðrÞ combined

i
j

k

FIG. 1. Illustration of the three different correlation functions
that are constrained by thermal Noether invariance. The particles
(spheres) exert forces (arrows) onto each other. Particles i and j
interact directly with each other (black arrows). The total force
(white arrow) on each particle is also determined by the forces
that all other particles k; k0; k00 exert (pink arrows). The force-
force correlations are balanced by the potential energy curvature
∇i∇jβuðrNÞ (orange surface) and by the two-body density
Hessian ∇∇0ρ2ðr; r0Þ (black curve).
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with the properties of ϕ0ðrÞ and ϕ00ðrÞ, as is evident via
Eq. (15), which we find to be satisfied to high numerical
accuracy. Our results confirm the expectation [16] that gðrÞ
is hardly affected by interparticle attraction. In contrast the
force gradient g∇f⊥ðrÞ has a clear and significant peak in
the attractive region of the LJ potential with no such feature
occurring in the purely repulsive WCA liquid.
The force-force correlator gffðrÞ has a similar first peak

structure as the curvature correlator, but oscillations extend
much further out to larger distances r. Hence gffðrÞ
captures also the indirect interactions that are mediated
by surrounding particles; we recall Fig. 1. The strong
negative double peak of the parallel component indicates

anti-correlated force orientations, which reflect the direct
interactions between pairs of particles. Both tensor com-
ponents of gffðrÞ satisfy the Noether sum rules (13) and
(14) to excellent numerical accuracy.
To go beyond simple liquids, we first turn to the

monatomic water model by Molinero and Moore [50],
which includes three-body interparticle interactions in
uðrNÞ that generate the tetrahedral coordination of liquid
water. The monatomic water model gives a surprisingly
accurate description of the properties of real water, see
Ref. [51] for very recent work, while the particles remain
spherical and there is no necessity to explicitly invoke
molecular orientational degrees of freedom. Hence our

FIG. 2. Simulation results for the two-body correlation functions of the Lennard-Jones liquid (first column), the WCA liquid (second
column), monatomic water (third column), and the three-body gel (fourth column). Results are shown as a function of the scaled
interparticle distance r=σ, S is a vertical scale factor given in the upper left corner of each panel, and ε denotes the energy scale of the
respective model fluid. Shown is the pair correlation function gðrÞ (top row), the potential curvature correlator g∇fðrÞ (middle row) and
the force-force correlator gffðrÞ (bottom row); the latter two correlators have a transversal (⊥) and a parallel (k) tensor component. The
results for g∇fðrÞ for the LJ and WCA liquids are numerically identical to those from the analytical expressions (15) (dashed lines). The
directly sampled results for gffðrÞ are numerically identical to those obtained from the Noether sum rules (13) and (14) (dashed lines)
for all four systems. Vertical gray lines indicate the position of the first maximum of gðrÞ as a guide to the eye.

PHYSICAL REVIEW LETTERS 130, 268203 (2023)

268203-4

6 Publications

98



framework (13) and (14) applies. The third column of Fig. 2
demonstrates at ambient conditions that while the shape of
gðrÞ is similar to that in the LJ liquid, both the potential
energy curvature and the force-force correlator differ
markedly from those of the LJ model. Notably the shape
of the double negative peak of gffkðrÞ differs and the sign
of gff⊥ðrÞ does not turn negative for distances towards the
second shell, as is the case in the LJ liquid. Consistently, the
magnitude of the k component is much larger than the ⊥
component, as direct interparticle interactions are promi-
nent in the former, whereas mediation by third particles is
required for the latter.
The three-body gel former by Kob and coworkers

[52,53] alters the preferred angle of the three-body inter-
action term from tetrahedral to stretched (we use
180 degrees [54]). This change induces an affinity for
the formation of chains while retaining an ability for their
branching and thus the model forms networks in equilib-
rium. The results shown in the fourth column of Fig. 2
indicate markedly different behavior as compared to the
above liquids. While gðrÞ has the generic long-range decay
that one expects of network-forming systems, both the
curvature and the force-force correlator are much more
specific indicators. In particular we attribute the striking
shape of the transversal (⊥) tensor component to the
network connectivity. Again the sum rules are satisfied
to very good numerical accuracy which we take (i) as a
demonstration that the gel state is indeed equilibrated,
which distinguishes this model [52,53] from genuine
nonequilibrium gel formers, and (ii) as a confirmation of
the fitness of the Noether correlators to systematically
quantify complex spatial structure formation. This holds
beyond the presented model fluids; see the Supplemental
Material [55] for results for screened long-ranged inter-
particle forces of Yukawa type, as well as for dipolar
[56–60], Stockmayer [60], and (isotropic and nematic)
Gay-Berne fluids [60–62]. For the LJ model, we also
contrast the behaviour in the liquid against both the gas and
the crystal, where the identities (13) and (14) remain valid
[55]. Our equilibrium theory requires proper thermal
averaging for the presented identities to hold. A trivial
counterexample is a precipitous temperature quench where
the distribution of microstates remains instantaneously
intact, but β has acquired a new value. Then the sum rule
(12) is immediately violated, due to the respective scaling
of the correlators ∇∇gðrÞ, g∇fðrÞ, and gffðrÞ with powers
β0, β1, and β2.
In conclusion, we have formulated and tested a system-

atic two-body correlation framework based on invariance
against an intrinsic symmetry of thermal many-body
systems. Formal similarities exist with sum rules for
interfacial Hamiltonians [63], as used for studies of wetting
[64], and with Takahashi-Ward identities [65,66] of quan-
tum field theory. Future work could relate to the effective
temperature [67], to one-dimensional systems [68–70], the

structure of crystals [71–73], gels [52,53,74], glasses
[75–77], and the hexatic phase [78], to force-sampling
simulation techniques [79–81], and to force-based classical
[35,82] and quantum density functional theory [83,84].
Testing sum rules in charged systems is valuable, but can be
technically subtle [85]. Connections to three-point [77] and
four-point [86,87] correlation functions are interesting, as
for a simple fluid gffðrÞ is given via two position integrals
over the four-body density. We have checked that for
molecular liquids the general force correlation sum rules
(10) and (11) remain valid upon supplementing the
dependence on positions r; r0 with dependence on the
molecular orientational degrees of freedom; an analogous
structure holds for mixtures of different components.
Deriving torque correlation sum rules requires using a
local version of the Noether rotational invariance [31].
A particularly exciting prospect is to apply the general

identity (11) to the study of interfacial phenomena
[38–41,43,51], where the connections with the existing
body of sum rules [4,36–43] and the constraints that follow
on the allowed correlation function structure at complete
drying [88–90] and wetting transitions are worth exploring.
Besides measurements of gðrÞ [7–13], position-resolved
forces have recently become accessible by direct imaging
in colloidal systems [91], which can facilitate experimental
investigations of Noether correlators.
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Banerjee, Liesbeth Janssen, and Marjolein Dijkstra for
useful discussions. This work was supported by the
German Research Foundation (DFG) via Project
No. 436306241.

*Matthias.Schmidt@uni-bayreuth.de
[1] V. F. Weisskopf, About liquids, Trans. N.Y. Acad. Sci. 38,

202 (1977).
[2] R. Evans, D. Frenkel, and M. Dijkstra, From simple liquids

to colloids and soft matter, Phys. Today No. 2, 72, 38
(2019).

[3] J. A. Barker and D. Henderson, What is “liquid”? Under-
standing the states of matter, Rev. Mod. Phys. 48, 587
(1976).

[4] J. P. Hansen and I. R. McDonald, Theory of Simple Liquids,
4th ed. (Academic Press, London, 2013).

[5] R. Evans, The nature of the liquid-vapour interface and
other topics in the statistical mechanics of non-uniform,
classical fluids, Adv. Phys. 28, 143 (1979).

[6] R. Evans, M. Oettel, R. Roth, and G. Kahl, New develop-
ments in classical density functional theory, J. Phys.
Condens. Matter 28, 240401 (2016).

[7] C. P. Royall, A. A. Louis, and H. Tanaka, Measuring
colloidal interactions with confocal microscopy, J. Chem.
Phys. 127, 044507 (2007).

[8] A. L. Thorneywork, R. Roth, D. G. A. L. Aarts, and R. P. A.
Dullens, Communication: Radial distribution functions in a

PHYSICAL REVIEW LETTERS 130, 268203 (2023)

268203-5

6.6 “Noether-constrained correlations in equilibrium liquids”

99



two-dimensional binary colloidal hard sphere system,
J. Chem. Phys. 140, 161106 (2014).

[9] A. Statt, R. Pinchaipat, F. Turci, R. Evans, and C. P. Royall,
Direct observation in 3d of structural crossover in binary
hard sphere mixtures, J. Chem. Phys. 144, 144506 (2016).

[10] A. Ramirez-Saito, C. Bechinger, and J. L. Arauz-Lara,
Optical microscopy measurement of pair correlation func-
tions, Phys. Rev. E 74, 030401(R) (2006).

[11] J. L. Yarnell, M. J. Katz, R. G. Wenzel, and S. H. Koenig,
Structure factor and radial distribution function for liquid
argon at 85K, Phys. Rev. A 7, 2130 (1973).

[12] P. S. Salmon, Decay of the pair correlations and small-angle
scattering for binary liquids and glasses, J. Phys. Condens.
Matter 18, 11443 (2006).

[13] F. S. Carvalho and J. P. Braga, Partial radial distribution
functions for a two-component glassy solid, GeSe, from
scattering experimental data using an artificial intelligence
framework, J. Mol. Model. 28, 99 (2022).

[14] J. C. Dyre, Simple liquids’ quasiuniversality and the hard-
sphere paradigm, J. Phys. Condens. Matter 28, 323001
(2016).

[15] R. Evans, J. R. Henderson, D. C. Hoyle, A. O. Parry, and
Z. A. Sabeur, Asymptotic decay of liquid structure: Oscil-
latory liquid-vapour density profiles and the Fisher-Widom
line, Mol. Phys. 80, 755 (1993).

[16] R. Evans, R. J. F. Leote de Carvalho, J. R. Henderson, and
D. C. Hoyle, Asymptotic decay of correlations in liquids and
their mixtures, J. Chem. Phys. 100, 591 (1994).

[17] M. Dijkstra and R. Evans, A simulation study of the decay
of the pair correlation function in simple fluids, J. Chem.
Phys. 112, 1449 (2000).

[18] C. Grodon, M. Dijkstra, R. Evans, and R. Roth, Decay of
correlation functions in hard-sphere mixtures: Structural
crossover, J. Chem. Phys. 121, 7869 (2004).

[19] P. Cats, R. Evans, A. Härtel, and R. van Roij, Primitive
model electrolytes in the near and far field: Decay lengths
from DFT and simulations, J. Chem. Phys. 154, 124504
(2021).

[20] E. Noether, Invariante Variationsprobleme, Gott. Nachr.
1918, 235 (1918), https://eudml.org/doc/59024; [M. A.
Tavel: Invariant variation problems., Transp. Theory Stat.
Phys. 1, 186 (1971)]; For a version in modern typesetting
see: Frank Y. Wang, arXiv:physics/0503066v3.

[21] N. Byers, E. Noether’s discovery of the deep connection
between symmetries and conservation laws, arXiv:physics/
9807044 (1998).

[22] A. G. Lezcano and A. C. M. de Oca, A stochastic version of
the Noether theorem, Found. Phys. 48, 726 (2018).

[23] J. C. Baez and B. Fong, A Noether theorem for Markov
processes, J. Math. Phys. (N.Y.) 54, 013301 (2013).

[24] I. Marvian and R.W. Spekkens, Extending Noether’s
theorem by quantifying the asymmetry of quantum states,
Nat. Commun. 5, 3821 (2014).

[25] S. Sasa and Y. Yokokura, Thermodynamic Entropy as a
Noether Invariant, Phys. Rev. Lett. 116, 140601 (2016).

[26] S. Sasa, S. Sugiura, and Y. Yokokura, Thermodynamical
path integral and emergent symmetry, Phys. Rev. E 99,
022109 (2019).

[27] Y. Minami and S. Sasa, Thermodynamic entropy as a
Noether invariant in a Langevin equation, J. Stat. Mech.
(2020) 013213.

[28] M. Revzen, Functional integrals in statistical physics, Am. J.
Phys. 38, 611 (1970).

[29] Y. A. Budkov and A. L. Kolesnikov, Modified Poisson-
Boltzmann equations and macroscopic forces in inhomo-
geneous ionic fluids, J. Stat. Mech. (2022) 053205.

[30] P. E. Brandyshev and Y. A. Budkov, Noether’s second
theorem and covariant field theory of mechanical stresses
in inhomogeneous ionic fluids, J. Chem. Phys. 158, 174114
(2023).

[31] S. Hermann and M. Schmidt, Noether’s theorem in stat-
istical mechanics, Commun. Phys. 4, 176 (2021).

[32] S. Hermann and M. Schmidt, Why Noether’s theorem
applies to statistical mechanics, J. Phys. Condens. Matter
34, 213001 (2022) (Topical Review).

[33] S. Hermann and M. Schmidt, Variance of fluctuations from
Noether invariance, Commun. Phys. 5, 276 (2022).

[34] S. Hermann and M. Schmidt, Force balance in thermal
quantum many-body systems from Noether’s theorem,
J. Phys. A 55, 464003 (2022).

[35] S. M. Tschopp, F. Sammüller, S. Hermann, M. Schmidt, and
J. M. Brader, Force density functional theory in- and out-of-
equilibrium, Phys. Rev. E 106, 014115 (2022).

[36] J. R. Henderson, Statistical mechanical sum rules, in
Fundamentals of Inhomogeneous Fluids, edited by D.
Henderson (Dekker, New York, 1992).

[37] R. Evans, Density functionals in the theory of non-uniform
fluids, in Fundamentals of Inhomogeneous Fluids, edited by
D. Henderson (Dekker, New York, 1992).

[38] P. J. Upton, Fluids Against Hard Walls and Surface Critical
Behavior, Phys. Rev. Lett. 81, 2300 (1998).

[39] R. Evans and A. O. Parry, Liquids at interfaces: What can a
theorist contribute?, J. Phys. Condens. Matter 2, SA15
(1990).

[40] J. R. Henderson and F. van Swol, On the interface between a
fluid and a planar wall: Theory and simulations of a hard
sphere fluid at a hard wall, Mol. Phys. 51, 991 (1984).

[41] J. R. Henderson and F. van Swol, On the approach to
complete wetting by gas at a liquid-wall interface, Mol.
Phys. 56, 1313 (1985).

[42] J. O. Hirschfelder, Classical and quantum mechanical hy-
pervirial theorems, J. Chem. Phys. 33, 1462 (1960).

[43] D. G. Triezenberg and R. Zwanzig, Fluctuation Theory of
Surface Tension, Phys. Rev. Lett. 28, 1183 (1972).

[44] H. Goldstein, C. Poole, and J. Safko, Classical Mechanics
(Addison-Wesley, New York, 2002). Our generator G is
given as F2 in their notation.

[45] M. Schmidt, Power functional theory for many-body dy-
namics, Rev. Mod. Phys. 94, 015007 (2022).

[46] S. Zhao, R. Ramirez, R. Vuilleumier, and D. Borgis,
Molecular density functional theory of solvation: From
polar solvents to water, J. Chem. Phys. 134, 194102 (2011).

[47] G. Jeanmairet, M. Levesque, R. Vuilleumier, and D. Borgis,
Molecular density functional theory of water, J. Phys.
Chem. Lett. 4, 619 (2013).

[48] S. Luukkonen, M. Levesque, L. Belloni, and D. Borgis,
Hydration free energies and solvation structures with
molecular density functional theory in the hypernetted chain
approximation, J. Chem. Phys. 152, 064110 (2020).

[49] F. Sammüller and M. Schmidt, Adaptive Brownian dynam-
ics, J. Chem. Phys. 155, 134107 (2021).

PHYSICAL REVIEW LETTERS 130, 268203 (2023)

268203-6

6 Publications

100



[50] V. Molinero and E. B. Moore, Water modeled as an
intermediate element between carbon and silicon, J. Phys.
Chem. B 113, 4008 (2009).

[51] M. K. Coe, R. Evans, and N. B. Wilding, The coexistence
curve and surface tension of a monatomic water model,
J. Chem. Phys. 156, 154505 (2022).

[52] S. Saw, N. L. Ellegaard, W. Kob, and S. Sastry, Structural
Relaxation of a Gel Modeled by Three Body Interactions,
Phys. Rev. Lett. 103, 248305 (2009).

[53] S. Saw, N. L. Ellegaard, W. Kob, and S. Sastry, Computer
simulation study of the phase behavior and structural
relaxation in a gel-former modeled by three-body inter-
actions, J. Chem. Phys. 134, 164506 (2011).

[54] F. Sammüller, D. der las Heras, and M. Schmidt, Inhomo-
geneous steady shear dynamics of a three-body colloidal gel
former, J. Chem. Phys. 158, 054908 (2023).

[55] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.130.268203 for simula-
tion results of the Noether correlation functions for the
Yukawa, soft-sphere dipolar, Stockmayer, and Gay-Berne
models (Fig. 3), as well as for the gas, liquid, and crystal
phase of the Lennard-Jones model (Fig. 4).

[56] P. I. C. Teixeira, J. M. Tavares, and M.M. Telo da Gama,
Review article: The effect of dipolar forces on the structure
and thermodynamics of classical fluids, J. Phys. Condens.
Matter 12, R411 (2000).

[57] S. H. L. Klapp, Topical review: Dipolar fluids under external
perturbations, J. Phys. Condens. Matter 17, R525 (2005).

[58] M. J. Stevens and G. S. Grest, Structure of soft-sphere
dipolar fluids, Phys. Rev. E 51, 5962 (1995).

[59] J. M. Tavares, J. J. Weis, and M.M. Telo da Gama, Strongly
dipolar fluids at low densities compared to living polymers,
Phys. Rev. E 59, 4388 (1999).

[60] M. P. Allen, Topical review: Molecular simulation of liquid
crystals, Mol. Phys. 117, 2391 (2019).

[61] J. G. Gay and B. J. Berne, Modification of the overlap
potential to mimic a linear site-site potential, J. Chem. Phys.
74, 3316 (1981).

[62] J. T. Brown, M. P. Allen, E. Martín del Río, and E. de
Miguel, Effects of elongation on the phase behavior of the
Gay-Berne fluid, Phys. Rev. E 57, 6685 (1998).

[63] L. V. Mikhheev and J. D. Weeks, Sum rules for interface
Hamiltonians, Physica (Amsterdam) 177A, 495 (1991).

[64] A. Squarcini, J. M. Romero-Enrique, and A. O. Parry,
Casimir Contribution to the Interfacial Hamiltonian for
3D Wetting, Phys. Rev. Lett. 128, 195701 (2022).

[65] J. C. Ward, An identity in quantum electrodynamics, Phys.
Rev. 78, 182 (1950).

[66] Y. Takahashi, On the generalized Ward identity, Nuovo
Cimento 6, 371 (1957).

[67] S. Saw, L. Costigliola, and J. C. Dyre, Configurational
temperature in active-matter models. I. Lines of invariant
physics in the phase diagram of the Ornstein-Uhlenbeck
model, Phys. Rev. E 107, 024609 (2023).

[68] C. W. J. Beenakker, Pair correlation function of the
one-dimensional Riesz gas, Phys. Rev. Res. 5, 013152
(2023).

[69] A. Flack, S. N. Majumdar, and G. Schehr, An exact formula
for the variance of linear statistics in the one-dimensional
jellium model, J. Phys. A 56, 105002 (2023).

[70] A. M. Montero and A. Santos, Triangle-well and ramp
interactions in one-dimensional fluids: A fully analytic
exact solution, J. Stat. Phys. 175, 269 (2019).

[71] C. Walz and M. Fuchs, Displacement field and elastic
constants in nonideal crystals, Phys. Rev. B 81, 134110
(2010).

[72] J. M. Häring, C. Walz, G. Szamel, and M. Fuchs, Coarse-
grained density and compressibility of nonideal crystals:
General theory and an application to cluster crystals, Phys.
Rev. B 92, 184103 (2015).

[73] S.-C. Lin, M. Oettel, J. M. Häring, R. Haussmann, M. Fuchs,
and G. Kahl, Direct Correlation Function of a Crystalline
Solid, Phys. Rev. Lett. 127, 085501 (2021).

[74] B. A. Lindquist, R. B. Jadrich, D. J. Milliron, and T.M.
Truskett, On the formation of equilibrium gels via a macro-
scopic bond limitation, J. Chem. Phys. 145, 074906 (2016).

[75] M. K. Nandi, A. Banerjee, C. Dasgupta, and S. M.
Bhattacharyya, Role of the Pair Correlation Function in
the Dynamical Transition Predicted by Mode Coupling
Theory, Phys. Rev. Lett. 119, 265502 (2017).

[76] L. M. C. Janssen, Mode-coupling theory of the glass tran-
sition: A primer, Front. Phys. 6, 97 (2018).

[77] C. Luo, J. F. Robinson, I. Pihlajamaa, V. E. Debets, C. P.
Royall, and L. M. C. Janssen, Many-Body Correlations are
Non-Negligible in Both Fragile and Strong Glassformers,
Phys. Rev. Lett. 129, 145501 (2022).

[78] E. P. Bernard and W. Krauth, Two-Step Melting in Two
Dimensions: First-Order Liquid-Hexatic Transition, Phys.
Rev. Lett. 107, 155704 (2011).

[79] B. Rotenberg, Use the force! Reduced variance estimators for
densities, radial distribution functions, and local mobilities in
molecular simulations, J. Chem. Phys. 153, 150902 (2020).

[80] D. de las Heras and M. Schmidt, Better than Counting:
Density Profiles from Force Sampling, Phys. Rev. Lett. 120,
218001 (2018).

[81] D. Borgis, R. Assaraf, B. Rotenberg, and R. Vuilleumier,
Computation of pair distribution functions and three-
dimensional densities with a reduced variance principle,
Mol. Phys. 111, 3486 (2013).

[82] F. Sammüller, S. Hermann, and M. Schmidt, Comparative
study of force-based classical density functional theory,
Phys. Rev. E 107, 034109 (2023).

[83] C. A. Ullrich and I. V. Tokatly, Nonadiabatic electron
dynamics in time-dependent density-functional theory,
Phys. Rev. B 73, 235102 (2006).

[84] M.M. Tchenkoue, M. Penz, I. Theophilou, M.
Ruggenthaler, and A. Rubio, Force balance approach for
advanced approximations in density functional theories,
J. Chem. Phys. 151, 154107 (2019).

[85] J. M. Falcón-González, C. Contreras-Aburto, M. Lara-Peña,
M. Heinen, C. Avendaño, A. Gil-Villegas, and R.
Castañeda-Priego, Assessment of the Wolf method using
the Stillinger-Lovett sum rules: From strong electrolytes to
weakly charged colloidal dispersions, J. Chem. Phys. 153,
234901 (2020).

[86] Z. Zhang and W. Kob, Revealing the three-dimensional
structure of liquids using four-point correlation functions,
Proc. Natl. Acad. Sci. U.S.A. 117, 14032 (2020).

[87] N. Singh, Z. Zhang, A. K. Sood, W. Kob, and R.
Ganapathy, Intermediate-range order governs dynamics

PHYSICAL REVIEW LETTERS 130, 268203 (2023)

268203-7

6.6 “Noether-constrained correlations in equilibrium liquids”

101



in dense colloidal liquids, Proc. Natl. Acad. Sci. U.S.A.
120, e2300923120 (2023).

[88] R. Evans, M. C. Stewart, and N. B. Wilding, A unified
description of hydrophilic and superhydrophobic surfaces in
terms of the wetting and drying transitions of liquids, Proc.
Natl. Acad. Sci. U.S.A. 116, 23901 (2019).

[89] M. K. Coe, R. Evans, and N. B. Wilding, Density Depletion
and Enhanced Fluctuations in Water Near Hydrophobic

Solutes: Identifying the Underlying Physics, Phys. Rev.
Lett. 128, 045501 (2022).

[90] M. K. Coe, R. Evans, and N. B. Wilding, Understanding the
physics of hydrophobic solvation, J. Chem. Phys. 158,
034508 (2023).

[91] J. Dong, F. Turci, R. L. Jack, M. A. Faers, and C. P. Royall,
Direct imaging of contacts and forces in colloidal gels,
J. Chem. Phys. 156, 214907 (2022).

PHYSICAL REVIEW LETTERS 130, 268203 (2023)

268203-8

6 Publications

102



1

Supplementary Information
Noether-Constrained Correlations in Equilibrium Liquids

Florian Sammüller, Sophie Hermann, Daniel de las Heras, and Matthias Schmidt
Theoretische Physik II, Physikalisches Institut, Universität Bayreuth, D-95447 Bayreuth, Germany
(Dated: 7 June 2023, www.mschmidt.uni-bayreuth.de)

0

S
2

S
S = 2

Yukawa
ρb = 0.085σ−3, kBT = 0.0125ε

S = 2.5

Soft-sphere dipolar
ρb = 0.1σ−3, kBT = 1ε

S = 3.5

Stockmayer
ρb = 0.1σ−3, kBT = 2ε

S = 2

Gay-Berne (isotropic)
ρb = 0.16σ−3, kBT = 2ε

S = 2

Gay-Berne (nematic)
ρb = 0.25σ−3, kBT = 2ε

g

−S

−S
2

0

S
2

S

σ
−

2

S = 30
S = 5

S = 550
S = 25

S = 1000
S = 25

S = 450
S = 35

S = 450
S = 35

g∇f‖

g∇f⊥

1 2 3 4 5 6

r/σ

−S

−S
2

0

S
2

S

σ
−

2

S = 30
S = 5

1 2

r/σ

S = 550
S = 25

1 2

r/σ

S = 1000
S = 25

1 2 3 4

r/σ

S = 450
S = 35

1 2 3 4

r/σ

S = 450
S = 35

gff‖

−g′′ − g∇f‖
gff⊥

−g′/r − g∇f⊥

FIG. 3: Correlation functions analogous to Fig. 2 of the main text, but for the Yukawa liquid (first column), the soft-sphere
dipolar fluid (second column), the Stockmayer fluid (third column), and the Gay-Berne model in the isotropic (fourth column)
and nematic phase (fifth column). The results for the anisotropic models are obtained from canonical Monte Carlo simulations,
and they are averaged over the microscopic orientations; the simulation box volume is V = (20σ)3 and the long-ranged
interactions are cut off at radial distance 10σ. Shown are results for the pair correlation function g(r) (first row) and for the
radial (∥) and transversal (⊥) components of the two-body force-gradient correlator g∇f (r) (second row) and the force-force
pair correlator gff (r) (third row). The respective vertical scale factor S is given in the top left corner of each panel and the
scaled values for bulk density ρb and temperature T are indicated for each model fluid above the respective column. The results
for the Yukawa liquid with inverse screening parameter κ = 2/σ are qualitatively similar to those of the WCA liquid (second

column Fig. 2 of the main text) but here with much longer-ranged decay behaviour. For identical dipolar strength µ/
√
ϵσ3 = 2

the results for g∇f⊥(r) for both the soft-sphere dipolar fluid [58] and the Stockmayer fluid show strong signatures of chain
formation, similar to the behaviour of the three-body gel former (fourth column of Fig. 2 of the main text). The Gay-Berne
model (with parameters κ = 3.8, κ′ = 5 [62] features positive-valued g∇f⊥(r), which contrasts the behaviour of all other models
and which we take to indicate interlocked arrangements of neighboring anisotropic molecules.
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FIG. 4: Comparison of correlation functions for the LJ system in the fcc crystal phase (first colunm), the liquid (second column),
and the gas phase (third column). Shown are the pair correlation function g(r) (top row), the force-gradient correlator g∇f (r)
(middle row), and the force-force correlator gff (r) (bottom row). The plot style is analogous to Fig. 2 of the main text and to
Fig. 3 of this SI. While the results for the gas and for the liquid carry the full structural two-body information, the correlators
for the crystal are resolved only as a function of the radial distance r. This representation constitutes an average over global
translations and rotations of the general inhomogeneous Noether sum rule, see Eq. (11) of the main text with |r−r′| kept fixed.
The reduced Noether identities (13) and (14) continue to hold in this averaged sense, as is demonstrated by the data collapse
in the lower left panel. This perfect agreement serves as an indirect indication of the validity of the more general Eq. (11),
which is applicable in the full inhomogeneous geometry.
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Noether invariance in statistical mechanics provides fundamental connections between the
symmetries of a physical system and its conservation laws and sum rules. The latter are exact
identities that involve statistically averaged forces and force correlations and they are derived from
statistical mechanical functionals. However, the implications for more general observables and order
parameters are unclear. Here, we demonstrate that thermally averaged classical phase space
functions are associated with exact hyperforce sum rules that follow from translational Noether
invariance. Both global and locally resolved identities hold and they relate the mean gradient of a
phase-space function to its negative mean product with the total force. Similar to Hirschfelder’s
hypervirial theorem, the hyperforce sum rules apply to arbitrary observables in equilibrium. Exact
hierarchies of higher-order sum rules follow iteratively. As applications we investigate via computer
simulations the emerging one-body force fluctuation profiles in confined liquids. These local
correlators quantify spatially inhomogeneous self-organization and their measurement allows for the
development of stringent convergence tests and enhanced sampling schemes in complex systems.

The task of predicting thermal averages of phase space functions lies at the
center of attention in Statistical Mechanics. Prominent examples include
correlation functions and order parameters, but also global quantities such
as internal and external energies, entropy, andmuchmore are considered1,2.
Significant progress has been reported for problem-specific order para-
meters that are tailored to capture intricate correlation effects. Recent
examples that address the spatial ordering behavior of dense liquids include
beyond-two-body correlation functions, as advocated by Kob and
coworkers3,4 and by Janssen and her coworkers5.

In contrast to such freedom of choice, the variables within classical
density functional theory2,6,7 seem to be a priori uniquely determined by the
existence of a generating free energy functional and the associated structure
of pairs of conjugate variables, which in particular are the external one-body
potential energy Vext(r) and the density profile ρ(r). However, there are
recent extensions to density functional theory to systematically include the
local compressibility8–10, which forms a well-accessible order parameter for
local particle number fluctuations. Technically, the local compressibility
constitutes either a parametric derivative of the equilibrium density profile
with respect to the chemical potential or, analogously, the covariance of the
local density and the global particle number. A generalization from such
chemical particle number fluctuation to thermal fluctuations has been
recently performed11,12. Working in the grand ensemble, where the particle

number fluctuates, is thereby crucial to not impose artificial constraints on
the system.

Besides the standard thermodynamical thinking in terms of thermal
and chemical equilibrium, there is much recent progress from the force
point of view. Highly efficient force sampling techniques allow to obtain
reliable results within many-body simulations that outperform more
straightforward counting methods13–19. Forces are also at the core of power
functional theory20 as a systematic approach to formulate coupled many-
body dynamics on the one-body level of dynamical correlation functions.

To be specific, in the thermal equilibriumof a spatially inhomogeneous
system, the sum of all mean forces necessarily vanishes at each position r.
This is expressed by the following exact sum rule:

FintðrÞ � ρðrÞ∇VextðrÞ ¼ kBT∇ρðrÞ: ð1Þ

Here, Fint(r) is the localized force density that acts at position r due to the
interparticle interactions with all surrounding particles,∇ denotes the
derivativewith respect to r such that−∇Vext(r) is the external forcefield, kB
indicates the Boltzmann constant, and T is the absolute temperature.

The sum of the interparticle and external force densities on the left-
hand side of Eq. (1) balances the thermal diffusive contribution on its right-
hand side. This is a classical result due to Yvon, Born, and Green (YBG)1,
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where for particles that mutually interact only via a pair potential, the
interparticle force density Fint(r) is expressed as an integral over the two-
body density multiplied by the pair force1. Higher-order versions of Eq. (1)
formahierarchy.That thefirstYBGequation (1)has practical consequences
for carrying out sampling tasks in simulations is only a quite recent insight.
Loosely speaking, force sampling13–15 amounts to obtaining simulation data
for the left-hand side of Eq. (1) and then in a post-processing step dividing
by kBT and building the inverse operation of the spatial derivative on the
right-hand side via suitable integration in position. This method yields
results for the density profile ρ(r) which feature a significant reduction of
statistical noise13–19.

Exploiting Noether’s Theorem21,22 in statistical mechanics has been
performed in a variety of ways23–30. Considering the invariance of statistical
mechanical functionals leads very naturally to the notion of statistically
averaged forces when spatial displacement is imposed on the system; mean
torques emerge when invariance against rotations is addressed31,32. In pre-
vious work, we have shown that the statistical Noether concept also applies
quantum mechanically33 and that it gives access to global force
fluctutations34. Generalizing to local invariance33,35 that is resolved in spatial
position facilitated fresh insights into the correlation structure of the liquid
state36. Considering the first order in the displacement field yields the
thermal equilibrium force balance relationship according to the YBG
equation (1)33,35. At second-order hitherto unknown two-body force-gra-
dient and force-force correlators emerge and these, together with the
standard pair correlation function, are constrained by exact Noether
identities36.

This situation of theory development leaves open the question of
whethermore general observables that serve as important order parameters
and quantifiers of spatial structure will also be affected by the statistical
Noether invariance, as one could glean from the generality of the thermal
invariance concept. Here we demonstrate that any statistical observable Â is
intrinsically associated with a corresponding hierarchy of exact identities
that emerges from its statistical shifting invariance properties. We validate
the corresponding exact local and global sum rules for a range of relevant
observables via many-body simulations of a confined Lennard-Jones fluid.
The results clarify a very intimate link of global and locally resolved cor-
relators and they suggest a very general statistical mechanical structure.

Our framework can be viewed as a generalization of the YBG equation
(1) to systematically include the dependence on a further given observable
Â. The equilibrium force balance (1) itself is recovered for the trivial case
Â ¼ 1. Such generalization is not uncommon in Statistical Mechanics. The
relationship of our theory and the YBG force balance equation is akin
Hirschfelder’s hypervirial theorem37 as a generalizationof the standard virial
theorem1 to also invoke an additional dependence on a given phase space
function Â. Our theory can hence be viewed as a hyperforce balance rela-
tionship, andwederive global and local variants below, seeEqs. (4) and (10).
We further show that the local version simplifies further to Eq. (11) and
more explicitly to Eq. (12) in case of Â being independent ofmomenta. As a
specific example, our methodology not only allows to sample density gra-
dients, as is possible in force sampling schemes13–19, but also to sample force
density gradients. The general method complements existing counting and
force-sampling techniques and it gives much inspiration for rigorous sta-
tistical mechanical theories based on exact identities. As we lay out, the
degree of numerical accuracy to which the Noether sum rules are satisfied
can serve as an estimator for sufficient equilibration of slowly converging
systems.

Methods
Statistical mechanics
We consider general thermal many-body systems of particles with identical
massm, coordinates r1,…, rN≡ rN, and momenta p1,…, pN≡ pN, whereN
denotes the number of particles. The Hamiltonian is of the standard form
H ¼ P

ip
2
i =ð2mÞ þ uðrN Þ þP

iVextðriÞ, where the sums i = 1,…,N run
over all particles,u(rN) is the interparticle interactionpotential, andVext(r) is
an external potential that depends on position r. Thermal equilibrium is

characterized by a statistical equilibrium ensemble with grand canonical
probability distribution Ψeq =Ξ−1e−β(H−μN), where β = 1/(kBT) and μ indi-
cates the chemical potential. The normalization factor ofΨeq is the partition
sum Ξ ¼ Tr e�βðH�μNÞ, where the classical trace is defined as
Tr � ¼ P1

N¼0 ðN!h3N Þ�1 R
drN

R
dpN �, with h indicating Planck’s con-

stant. The thermal equilibrium averageA of a given phase space function Â
is then obtained as A ¼ hÂi � TrΨeqÂ, where we have suppressed the
dependence of Â on the phase space variables rN and pN in the notation, i.e.,
in full notation we have ÂðrN ; pN Þ as well as potentially further parametric
dependence such as on a generic position variable r.

Global shifting invariance
To develop the Noether invariance theory, we first consider a global coor-
dinate displacement ri ! ri þ ϵ0 � ~ri, where the shifting vector ϵ0 = const
is independent of position and acts on all particles in the same way31. The
tilde indicates the new coordinates. Expressing H as well as the corre-
sponding distribution function Ψeq in the new coordinates makes averages
become formally dependent on the shifting parameter, i.e.,A(ϵ0). However,
the coordinate change can also be viewed as a mere re-parameterization of
the phase space integral which induces no change to its value such that
A(ϵ0) =A, with the right-hand side denoting hÂi in the original repre-
sentation. Partially differentiating both sides of the equation yields:

∂Aðϵ0Þ
∂ϵ0

¼ ∂

∂ϵ0
TrΨeqðϵ0ÞÂðϵ0Þ ¼ 0; ð2Þ

where the second equality arises trivially from ∂A/∂ϵ0 = 0, as there is no
dependence on ϵ0.

Carrying out the derivative is straightforward upon using the Boltz-
mann form of the equilibrium distribution function and noting that the
partition sum is independent of ϵ0. Explicitly we have ∂Ψeq(ϵ0)/
∂ϵ0 =− βΨeq(ϵ0)∂H(ϵ0)/∂ϵ0. Using the product rule of differentiation and
evaluating at vanishing displacement ϵ0 = 0 then leads from Eq. (2) to

�β
∂Hðϵ0Þ
∂ϵ0

����
ϵ0¼0

Â

* +
þ ∂Âðϵ0Þ

∂ϵ0

����
ϵ0¼0

* +
¼ 0: ð3Þ

Observing that here ∂=∂ϵ0jϵ0¼0 �
P

i∇i allows to make the derivatives
more explicit with ∇i indicating the partial derivative with respect to ri.
In the first term in Eq. (3) we have �∂Hðϵ0Þ=∂ϵ0jϵ0¼0 ¼
�P

i∇iVextðriÞ � F̂
0
ext, which defines the global external force operator

F̂
0
ext. Here the global interparticle force due to the mutual interactions

between all particles in the system vanishes, F̂
0
int ¼ �P

i∇iuðrN Þ � 0, as is
due to Newton’s third law or, analogously, to the translational invariance of
u(rN) against global displacement31.

Re-ordering the two terms in Eq. (3) gives the following global
hyperforce identity that holds for any given observable ÂðrN ; pN Þ:

β F̂
0
extÂ

D E
¼ �

X
i

∇iÂ

* +
: ð4Þ

Here Â ¼ ÂðrN ; pN Þ can feature additional parametric dependence, such as
on a generic position argument r. The sum rule (4) relates the correlation of
Â with the external force operator (left-hand side) to the mean negative
global coordinate derivative of Â (right-hand side); here we use the term
correlation to imply the average of the product of two observables. As
announced in the introduction, Eq. (4) is similar to Hirschfelder’s hyper-
virial theorem37 in the inclusion of the phase space function ÂðrN ; pN Þ and
our hyperforce terminology parallels his use of the term hypervirial.

While Noether invariance enabled us to obtain the global hyperforce
identity Eq. (4) constructively, one can verify its validity a posteriori by
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integrationbyparts inphase space on the right-hand side. Thederivatives∇i

then act on the probability distribution and exploiting again the Boltzmann
form leads to Â

P
i∇iΨeq ¼ �βΨeqÂ

P
i∇iH ¼ ΨeqβF̂

0
extÂ, which gives

the left-hand side of Eq. (4) upon building the trace. Alternatively one can
start with the Yvon theorem1, βhÂ∇iHi ¼ h∇iÂi, which itself also follows
from partial phase space integration1. Summing the Yvon theorem over all
particles i and noting that∑i∇iu(r

N)≡ 0 gives Eq. (4). A similar derivation
can also be based on the hypervirial theorem37.

Local shifting invariance
Before presenting explicit applications of Eq. (4) to specific forms of Â, we
first generalize to the fully position-resolved case. In a generalization of the
uniform coordinate displacement used for global shifting in the previous
subsection, we consider the following local transformation on phase space,
as parameterized by a three-dimensional vector field ϵ(r)33,35:

ri ! ri þ ϵðriÞ; ð5Þ

pi ! ½1þ∇iϵðriÞ��1 � pi: ð6Þ

The gradient ∇i ϵ(ri) is a 3 × 3 matrix, 1 denotes the 3 × 3 identity matrix,
and the superscript−1 indicates matrix inversion. Figure 1a depicts an
illustration of the spatial transformation (5). The momentum transforma-
tion (6) has the following Taylor expansion to the lowest order in the
displacement field: pi ! ½1� ∇iϵðriÞ� � pi.

The joint transformation (5) and (6) is canonical33,35,38 and it hence
preserves the phase space volume element, dridpi ¼ d~rid~pi, where the tilde
indicates the transformed variables [right-hand sides of Eqs. (5) and (6)].
TheHamiltonian also remains unchanged (up to expressing the original via
the new variables). Hence the partition sumΞ is an invariant under the joint
transformation (5) and (6)33,35,36. Together with the invariance of the inte-
gration measure, the setup implies that any average A ¼ hÂi ¼ TrΨeqÂ is
an invariant. This property holds despite the explicit occurrence of the
shifting field ϵ(r) in the integrand, and hence A[ϵ] =A, where the left-hand
side carries the apparent dependenceon the shiftingfield and the right-hand
side is the average expressed in the original variables where ϵ(r) is absent.
We use the standard notation to express dependence on a function (so-
called functional dependence) by bracketed arguments.

From the local Noether invariance, we can conclude from functionally
differentiating the equation A[ϵ] =A with respect to the shifting field that

δA½ϵ�
δϵðrÞ ¼ 0: ð7Þ

The right-hand side of Eq. (7) vanishes trivially due to the average A being
independent of ϵ(r) in the original representation and hence δA/δϵ(r) = 0.
Carrying out the functional derivative on the left-hand side of Eq. (7)
requires to functionally differentiate the equilibrium distribution, δΨeq[ϵ]/
δϵ(r) =− βΨeq[ϵ]δH[ϵ]/δϵ(r), as follows from the chain rule. This allows to
rewriteEq. (7)uponusing theproduct rule and re-ordering the resulting two
terms as

�β
δH½ϵ�
δϵðrÞ

����
ϵ¼0

Â

� �
¼ � δÂ½ϵ�

δϵðrÞ

����
ϵ¼0

� �
; ð8Þ

where we have evaluated both sides at vanishing shifting field, ϵ(r) = 0.
Differentiating the transformed Hamiltonian with respect to the

shifting field gives �δH½ϵ�=δϵðrÞjϵ¼0 ¼ F̂ðrÞ33,35, where the position-
resolved total force operator comprises the following three terms:

F̂ðrÞ ¼ ∇ � τ̂ðrÞ þ F̂intðrÞ � ρ̂ðrÞ∇VextðrÞ: ð9Þ

The right-hand side of Eq. (9) features the one-body kinematic stress
operator τ̂ðrÞ ¼ �P

iδðr� riÞpipi=m20, the one-body interparticle force
density operator F̂intðrÞ ¼ �P

iδðr� riÞ∇iuðrN Þ20, the standard form of
the density operator ρ̂ðrÞ ¼ P

iδðr� riÞ1,2,20, and the external force
field−∇Vext(r). (The force density operator F̂ðrÞ defined in (9) also arises
as the time derivative of the one-body current operator20. In equilibrium the
kinematic term in (9) reduces to a diffusive contribution:
∇ � hτ̂ðrÞi ¼ �kBT∇ρðrÞ; we refer the Reader to Schmidt20 for details).
Equation (8) can then be written upon carrying out the functional
derivatives and using Eq. (9) (on the left-hand side) together with the chain
rule (on the right-hand side), as the followinghyperforce sumrule that holds
for a given form of Â ¼ ÂðrN ; pN Þ:

β F̂ðrÞÂ� � ¼�
X
i

δðr� riÞ∇iÂ

* +

� ∇ �
X
i

δðr� riÞ
∂Â
∂pi

pi

* +
;

ð10Þ

where Â can again feature additional parametric dependencies, such as on r.
For cases where the observable under consideration is independent of

themomenta, i.e., Â � ÂðrN Þ, the second termon the right-hand side of Eq.
(10) vanishes andwe obtain the coordinate-based local hyperforce sum rule:

β F̂ðrÞÂðrN Þ� � ¼ �
X
i

δðr� riÞ∇iÂðrN Þ
* +

: ð11Þ

Equation (11) can be viewed as a generalization of the framework
developed by Coles et al.17, where they consider observables of the specific
form Â ¼ P

iaiδðr� riÞ, where ai is a unique property of particle i only,
such as, e.g., its charge or, when taking orientational degrees of freedom into
account, its polarization17.

As a consistency check, from integrating the locally resolved sum rules
(10) and (11) over position r, i.e., applying ∫ dr to both sides of these
equations, and observing that ∫ drδ(r− ri) = 1, one retrieves the global
Noether identity (4). Here the global external force is the only remaining
nontrivial global force contribution, F̂

0 � R
drF̂ðrÞ ¼ F̂

0
ext, as the global

interparticle force vanishes due to Newton’s third law31 and there is also no
global diffusive effect due to vanishing boundary terms. Hence Eq. (4)
continues to hold upon replacing F̂

0
ext by the global total force operator F̂

0
.

Fig. 1 | Illustrations of the relevant geometries. aThe shifting field (orange arrows)
displaces the coordinates ri of all particles i by a vector ϵ(ri); the specific particle i is
highlighted in red and all particles are identical. A corresponding change in
momenta, see Eq. (6), compensates for the spatial distortion such that the differential
phase space volume element (integration measure) remains unchanged. b Planar
geometry of the confined Lennard-Jones fluid between two smooth parallel soft
attractive Lennard-Jones walls; σ is the particle size, z measures the distance across
the planar pore, and L is the distance between the two walls.
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As a further remark, by splitting off the kinetic term in Eq. (11), its left-
hand side can be re-written as βhF̂ðrÞÂðrN Þi ¼ βhF̂U ðrÞÂðrN Þi�
∇hρ̂ðrÞÂðrN Þi, with the potential force density operator being given as the
sum of interparticle and external contributions: F̂U ðrÞ ¼ F̂intðrÞ�
ρ̂ðrÞ∇VextðrÞ.

In summary, the local force decomposition into ideal, interparticle, and
external contributions in Eq. (11) allows to obtain the following more
explicit form, which holds, as we recall, provided that Â ¼ ÂðrN Þ is inde-
pendent of the momenta:

β F̂intðrÞÂ
� �� β ρ̂ðrÞÂ� �

∇VextðrÞ

¼ ∇ ρ̂ðrÞÂ� �� X
i

δðr� riÞ∇iÂ

* +
:

ð12Þ

For a given explicit form of Â, such as in the concrete examples discussed
below, the sum rule (12) connects the three irreducible correlators
hF̂intðrÞÂi, hρ̂ðrÞÂi, and hPiδðr� riÞ∇iÂi in a formally exact and non-
trivialwaywith eachother. Setting Â ¼ 1 recovers theYBGequation (which
we take to imply thermal averages being taken), as then the last term in Eq.
(12) vanishes and the remaining terms constitute Eq. (1). Paralleling the
naming convention of the hypervirial theorem, which generalizes the
standard virial theorem to include a further observable, Eq. (12) attains the
status of a hyper-YBG equation or hyperforce balance relationship.
Concrete applications thereof are shown below in the Results section.

The correlators on the left-hand sides of the sum rules (4), (10), and
(11) also constitute covariances. We recall that the covariance of two
observables Â and B̂, as defined via covðÂ; B̂Þ ¼ hÂB̂i � hÂihB̂i measures
the correlation of the fluctuations of the two observables around their
respective mean. In the present case the mean force vanishes both globally,
hF̂0exti ¼ 0, and locally, hF̂ðrÞi ¼ 0. Hence we can formally subtract the
vanishing averages and re-express hF̂0extÂi ¼ covðF̂0ext; ÂÞ as well as
hF̂ðrÞÂi ¼ covðF̂ðrÞ; ÂÞ. Besides the conceptual difference between corre-
lation and covariance, in practical sampling schemes it can be beneficial to
work with covariances rather than correlations to reduce statistical noise, as
we will demonstrate further below.

That Eq. (11) holds can again be verified a posteriori by phase space
coordinate integration by parts on the right-hand side. Due to the product
rule two contributions result, one from the Boltzmann factor:
∑iδ(r− ri)∇iΨeq =− βΨeq∑iδ(r− ri)∇iH, and one from the Dirac dis-
tribution: Ψeq

P
i∇iδðr� riÞ ¼ �Ψeq∇ρ̂ðrÞ. Together with the factor Â

their combination yields the left-hand side of Eq. (11) upon identifying F̂ðrÞ
via Eq. (9). The more general Eq. (10) follows analogously upon integrating
by parts also with respect to the momenta.

Results
Global shifting applications
We turn to applications and hence consider concrete examples for the
general phase space function Â, whichhas remained so far unspecified in the
above generic hyperforce framework.We start with investigating the global
invariance (4), which as we demonstrate constitutes a powerful device both
if Â is a global object or if it is locally resolved via dependence on a position.
We first consider the seemingly trivial case Â ¼ 1, for which of course
〈1〉 = 1 due to the correct normalization of Ψeq. The right-hand side of Eq.
(4) vanishes andwe obtain F0ext � hF̂0exti ¼ 0, i.e., the vanishing of themean
external force in equilibrium31. This is intuitively expected, as can be seen by
contradiction as follows. If the mean external force did not vanish, then the
system would start to move on average32 and hence it would not be in
equilibrium.

Adressing the global external force and hence setting Â ¼ F̂
0
ext in

Eq. (4) leads upon simplifying the right-hand side via hPi∇iF̂
0
exti ¼

�hPi∇i∇iVextðriÞi to the recently formulated global force-variance rela-

tionship βhF̂0extF̂
0
exti ¼

R
drρðrÞ∇∇VextðrÞ34. Here the auto-correlation of

the global external force (left-hand side) equals up to a factor β the mean
external potential energy curvature (right-hand side).

By iteratively replacing Â with the composite F̂
0
extÂ in Eq. (4), one can

systematically generate higher-order sum rules, starting with
βhF̂0extF̂

0
extÂi ¼ �hF̂0ext

P
i∇iÂi � hÂPi∇iF̂

0
exti, where thefirst termon the

right-hand side allows repeated application of Eq. (4) and the second term
canbewritten via the external potential curvature. The result is the following
global second-order hyperforce sum rule:

β2hF̂0extF̂
0
extÂi ¼

X
ij

∇i∇jÂ

* +
þ Â

X
i

∇i∇iβVextðriÞ
* +

; ð13Þ

where Â ¼ ÂðrN ; pN Þ. The second term on the right hand of Eq. (13) side
can alternatively be written as an integral over a correlation function as
follows: β

R
drhÂρ̂ðrÞi∇∇VextðrÞ, where hÂρ̂ðrÞi is the correlation of Â and

the local density operator. Alternatively to the present route via Eq. (4), the
sum rule (13) can equivalently be derived from second-order invariance of
hÂi against global shifting and hence calculating ∂2A(ϵ0)/∂ϵ0∂ϵ0 = 0.

Addressing locally resolved correlation functions on the basis of Eq. (4)
allows to access a higher degree of spatial resolution. We first consider the
case Â ¼ ρ̂ðrÞ, which leads upon re-writing the right-hand side of Eq. (4) via
�P

i∇iρ̂ðrÞ ¼ �P
i∇iδðr� riÞ ¼

P
i∇δðr� riÞ ¼ ∇ρ̂ðrÞ to the follow-

ing identity:

β F̂
0
extρ̂ðrÞ

D E
¼ ∇ρðrÞ; ð14Þ

where we recall that on the right-hand side ρðrÞ ¼ hρ̂ðrÞi is the averaged
density profile. Hence building the correlation of the density operator with
the global external force acts to spatially differentiate the density profile.We
recall that the density gradient∇ρ(r), as it occurs on the right-hand side of
Eq. (14), follows alternatively from the YBG equation (1), which upon
multiplication by β attains the form∇ρ(r) = βFint(r)+ βFext(r), where the
external force density is simply given as Fext(r) =− ρ(r)∇Vext(r).

It is interesting tonote thatEq. (14),whenwritten in covariance formas
βcovðF̂0ext; ρ̂ðrÞÞ ¼ ∇ρðrÞ, mirrors closely the structure of the thermo-
dynamic identity βcovðN; ρ̂ðrÞÞ ¼ ∂ρðrÞ=∂μ � χμðrÞ with the local com-
pressibility χμ(r)

8–10. Here rather than the spatial gradient, the
thermodynamic parametric derivative with respect to chemical potential
occurs. Equation (14) can also be viewed as the so-called inverse Lovett-
Mou-Buff-Wertheim (LMBW) relation β

R
dr0H2ðr; r0Þ∇0Vextðr0Þ ¼

∇ρðrÞ39,40, as is obtainable from global translational invariance31. Having
explicit results for the density covariance H2ðr; r0Þ ¼ covðρ̂ðrÞ; ρ̂ðr0ÞÞ is
however not required in the much more straightforward form (14). Fur-
thermore, by summing only over particle pairs with unequal indices we
obtain the distinct identity hF̂0extρ̂ðrÞidist ¼ FintðrÞ, which again relates see-
mingly very different physical objects identically to each other. The deri-
vation is straightforward by starting from Eq. (14), subtracting the self
contribution which is the YBG equation (1) in the
form− βρ(r)∇Vext(r) =− βFint(r)+∇ρ(r), and dividing the result by β.

To validate the Noether invariance theory and to investigate its
implications for the use of force sampling methods, we turn to many-body
simulations and consider the Lennrd-Jones (LJ) fluid as a representative
microscopic model. The LJ pair potential ϕ(r) between two particles sepa-
ratedby a distance rhas the familiar formϕ(r) = 4ϵ[(σ/r)12− (σ/r)6]with the
energy scale ϵ and particle size σ both being constants.

As our above statistical mechanical derivations continue to hold
canonically, we sample both via adaptive Brownian dynamics (BD)41 with a
fixed number of particles, but also using Monte Carlo simulations in the
grand canonical ensemble. Spatial inhomogeneity is induced by confining
the systembetween two planar, parallel LJ walls. Each wall is represented by
an external potential contribution Vwall(z) that we choose to be identical to
the LJ interparticle potential ϕ(r), but instead of the radial distance r
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evaluated as a function of the distance z perpendicular to the wall,
Vwall(z) = 4ϵ[(σ/z)12− (σ/z)6]. The joint potential of both walls is then
Vext(z) =Vwall(z)+Vwall(L− z), with L indicating the separation distance
between the twowalls. The specific choice of 12-6-wall potential is made for
convenience only and it differs from the physicallymotivated 9-3-form (see
e.g., Evans et al.9).

The system is periodic in the two directions perpendicular to the z-
direction across the slit; a sketch is shown in Fig. 1b. The wall separation
distance is chosen as L = 10σ, with σ denoting the LJ particle size, and the
lateral box length is also set to 10σ. The LJ potential is cut and shifted with a
cutoff distance of 2.5σ. The reduced temperature is kBT/ϵ = 2 with ϵ
denoting the LJ energy scale. We use N = 200 particles. Sampling is started
after 108 time steps that are used for equilibration. The subsequent sampling
runlength is 3 × 108 time steps which corresponds to ~ 2000τB, where
τB = γσ2/ϵdenotes theBrownian timescalewith γbeing the friction constant.
All results that we show for correlators are obtained from evaluation as
covariances. Subtracting the residual contribution from the product of the
twomean values helps to remove artifacts that occur due to finite sampling.

Thedensity profile of the confinedLJfluid, resolved as a function of the
scaledposition z/σ across the planar slit, is shown in Fig. 2a. The shape of the
spatial density variation features structured packing effects that appear
adjacent to each wall and that become damped towards the middle of the
pore. Turning to the density gradient, we present simulation results for both
sides of Eq. (14) in Fig. 2b. Equation (14) in the specific planar geometry
reduces to βhF̂0;z

ext
P

i δðz � ziÞ=L2i ¼ ∂ρðzÞ=∂z, where δ(z− zi) is a one-
dimensional Dirac distribution, zi is the component of the vector ri across
the pore, L2 is the lateral systemarea, and the global external force has only a
nonvanishing z-component given by F̂0;z

ext ¼ �P
i∂VextðziÞ=∂zi. The den-

sity profile is sampled as ρ(z) = 〈∑i δ(z− zi)/L
2〉. The comparison of the a

priori very different data sets shown inFig. 2b indicates excellent agreement.
That the correlation of the density operator with the global external force
operator indeed gives the gradient of the density profile, cf. Eq. (14), is surely
not only at first glance very counter-intuitive.

We next consider the one-body interparticle force density operator
Â ¼ F̂intðrÞ, for which Eq. (4) yields

β F̂
0
extF̂intðrÞ

D E
¼ ∇FintðrÞ: ð15Þ

Equation (15) gives access to the gradient of the internal forcedensity (right-
hand side) via sampling the correlation of the local internal force density
with the global external force (left-hand side). This relationship could be
used in a force sampling scheme13–19, where one obtains data for the force
correlations and via spatial integration obtains the interparticle force den-
sity, which we demonstrate below. We first present simulation results to
illustrate the validity of Eq. (15) in Fig. 2c. The results for βhF̂0extF̂intðrÞi carry
much less statistical noise, as the need for building the numerical
derivative∇Fint(r) is avoided. However, this is no panacea, as accurately
sampling the correlation of the interparticle force density with the global
external force also poses challenges to the overall equilibration of the system.

Addressing the total force density operator Â ¼ F̂ðrÞ requires to
complement the above-considered interparticle force density F̂intðrÞ with
the ideal and external contributions. These two latter terms constitute
mere variants of the density operator identity (14). First there is the external
force density operator Â ¼ F̂extðrÞ ¼ �ρ̂ðrÞ∇VextðrÞ which yields
βhF̂0extF̂extðrÞi ¼ �½∇VextðrÞ�∇ρðrÞ, as∇Vext(r) can be taken out of the
phase space average on the left-hand side of Eq. (14). Secondly, the diffusive
force density, Â ¼ �kBT∇ρ̂ðrÞ, leads trivially to the gradient of Eq. (14).

Collecting all three terms (ideal, interparticle, and external) allows us to
obtain for the choice Â ¼ F̂ðrÞ a mixed global-local Noether identity:

β F̂
0
extF̂ðrÞ

D E
¼ ρðrÞ∇∇VextðrÞ: ð16Þ

We present simulation results that validate the sum rule (16) in Fig. 2d.We
have checked that via spatial integration these results also validate the global

variance identity βhF̂0extF̂
0
exti ¼

R
drρðrÞ∇∇VextðrÞ34, which follows from

Eq. (13) with operator Â ¼ 1. For the presently considered system, the
global force-force correlation on the left-hand side is onlymarginally (0.4%)
smaller than the global mean potential curvature on the right-hand side.

Fig. 2 | Illustration of the sum rules (14), (15), and (16). The simulation results
were obtained from adaptive BD sampling of the LJ fluid confined between two
parallel planar LJ walls. The profiles are shown as a function of scaled distance z/σ
across the planar slit. a The density profile ρ(r) of the confined system is shown as a
reference. bComparison of the correlator βhF̂0extρ̂ðrÞi and the density gradient∇ρ(r),
see Eq. (14); the zoomed inset demonstrates the respective noise levels and it also
shows the scaled force density sum βFU(r) = βFint(r)+ βFext(r) which equals∇ρ(r)
due to the local force balance. c Comparison of β2hF̂0extF̂intðrÞi and β∇Fint(r), see
Eq. (15). The former route carries less statisical noise and hence can serve as a
starting point for a force sampling scheme. d Comparison of β2hF̂0extF̂ðrÞi and the
local external potential curvature density βρ(r)∇∇Vext(r), see Eq. (16).
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Local shifting applications
We turn to the application of the locally resolved hyperforce sum rules (10)
and (11).We recall from theMethods section that the seemingly trivial case
Â ¼ 1 reduces the local hyperforce identity (11) to the locally resolved force
balance relationship FðrÞ ¼ hF̂ðrÞi ¼ 0. The definition of the total force
operator (9) and carrying out the average gives the more explicit
form− kBT∇ρ(r)+ Fint(r)− ρ(r)∇Vext(r) = 0, i.e., the first member (1) of
the Yvon-Born-Green hierarchy1. Typically this identity is derived from
multiplying the equilibrium probability distribution function Ψeq by the
gradient of the interaction potential and integrating over the degrees of
freedom of N− 1 particles. We emphasize that arguably the simplest pos-
sible application of Eq. (11) yields such a central result of liquid state theory
with very little effort. From the Noetherian point of view the result was also
obtained fromapplying the locally resolved transformation (5) and (6) to the

free energy33,35. At the heart of these Noetherian derivations lies the invar-
iance of theHamiltonian, of the phase space integrationmeasure, andhence
of the partition sum.

We next consider setting Â ¼ F̂
0
ext in Eq. (10). This constitutes a

valuable consistency check with the above global shifting of F̂ðrÞ that led to
Eq. (16) and which we can identically reproduce here. Arguably even more
fundamentally the sum rule (16) can be obtained by considering mixed
local-global shifting invariance at second order, i.e., building the mixed
derivative∂(δΩ/δϵ(r))/∂ϵ0 = 0,where the grandpotentialΩ ¼ �kBT lnΞ is
subject to the combined displacement ri→ ri+ ϵ0+ ϵ(ri). Furthermore
increasing the spatial resolution and hence selecting Â ¼ F̂ðrÞ in Eq. (10)
yields the recent Noether-constrained two-body force-correlation theory,
which is discussed in detail by Sammüller et al.36. The theory that is pre-
sented therein can hence be viewed as the special case of pure force-
dependence within the hyperforce framework.

Reverting back to developing the general theory, here we generalize to
higher orders by iteratively replacing ÂðrN ; pN Þ by F̂ðr0ÞÂðrN ; pN Þ in Eq.
(8). This leads to the following second-order hyperforce sum rule:

β2hF̂ðrÞF̂ðr0ÞÂi ¼ β Â
δ2H½ϵ�

δϵðrÞδϵðr0Þ

� �
þ δ2Â½ϵ�

δϵðrÞδϵðr0Þ

� �
; ð17Þ

where evaluation of the right-hand side at ϵ(r) = 0 is suppressed in the
notation and δ2H½ϵ�=δϵðrÞδϵðr0Þ is discussed by Sammüller et al.36. In case
of nodependence of Â onmomenta, i.e., Â ¼ ÂðrN Þ, the second termon the
right-hand side of Eq. (17) can be made more explicit as

δ2Âð½ϵ�; rN Þ
δϵðrÞδϵðr0Þ

� �
¼

X
ij

δðr� riÞδðr0 � rjÞ∇i∇jÂðrN Þ
* +

: ð18Þ

We proceed beyond forces by turning to energies with the aim of
exploiting their thermal Noether invariance against shifting. We consider
both the global external potential energy Â ¼ P

iVextðriÞ as well as the
global interparticle energy Â ¼ uðrN Þ. Applying Eq. (11) yields in these two
cases respectively the following sum rules:

β F̂ðrÞ
X

i
VextðriÞ

D E
¼ �ρðrÞ∇VextðrÞ; ð19Þ

β F̂ðrÞuðrN Þ� � ¼ FintðrÞ: ð20Þ

Simulation results that demonstrate the validity of Eqs. (19) and (20) are
shown in Fig. 3a, b, respectively. Here we have increased the overall density
by reducing the lateral box size to 5σ and we sample N = 128 particles over
time periods of 2000τ (data shown in Fig. 3a, b) and of 8000τ (data shown
in Fig. 3c).

The potential energy identities (19) and (20) can be supplemented by
considering the kinetic energy, Â ¼ P

ip
2
i =ð2mÞ, which leads upon using

Eq. (10) to the identity βhF̂ðrÞPip
2
i =ð2mÞi ¼ �kBT∇ρðrÞ. Treating then

the entire Hamiltonian, Â ¼ H, follows from adding up all three energy
contributions. The result is the compact identity: βhF̂ðrÞHi ¼ FðrÞ ¼ 0.
This possibly unexpected behavior also holds for the global entropy. We
choose the entropy operator Â ¼ Ŝ � �kB lnΨeq and obtain from Eq. (10)
k�1
B hF̂ðrÞŜi ¼ FðrÞ ¼ 0, i.e., the correlation (as well as the covariance) of the
entropy operator with the local force density vanishes. This behavior is very
different from the nontrivial fluctuation profile that is obtained from the
covariance of the density operator with the global entropy11,12.

As a final case, we consider the center of mass ∑iri/N as a purely
mechanical entity. Wemultiply byN, such that Â ¼ P

iri and obtain from
Eq. (11) upon multiplication by− 1 the result

�β F̂ðrÞ
X
i

ri

* +
¼ ρðrÞ1: ð21Þ

Fig. 3 | Demonstration of Noether sum rules (19), (20), and (21). These identities
are respectively based on the global external and interparticle energies and on the
center of mass. Shown are results from adaptive BD simulations for the LJ fluid
between parallel LJ walls as a function of the scaled distance z/σ. a Comparison of
β2hF̂ðrÞPiVextðriÞi and βFext(r) =− βρ(r)∇Vext(r), see Eq. (19). b Comparison of
β2hF̂ðrÞuðrN Þi and βFint(r), see Eq. (20). cComparison of�βhF̂ðrÞPirii and ρ(r), see
Eq. (21).
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Integrating Eq. (21) over position yields a simple relationship between
the correlator of the global external force and the center of mass:
hF̂0ext

P
irii=�N ¼ �kBT1, where the mean number of particles is

�N ¼ R
drρðrÞ � hNi. Except for an additional sum over all particles, this

global relationship is akin to the equipartition theorem. We present simu-
lation results for both sides of the locally resolved Eq. (21) in Fig. 3c. The
accurate agreement of the respective profiles confirms that the identity (21)
indeed offers a rather unusual route to gain access to the density profile.

Hyperforce sampling and equilibration testing
Besides the unexpected insights into the general correlation structure of
equilibrium many-body systems that the thermal Noether invariance deli-
vers, our results are useful for the careful assessment and construction of
computer sampling schemes. Force sampling13–19 in perhaps its most intuitive
form15 rests on spatial integration of the YBG equation (1) such that the
density profile is obtained via ρ(r) = ρ0+ β∇−1 ⋅ [Fint(r)− ρ(r)∇Vext(r)],
where ρ0 = const is an integration constant and∇−1 is an inverse∇ operator.
The data input on the right-hand side is obtained via sampling FintðrÞ ¼
hF̂intðrÞi and either ρðrÞ ¼ hρ̂ðrÞi or Fext(r) =− 〈∑i δ(r− ri)∇iVext(ri)〉. The
averages denote those that are being carried out in the simulation. In the
present planar geometry ∇−1 reduces to carrying out a simple position
integral, which we make explicit below.

Summarizing, we can compare the results from four different routes: i)
counting of particle occurrences in a position-resolved histogram, which
constitutes the standardmethod, ii) force sampling15 according toEq. (1), iii)
hyperforce sampling according to the global external force correlation inEq.
(14) with spatial integration post-processing, and iv) center-of-mass-based
hyperforce sampling according to Eq. (21). These routes are respectively
given by the following explicit expressions:

ρðzÞ ¼ hρ̂ðzÞi; ð22Þ

ρðzÞ ¼ ρ0 þ β

Z z

0
dz0 F̂U ðz0Þ

� �
; ð23Þ

ρðzÞ ¼ ρ0 þ β

Z z

0
dz0 F̂

0
extρ̂ðz0Þ

D E
; ð24Þ

ρðzÞ ¼ �β F̂ðzÞ
X
i

zi

* +
: ð25Þ

Herewe choose the integration constant as ρ0 = ρ(0) = 0due to thedivergent
wall potential at z = 0.The averageson the above right-hand sides denote the
actual simulation data, all vectors have been projected onto the z-direction
across the pore, and zidenotes the z-component of the particle position ri. In
more detail, the operators on the right-hand sides of Eqs. (22) and (23) are
explicitly given as ρ̂ðzÞ ¼ P

iδðz � ziÞ=L2 and F̂U ðzÞ ¼
P

if
int
i;zδðz �

ziÞ=L2� ρ̂ðzÞ∂VextðzÞ=∂z, where we recall that L2 is the lateral system size
and the z-component of the interparticle force on particle i is
f inti;z ¼ �∂uðrN Þ=∂zi. Furthermore the operators on the right-hand sides
of Eqs. (24) and (25) are F̂

0
ext ¼ �P

i∂VextðziÞ=∂zi, and βF̂ðzÞ ¼
βF̂U ðzÞ� ∂ρ̂ðzÞ=∂z.

Results for the density profile from the four routes (22)–(25) are shown
in Fig. 4. The simulation parameters are identical as before [Fig. 2]. We
display the four different statistical estimators for the density profile, as
obtained after increasing runlength of (a) 105, (b) 106, (c) 107, and (d) 3 × 108

simulation steps. We recall that as demonstrated above both in the
numerical examples as well as in the formal statistical mechanical deriva-
tions, the results from all routes are formally identical. In practice, pro-
nounced differences can be observed and these are due to the simulation
averages being mere approximations for the true statistical mechanical
equilibrium.

For example the routes (23) and (24) yield less statistical noise due to
the spatial integration, but they however can instead accumulate systematic

deviations. The expected differences between the four methods are also
consistently demonstrated by the fact that the results from the different
routes mutually agree better for increasing runlengths. Nevertheless, in
particular, the routes (24) and (25) that involve global quantities are very
sensitive to the choice of runlength and they can hence serve as indicators of
the overall quality of the sampling routine, evenwhen quantities beyond the
density profile are the very aim of the simulation. Having such tools for
quality control can be particularly useful when investigating capillary and
wetting phenomena42–46 where surface phase transitions pose significant
challenges for reliable prediction.

The Noetherian hyperforce framework allows us to easily go beyond
the density profile andwewish to address the interparticle force density as a
target, rather than the mere source that it played in contributing to Eq. (23)
above for the force sampling. As a demonstration we use and contrast
different estimators for the interparticle force density profile Fint(r). The
traditional counting method of filling a position-resolved histogram forms
the baseline and Eq. (15) provides an alternative. These methods are
respectively given by

F intðzÞ ¼ hF̂intðzÞi; ð26Þ

F intðzÞ ¼ β

Z z

0
dz0 F̂ext

0
F̂ intðz0Þ

D E
: ð27Þ

Figure 5presents both canonical averages obtained via adaptiveBD41 as
well as grand canonicalMonte Carlo data. The chemical potential is chosen
asμ/ϵ = 1 and the resulting average number of particles is 〈N〉 = 136.5. In the
corresponding adaptive BD simulation runs we have set N = 136, which
remains sharply fixed in the course of time. The agreement between both
sets of results confirms the expectation of independence of the sum rule
validity on the choice of ensemble. This is based on the fact that the theo-
retical derivations continue to hold with fixed N, as we have also explicitly
verified. Hence the mechanical effects that the Noether invariance against
spatial displacement captures are oblivious to the presence of global particle
number fluctuations. We recall that the latter are precisely captured and
quantified by the local compressibility8–10.

The comparisonof lower andhigher quality statistical data, as obtained
from sampling every step (see Fig. 5a, b) or only every 1000th step (see
Fig. 5c, d) demonstrates that the force correlation method is a sensitive
measure of the degree of sampling quality.

Conclusions
In conclusion, we have developed a statistical mechanical hyperforce fra-
mework in generalization of theYBGequilibrium force balance relationship
(1). Our theory is based on previously developed global31,32,34 and local33,35

shifting transformations on phase space. These variable transformations
leave the thermal physics invariant despite an apparent dependence on the
transformation parameter. The parameter is a three-dimensional globally
constant vector in case of global symmetry, which applies to the entirety of
the system, and a position-dependent three-dimensional vector field for the
locally resolved case. Treating the corresponding phase space transforma-
tions according to Noether’s invariant variational calculus21 allows us to
systematically generate exact identities.

Here we have generalized this Noetherian concept to the equilibrium
average of an arbitrary given phase space function Â. The resulting Noether
identities couple in a specific manner the forces, which the underlying
Hamiltonian generates, to the observable Â and its gradient with respect to
the phase space variables. In the position-resolved case, we obtain localized
correlation functions, with the Dirac distribution generating micro-
scopically sharp, but statistically coarse-grained and hence well-accessible
correlators. In detail, we have presented the global hyperforce sum rule (4)
that applies to any given phase space function Â. The local versions com-
prise Eqs. (10) and Eq. (11), where the latter version applies tomomentum-
independent observables. Decomposing the total force operator into its
ideal, interparticle, and external contributions leads to Eq. (12), which
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generalizes the equilibrium force density balance (1). An overview of these
general identities is shown in Fig. 6a.

For a variety of relevant concrete choices of the form of Â, we have
demonstrated explicitly their validity via carrying out many-body simula-
tions. This includes forces, energies, and entirelymechanical quantities such
as the center of mass; see Fig. 6b for a summary of specific examples. We
have shown that the sampling quality and equilibration properties depend
significantly on the type of underlying sum rule.We argue that this behavior
forms a valuable asset for the systematic assessment of simulation quality.

Our hyperforce identities complement the virial1, hypervirial37,
equipartition1 and Yvon1 theorems. Despite certain formal similarities, we
emphasize that the underlying phase space invariance is more fundamental
than derivations based on ad hoc partial integration. Furthermore, the
considered invariance operations naturally lead to correlations with either
global or locally resolved forces, which are both simple to interpret and
straightforward to acquire in simulations.

Wehave shownhow the global hyperforce identity (4) can alternatively
be obtained from theYvon theorem1.Hence, as anticipated in the discussion
by Rotenberg13, the Yvon theorem can indeed be a relevant tool for force
sampling. However, the general localized Noether sum rule (10) reaches
beyond the Yvon theorem in terms of the momentum effects that are
included. We have shown that the derivation of the momentum-
independent sum rule (11) based on the Yvon theorem requires to apply

the adhoc localized choice Âδðr� riÞ and summingover i. As a second step,
treating the ideal contribution explicitly allows to identify the sequence of
emerging terms as the one-body force operator F̂ðrÞ at any position. Con-
versely, the Yvon theorem can be derived as a limit case from Noether
invariance upon shifting only one given particle i according to ri→ ri+ ϵ0,
and keeping unchanged all other particles coordinates rj with j ≠ i.

Besides the theoretical connections that the Noether hyperforce sum
rules establish, they can serve to carry out tests in theoretical and simulation
approaches, with possible fruitful connections to the mapped-averaging
force sampling framework16. The hyperforce sum rules can also provide a
starting point, together with the existing body of equilibrium sum rules42–46,
for the construction of new inhomogeneous liquid state approximations.
We have exemplified the use of sum rules in providing gauges for the
equilibration quality of simulation data and we are confident in their future
beneficial use in machine-learning approaches such as the recent neural
functional theory47,48.

In the context of the use of machine-learning in Statistical
Mechanics47–54 sum rules were shown to provide tests for the successful
construction of neural functionals both in47,48 and out of equilibrium49.
These sumrules amount to specific forceproperties, such as the vanishingof
the global interparticle force49 and the interrelation of different orders of
direct correlation functions47,48. The present muchmore general hyperforce
framework can formmuch inspiration for such approaches aswell as for the

Fig. 4 | Comparison of standard counting against force sampling.Weshow results
from four different routes towards the density profile ρ(r) as obtained after a 105,
b 106, c 107, d 3 × 108 simulation steps. Shown is data from the standard counting
method according to Eq. (22) (orange lines), from force sampling FU(r) according to
Eq. (23) (green dash-dotted lines), from global external force correlation sampling of

hF̂0extρ̂ðrÞi according to Eq. (24) (blue solid lines), and from center-of-mass corre-
lation sampling of hF̂ðrÞPirii according to Eq. (25) (red symbols). Results from the
latter route are only displayed from the longest run [panel d] and they still display
considerable scatter, whereas the results from the remaining three methods already
agree very satisfactorily.
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recent force-based density functional theory35,55, which was compared55 to
standard fundamental measure theory56.

Furthermore, investigating hyperforce correlations in ionic systems,
recent work57–59 addresses both concentration and charge fluctuation
behavior, as are also relevant in confined systems60, appears to be very
promising. This also holds true for further interfacial physics42–46 and
potentially for the higher-order correlation functions3–5.

In our theoretical derivations we have relied on the grand canonical
ensemble, with fixed chemical potential μ and fluctuating number of par-
ticles N. Carrying out formal manipulations in this way is often more
straightforward than working with fixedN, as is appropriate for a canonical
treatment. (Temperature is constant in both ensembles.) A prominent
example is to obtain the density profile as a functional derivative ρ(r) = δΩ/
δVext(r) where crucially μ is kept fixed, rather than N, upon building the
functional derivative. This prototypical example demonstrates the elegance
of working grand canonically, and one could expect that a similar situation
applies to the thermal Noether invariance. This, however, is not the case.
Rather thephase space shifting transformation,whether global by a constant
ϵ0 or locally resolved in position via a three-dimensional vector field ϵ(r), is
an entirely mechanical operation that applies equally well canonically. The
shifting invariance gives a powerful new route to correlation functions and
their sum rules, an alternative to the traditional method of integrating over
degrees of freedom, as pioneered by Yvon61 and Born and Green62.

A detailed account of global shifting in the canonical ensemble is
provided by Hermann and Schmidt32. The resulting Noether force
identities are analogous in form to the results from a grand canonical
treatment31, with the sole (and trivial) difference of the definition of the
respective ensemble averages. Here we find that the analogous situation
holds for the hyperforce identities. As they originate from phase space
transformations only, they are insensitive to the ensemble differences
between the canonical and the grand ensemble. This theoretical fact is
corroborated by our computer simulation results, where we have
explicitly compared grand canonical Monte Carlo data and canonical
results, with the latter obtained via sampling under adaptive BD time
evolution41.

We have used overdamped Brownian time evolution as a means to
sample in thermal equilibrium. We find the adaptive Brownian dynamics
time stepping algorithm41 to be a convenient choice for our present pur-
poses. The principle validity of the hyperforce sum rules is nevertheless
independent thereof and we expect careful use of either the simpler Euler-
Maruyama method41,63 or indeed Molecular Dynamics63 to yield identical
results. In our BD simulations, we have sampled all correlation functions at
equal time as is the appropriate limit in equilibrium time evolution to
recover static thermal ensemble averages. We refer to Hermann and
Schmidt31 for the exploitation of the Noether invariance in nonequilibrium
dynamics.

Fig. 5 | Comparison of different statistical estimators for the interparticle one-
body force density profile according to Eq. (15). The results are obtained from the
standard counting histogram method, FintðrÞ ¼ hF̂intðrÞi (orange lines), and from
hyperforce sampling and spatial integration of∇FintðrÞ ¼ βhF̂0extF̂intðrÞi (blue lines)
with data for the right-hand side forming the basis. These methods are explicitly
spelled out in Eqs. (26) and (27). The results stem from sampling 105 strongly
correlated microstates at every simulation step (a, b) compared to better-

decorrelated configurations obtained from also 105 configurations, with the samples
being taken only every 1000th simulation step (c, d). Results are shown from grand
canonical Monte Carlo simulations (a, c) and from adaptive BD simulations (b, d).
The results from sampling are symmetrizedwith respect tomirroring at the center of
the pore, i.e., via building the arithmetic mean [Fint(z)− Fint(L− z)]/2, as is com-
mon practice in force sampling schemes.
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As a final note, we return to classical density functional theory and its
prowess in the description and incorporation of the fundamental force
correlators that emerge from the hyperforce concept.We recall that classical
density functional theory is based on a formally exact variational principle
which amounts to solving the following Euler-Lagrange equation:

kBTc1ðr; ½ρ�Þ � VextðrÞ ¼ kBT ln ρðrÞ � μ: ð28Þ

Here c1(r, [ρ]) is theone-bodydirect correlation functionof inhomogeneous
liquid state theory. This is expressed as a density functional via
c1(r, [ρ]) =− βδFexc[ρ]/δρ(r), whereFexc[ρ] is the intrinsic excessHelmholtz
free energy functional, which contains the interparticle interactions, and
δ/δρ(r) denotes the functional derivative with respect to the density profile.
Solving Eq. (28) for given T, μ, andVext(r) yields results for the equilibrium
density profile ρ(r), which is hence the central variable of density functional
theory.

Amultitude of connections with the current invariance theory emerge
naturally. From the density profile, using the hyperforce identities one can

obtain results for hF̂ðrÞPirii via Eq. (21), for hF̂
0
extF̂ðrÞi via Eq. (16), for

hF̂ðrÞPiVextðriÞi via Eq. (19), and upon building the gradient of the density
profile for hF̂0extρ̂ðrÞi via Eq. (14).

We canmake further progress by noting that within density functional
theory the interparticle force density is given by Fint(r) = kBTρ(r)∇c1(r),
where we have suppressed the functional dependence on the density profile
in the notation. That this relationship holds can be seen from building the
gradient of Eq. (28) whereby−∇μ vanishes as the chemical potential is
constant, multiplying by ρ(r), and comparing term-wise with the force
density balance relationship (1).

Having obtained Fint(r) in this (density functional) way gives
access to hF̂ðrÞuðrN Þi via Eq. (20). Building the gradient of the
interparticle force density via the product rule yields∇Fint(r) =
kBT[∇ρ(r)]∇c1(r)+ kBTρ(r)∇∇c1(r). Again in principle, the right-
hand side is straightforward to evaluate in a typical numerical density
functional study as data for both ρ(r) and c1(r) is accessible. As a
result, the correlator hF̂0extF̂intðrÞi is available via the hyperforce sum
rule (15).

Hence standard results that are obtained within the density functional
framework allow to access awealthof nontrivial force correlation structures.

This additional information is not redundant.We compare with Evans and
his coworkers’ local compressibility χμ(r) = ∂ρ(r)/∂μ, where similar to the
present force setup, one obtains χμ(r) from processing the density profile. In
practice then analyzing χμ(r) can shed significantlymore light on the physics
than what is apparent from the density profile alone, as has been demon-
strated in a range of insightful studies on drying at substrates and the
important phenomenon of hydrophobicity8–10.

Data availability
The data is available from the authors upon reasonable request.

Code availability
The simulation code to generate the data in this study is available online at
the following URL: https://gitlab.uni-bayreuth.de/bt306964/mbd/-/tree/
hyperforce.
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for full phase space-dependence ÂðrN ; pN Þ (upper bubble) or coordinate-only
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Abstract
We argue in favour of developing a comprehensive dynamical theory for
rationalizing, predicting, designing, and machine learning nonequilibrium
phenomena that occur in soft matter. To give guidance for navigating the
theoretical and practical challenges that lie ahead, we discuss and exemplify the
limitations of dynamical density functional theory (DDFT). Instead of the implied
adiabatic sequence of equilibrium states that this approach provides as a
makeshift for the true time evolution, we posit that the pending theoretical tasks
lie in developing a systematic understanding of the dynamical functional
relationships that govern the genuine nonequilibrium physics. While static density
functional theory gives a comprehensive account of the equilibrium properties of
many-body systems, we argue that power functional theory is the only present
contender to shed similar insights into nonequilibrium dynamics, including the
recognition and implementation of exact sum rules that result from the Noether
theorem. As a demonstration of the power functional point of view, we consider
an idealized steady sedimentation flow of the three-dimensional Lennard-Jones
fluid and machine-learn the kinematic map from the mean motion to the internal
force field. The trained model is capable of both predicting and designing the
steady state dynamics universally for various target density modulations. This
demonstrates the significant potential of using such techniques in nonequilibrium
many-body physics and overcomes both the conceptual constraints of DDFT as
well as the limited availability of its analytical functional approximations.

Keywords: density functional theory, dynamical density functional theory,
power functional theory, Noether theorem, superadiabatic forces,
Brownian dynamics, statistical mechanics of liquids

(Some figures may appear in colour only in the online journal)

1. Introduction

The coupled dynamics of the microscopic degrees of freedom in typical soft
matter systems generates a wide array of relevant and also often unsolved
nonequilibrium phenomena [1, 2]. One central quantity for the characterization
of self-assembly and structure formation in complex systems is the
microscopically resolved one-body density distribution ρ(r, t), where r indicates
position and t denotes time. The ‘density profile’ ρ(r, t) acts as a central order
parameter both due to its intuitive physical interpretation and clear cut
mathematical definition [3].
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According to the dynamical density functional theory (DDFT), as originally
proposed by Evans in 1979 [4] and put at center stage by Marconi and Tarazona
in 1999 [5], the time evolution of the microscopic density profile is assumed to be
determined by the following partial differential equation:

∂ρ(r, t)
∂t

= γ−1∇· ρ(r, t)∇
( δF[ρ]
δρ(r, t)

+Vext(r, t)
)
. (1)

Here γ is a friction constant, F[ρ] is an intrinsic free energy functional that
depends functionally on the density profile, and the external potential Vext(r, t)
represents interactions of the system with the environment. The system is set into
motion by a temporal variation of Vext(r, t), such as e.g. step-like switching at an
initial time.

The time evolution according to equation (1) conserves the particle number
locally and hence it constitutes dynamics of model B type [6]. In standard
applications one starts with an equilibrium state of the system and then the
dynamics are monitored on the basis of numerical time integration of
equation (1), where the time dependence is induced by the temporal variation of
Vext(r, t). In order to provide reference data and to allow for the generation of
benchmark results to assess the quality of the theory, resorting to many-body
computer simulations is common, with overdamped Brownian dynamics (BD)
being a popular choice. Marconi and Tarazona [5] initially spelled out the
connection of these dynamics with DDFT and [7] describes a modern and stable
adaptive time-stepping BD simulation algorithm. Comparison of DDFT data
with experimental results are more scarce, but notable exceptions include
non-equilibrium sedimentation of colloids [8], the self-diffusion of particles in
complex fluids [9], the bulk dynamics of Brownian hard disks [10], and the flow
profile and drying pattern of dispersion droplets [11].

The DDFT time evolution reaches a stationary state if the gradient on the right
hand side of equation (1) vanishes, i.e. provided that the expression inside of the
parentheses is constant:

δF[ρ]
δρ(r)

+Vext(r) = µ. (2)

Here we have dropped the dependence on time in the notation, as the situation is
now static. The constant µ can be identified with the chemical potential, which in
a grand canonical statistical mechanical setting is the conjugate control parameter
of the mean particle number. Equation (2) is exact in equilibrium, as was shown
by Evans [4]. He proved the equilibrium intrinsic free energy functional F[ρ] to
exist, to be unique, and to form the starting point for a modern equilibrium theory
of spatially inhomogeneous liquids and crystals [12, 13].

In practice one needs to rely on approximations for F[ρ], given a microscopic
fluid model under consideration. Once one has solved equation (2) for given
values of µ and temperature T (the dependence of F[ρ] on T is suppressed in
the notation), then in principle complete knowledge of the thermal system is
available. The value of the density functional F[ρ] is the true intrinsic free energy,
and higher-order correlation functions are determined via higher-order derivatives
of the free energy functional or via test-particle procedures. In particular
two-body correlations functions, such as the bulk pair correlation function g(r) as
well as its generalization to inhomogeneous systems are accessible. These exhibit
defining characteristics of liquids and more general soft matter systems and they
are formally fully contained in the static density functional theory framework.

Together with a number of available reliable approximate free energy
functionals, density functional theory is a powerful theoretical framework that has
been used to elucidate much intricate and complex behaviour in soft matter.
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Recent representative highlights include tracing hydrophobicity to critical
drying at substrates [14–16], resolving three-dimensional structures of
electrolyte aqueous solutions near surfaces [17, 18], and addressing the
magnitude of the decay lengths in electrolytes [19]. Rosenfeld’s celebrated hard
sphere fundamental measure free energy functional [20–23] is at the core of much
of this research activity.

In the following we wish to address whether or not the DDFT has the prowess
to play a similar role in nonequilibrium, as is often at least implicitly assumed.
We demonstrate on the basis of an explicit and generic example, i.e. that of
uniaxial compressional flow of the three-dimensional Lennard-Jones (LJ) fluid,
that the DDFT is fundamentally flawed and that in reality, as represented by
many-body simulations, recognizing the flow field as a further relevant degree of
freedom is required to represent true nonequilibrium. These conclusions are
based on analytical power functional approximations, adaptive BD simulation
data, and explicit machine learning of the power functional map from motion to
the interparticle one-body force field. Neglecting the dependence on the velocity
field, via artificially setting its value identically to zero, reduces to the
machine-learned functional mapping and hence the adiabatic time evolution of
DDFT, albeit here on the basis of the quasi-exact adiabatic forces as they are
included in the supervised machine learning.

This Perspective is organized as follows. We first make some key aspects of
DDFT explicit in section 2 and describe several prominent shortcomings of this
theory. We then give an account of how to go towards the formally exact
one-body dynamics in section 3 and provide in section 4 a description of key
aspects of the power functional framework, which as we wish to argue overcomes
the fundamental defects of DDFT. We describe the exemplary stationary
compressional flow situation in section 5 and lay out the application of Noether’s
theorem in this statistical mechanical setting in section 6. We present machine
learning results for the kinematic functional relationships of the streaming LJ
fluid in section 7. This method also yields direct access to the adiabatic force
field, as is required for the DDFT time evolution, without the need for involving
any prior explicit analytical approximations for the free energy density functional.
We give conclusions and an outlook in section 8. Readers who are primarily
interested in the machine learning aspects of our work (section 7) are welcome
to skip to the appendix where we lay out our strategy of its use in predicting and
designing nonequilibrium many-body dynamics in soft matter.

2. Limits and limitations of adiabatic dynamics

We go into some detail and describe why the DDFT represents adiabatic
dynamics in the sense of a temporal sequence of spatially inhomogeneous
equilibrium states. The equilibrium intrinsic free energy functional splits
into ideal and excess (over ideal gas) contributions according to
F[ρ] = Fid[ρ] +Fexc[ρ]. Here the excess free energy functional Fexc[ρ] accounts
for the effects of the interparticle interactions on the equilibrium properties of the
system and it is in general unknown and requires approximations to be made. The
ideal gas free energy functional however is exactly given by

Fid[ρ] = kBT
ˆ

drρ(r)[ln(ρ(r)Λ3)− 1], (3)

where kB denotes the Boltzmann constant, Λ is the thermal de Broglie
wavelength, and we consider three-dimensional systems. The functional
derivative, as it is relevant for equation (1), is δFid[ρ]/δρ(r) = kBT ln(ρ(r)Λ3).
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When disregarding the excess contribution and inserting this result alone
into the DDFT equation of motion (1), its right hand side becomes
γ−1∇· ρ(r, t)∇[kBT ln(ρ(r, t)Λ3)+Vext(r, t)] with the dependence on Λ being
irrelevant due to the spatial gradient operation. The result can be re-written
further such that for the case of the ideal gas, where Fexc[ρ] = 0 and F[ρ] = Fid[ρ],
the equation of motion (1) attains the following form:

∂ρ(r, t)
∂t

= D0∇2ρ(r, t)−∇ · ρ(r, t)fext(r, t)/γ. (4)

Here D0 = kBT/γ is the diffusion constant, ∇2 is the Laplace operator and the
external force field is given (here) as fext(r, t) =−∇Vext(r, t). Equation (4) is
the exact drift-diffusion equation for overdamped motion of a mutually
noninteracting system, i.e. the ideal gas.

Besides Evans’ original proposal [4] based on the continuity equation and
undoubtedly his physical intuition, derivations of the DDFT (1) were founded
much more recently on Dean’s equation of motion for the density operator [5], the
Smoluchowski equation [24], a stationary action principle for the density [25], the
projection operator formalism [26], a phase-space approach [27], the mean-field
approximation [28], a local equilibrium assumption [29], and a non-equilibrium
free energy [30]. The question of the well-posedness of the DDFT was addressed
[31] and several extensions beyond overdamped BD were formulated, such as
e.g. for dynamics including inertia [32–35] and for particles that experience
hydrodynamic interactions [35, 36] or undergo chemical reactions [37, 38].

The DDFT was also used beyond the description of fluids, such as e.g. for
opinion dynamics [39] and epidemic spreading [40]. Recent reviews of DDFT are
given in [41, 42], with [42] giving an updated overview of several very recent
directions. The theory is put into a wider perspective, together with much
background pedagogical material in [43]. A modern and well-accessible account
of the general strategy of dynamical coarse-graining in statistical physics, of
which the DDFT can be viewed as being a representative, has recently been given
by Schilling [44].

The fact that both the static limit for the fully interacting system (2) as well as
the full dynamics of the noninteracting system (4) are exact, taken together with
the heft of the DDFT literature, appears to give much credibility to the equation
of motion (1). However, despite the range of theoretical techniques employed
[5, 24–30] neither of these approaches has provided us with a concrete way of
going beyond equation (1). Apart from several case-by-case and rather ad hoc
modifications, no systematic or even only practical identification of what is
missing has been formulated. (We turn to power functional theory in section 4.)
This is a problematic situation as two defects of equation (1) are immediately
obvious upon inspection: (i) the description is local in time and there is no natural
mechanism for the inclusion of memory while time-locality is not sufficient for
general nonequilibrium situations; (ii) only flow that leads to direct changes in the
density profile is captured and hence effects of rotational flow, such as shearing,
as well as of nonequilibrium effects in compression and expansion are lost (see
below).

Here we argue that these defects are indicative of a broader failure of
equation (1) to describe nonequilibrium physics. We show that the DDFT is only
fit to describe situations in which the dynamics follow an adiabatic path through a
sequence of equilibrium states. The description of genuine nonequilibrium
dynamics in a functional setting on the one-body level rather requires recognition
of the local velocity field as a further relevant physical variable besides the density
profile, and this is provided by power functional theory [43]. Before laying out
key principles of this approach in section 4, we first describe the microscopically
sharp coarse-graining on the one-body level of correlation functions.
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3. Towards exact one-body dynamics

Evans based his original derivation [4] of equation (1) on the continuity equation,

∂ρ(r, t)
∂t

=−∇ · J(r, t), (5)

where J(r, t) is the microscopically resolved one-body current distribution.
Equation (5) is exact in a variety of contexts, including overdamped BD, as
described either on the Fokker–Planck level by the Smoluchowski equation or by
the corresponding overdamped Langevin equation that governs the trajectories, as
they are realized in simulation work [7]. For BD the one-body current distribution
is given exactly by [43]:

γJ(r, t) =−kBT∇ρ(r, t)+Fint(r, t)+ ρ(r, t)fext(r, t). (6)

This identity expresses the force density balance of the negative friction force
density (left hand side) with the force densities due to ideal thermal diffusion,
interparticle interactions, and external influence (three contributions on the right
hand side). Here the interparticle force density distribution is given by the
statistical average

Fint(r, t) =−
〈∑

i

δ(r− ri)∇i u(rN)
〉∣∣∣

t
, (7)

where the angular brackets indicate an average at fixed time t over the
nonequilibrium many-body distribution, u(rN) is the interparticle interaction
potential that depends on all particle position coordinates rN ≡ r1, . . . ,rN and ∇i

indicates the derivative with respect to the position ri of particle i. The
formulation of equation (7) is based on the concept of static operators and a
dynamically evolving probability distribution. This is analogous to the
Schrödinger picture of quantum mechanics. The Heisenberg picture is more
closely related to simulation work. Here the probability distribution is that of the
initial microstates and the operators move forward in time, i.e. the position ri(t)
of particle i changes over the course of time. Then the Dirac distribution in
equation (7) becomes δ(r− ri(t)), with the generic position variable r however
remaining static. The forces are those that act in the given microstate rN(t) at time
t, i.e. the interparticle force on particle i at time t is −∇i u(rN(t)).

In practice, using BD simulations, carrying out the average in equation (7)
requires to build the mean over sufficiently many separate realizations of the
microscopic evolution of the many-body system that differ in the initial microstate
(as e.g. drawn from an equilibrium ensemble) and in the realization of the thermal
noise. As equation (7) measures both the probability to find particle i at position r
(via the delta function) and the interparticle force that acts via the negative
gradient −∇i u(rN), we refer to Fint(r, t) as a force density. The corresponding
force field fint(r, t) is obtained by simple normalization with the density profile,
i.e. fint(r, t) = Fint(r, t)/ρ(r, t). Building this ratio scales out the probability effect
and the force field then carries physical units of force, i.e. energy per length.

In equilibrium the definition (7) remains intact. Complementing the statistical
average, static density functional theory allows to express the equilibrium force
density as being functionally dependent on the density profile via the functional
derivative of the excess free energy functional according to:

Fint(r)
∣∣
eq
=−ρ(r)∇δFexc[ρ]

δρ(r)
. (8)
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Crucially, and in contrast to equation (7), here the internal force density is directly
expressed as a density functional. This dependence has superseded the original
dependence on the external potential, as is manifest in the probability distribution
for building the average (7) in equilibrium.

As a self-consistency check we insert the force density functional (8) into the
equilibrium limit of the force density balance (6). The current vanishes in the
equilibrium case, J(r, t)≡ 0, and we obtain

−kBT∇ρ(r)+Fint(r)|eq + ρ(r)fext(r) = 0. (9)

This result is independent of time and it constitutes the gradient of
the static Euler–Lagrange equation (2) when divided by the density profile.
(Insert equation (8), identify the ideal gas contribution −kBT∇ρ(r) =
−ρ(r)δFid[ρ]/δρ(r), and divide by ρ(r).) The classical force density balance
result (9) by Yvon, Born and Green [3] has recently been derived from
systematically addressing thermal Noether invariance [45, 46] against locally
resolved spatial deformations of the statistical ensemble [47–49], as also valid
quantum mechanically [49] and at second order in the displacement field [50, 51];
we give a brief account of this theory in section 6 below.

A naive transfer of equation (8) to nonequilibrium lets one simply evaluate the
equilibrium excess free energy functional at the instantaneous nonequilibrium
density ρ(r, t). In order to separate this contribution from true static equilibrium,
we refer to this force density as being adiabatic (subscript ‘ad’) and to be defined
as

Fad(r, t) =−ρ(r, t)∇δFexc[ρ]

δρ(r, t)
. (10)

We recall that the right hand side offers a concrete computational structure that is
of practical usefulness in actual applications, as considerable knowledge about
approximative forms of the excess free energy density functional Fexc[ρ] is
available. Using the adiabatic force density as a proxy for the true nonequilibrium
intrinsic force density distribution (7), i.e. setting Fint(r, t) = Fad(r, t) in the force
density balance (6) together with the continuity equation (5) leads to the DDFT
equation of motion (1). The adiabatic force density approximation is uncontrolled
though and the theory inherently yields the dynamics as an adiabatic sequence of
equilibrium states. Surely, more than 40 years after the conception of the DDFT
[4], we have to be able to do better!

4. Power functional techniques

Power functional theory [43] offers a concrete mathematical structure to go
forward. We describe the essential steps that enable one to go beyond the DDFT
and to hence address a significantly expanded realm of nonequilibrium physics
which equation (1) is oblivious of.

The interparticle force density profile (7) is identified to consist of two
contributions according to:

Fint(r, t) = Fad(r, t)+Fsup(r, t). (11)

Here Fad(r, t) is the adiabatic force density profile, as given formally via the
explicit equilibrium free energy derivative (10) and directly accessible in
simulations via the custom flow method [52, 53]. The custom flow algorithm
allows to systematically construct a hypothetical adiabatic (equilibrium) system
that shares its density profile with the nonequilibrium system at the given time.
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Then sampling the internal force density in the adiabatic system yields results for
Fad(r, t).

The second, superadiabatic contribution in equation (11), Fsup(r, t), contains
all effects that are not expressible as an instantaneous density functional. This
includes forces that lead to viscous and to nonequilibrium structure forming
phenomena, as we exemplify below in a concrete model compressional flow
situation. Formally, the superadiabatic force density is generated from the
superadiabatic excess free power functional Pexc

t [ρ,J] upon functional
differentiation with respect to the one-body current via [43, 54]:

Fsup(r, t) =−ρ(r, t)
δPexc

t [ρ,J]
δJ(r, t)

. (12)

The functional dependence of Pexc
t [ρ,J] on the density and current is causal,

i.e. on the values of these fields at prior times to t; density and current need to
satisfy the continuity equation. Upon using equation (11) the force density
balance (6) attains the following form:

γJ(r, t) =−kBT∇ρ(r, t)+Fad(r, t)
+Fsup(r, t)+ ρ(r, t)fext(r, t). (13)

This relationship holds beyond gradient forms of fext(r, t), i.e. for external force
fields that contain non-conservative contributions. Crucially, Fsup(r, t) will in
general also acquire nonconservative contributions, such as e.g. damping effects
that represent viscous behaviour. Moreover, nonequilibrium structure-forming
effects will also arise in general. These affect directly the shape of the density
profile, whether this evolves in time or persists in a nonequilibrium steady state.

If one wishes to eliminate the explicit occurrence of the current from the
dynamics, then inputting the force density balance (13) into the continuity
equation (5) leads to the following formally exact form of the equation of motion
for the density profile:

∂ρ(r, t)
∂t

= D0∇2ρ(r, t)+∇· ρ(r, t)
γ

∇δFexc[ρ]

δρ(r, t)

−∇ · ρ(r, t)
γ

[fsup(r, t)+ fext(r, t)]. (14)

Here it is apparent that the superadiabatic force field fsup(r, t) = Fsup(r, t)/ρ(r, t)
has a direct effect on the system dynamics. The effect is similar to that of the
external force field. Crucially though, both force fields are independent of each
other: the external force field represents a prescribed and inert influence on the
system. In contrast, the superadiabatic force field is an emergent phenomenon that
arises due to interparticle interactions and, from the functional point of view,
depends non-locally in position and causally in time on the one-body density and
on the current profile.

Although setting fsup(r, t) = 0 yields the DDFT (1), the superadiabatic force
field fsup(r, t) was demonstrated to exist [55–61] and in general to play a major
role in the dynamics on the one-body level and, based on test-particle concepts
[62–67], two-body correlation functions [68–70], and for active matter [71–75].
Both the flow properties as well as the spatial structure formation in the system
are affected.

To reveal additional physics, it is useful to split into ‘structural’ and ‘flow’
contributions. This was established e.g. for complex flow patterns that occur in
driven BD [56, 60], for active Brownian particles which form a self-sustained
interface at motility-induced phase coexistence [71–75], as well as very recently
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for a sheared three-body colloidal gel former [61]. Before we demonstrate these
concepts for an example of steady nonequilibrium below, we first describe two
simple model power functionals that respectively generate structure and
viscously dampen the motion and that, as we will see, give a good account of the
nonequilibrium flow considered below.

We concentrate on the low-order terms that are relevant for compressional/
extensional flow, i.e. for situations where ∇· v(r, t) ̸= 0. We focus on cases where
there is no rotational motion (such as shearing) and hence ∇× v(r, t) = 0. The
velocity gradient superadiabatic power functional consists of a sum,

Pexc
t [ρ,v] = Pflow

t [ρ,v] +Pstr
t [ρ,v]. (15)

Here the flow and structural [56, 60] contributions are approximated, respectively,
by the following time-local (Markovian) and space-semilocal (i.e. involving ∇)
forms

Pflow
t [ρ,v] =

η

2

ˆ

dr[ρ(r, t)∇· v(r, t)]2, (16)

Pstr
t [ρ,v] =−χ

3

ˆ

dr[ρ(r, t)∇· v(r, t)]3, (17)

where the overall prefactors η and χ control the respective magnitude and they
play the role of transport coefficients (see below). The flow functional (16) is
quadratic both in density and in the velocity field; the structural functional (17) is
of cubic order in each of these variables. Explicit higher-order functionals exist
[60] and they become relevant when driving the system strongly. We will return to
the consequences of equations (16) and (17) after laying out in section 5 the
actual flow situation that we use as a model to exemplify the implications for the
physics. Before doing so, we briefly describe several further key aspects of the
power functional framework.

Power functional theory provides a formal mechanism for the inclusion of
time- and space-nonlocal dynamics [57, 69, 80]. While equation (12) applies to
overdamped dynamics, the acceleration field becomes a further relevant degree of
freedom if inertia are relevant [79–82] whether classically in molecular dynamics
[79, 80] or in quantum dynamics [81, 82]. Here the memory functions act as
convolution kernels on specific kinematic fields and rotational and compressional
contributions to the dynamics are genuinely built in. As laid out above, the
framework is based on an exact variational concept [43, 54], and the resulting
functional mapping was shown to be explicitly accessible in many-body
simulation via the custom flow computer simulation method [52, 53].

Even simple mathematical model forms for the nonequilibrium contribution to
the power functional, such as equations (16) and (17), already capture essential
physics (as we demonstrate below) and dynamical two-body correlation functions
are accessible via test particle dynamics [9, 10, 62–70]. The power functional is
thereby not to be confused with the often vague concept of a ‘nonequilibrium free
energy’. The proper equilibrium free energy functional does play a central role in
power functional theory though, via providing the description of the adiabatic
reference state [43], see the generation of the force density distribution via
functional differentiation (10), as is relevant for the interparticle force
splitting (11), and the full density equation of motion (14).

The relevance of superadiabatic contributions to the dynamics, i.e. of those
effects that lie beyond equation (1), has been amply demonstrated in the literature
[55–60, 68–70]. Both adiabatic and superadiabatic effects arise from integrating
out the dynamical degrees of freedom of the many-body problem.
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Ensemble differences between canonical dynamics and grand canonical
equilibrium have been systematically addressed [76–78] and these do not account
for the observed differences between adiabatic and superadiabatic dynamics. The
kinematic dependence on the motion of the system arises formally [43], it can be
explicitly traced in many-body computer simulation work [60], and it is amenable
to machine learning, as we demonstrate in section 7. Before doing so, we first
formulate the representative flow problem that we will use to apply the above
concepts.

5. Nonequilibrium steady states

We restrict ourselves to flow situations with one-body fields that are
inhomogeneous in position but independent of time, i.e. ρ(r) and v(r). Then
trivially ∂ρ(r)/∂t= 0 and the continuity equation (5) constrains both fields to
satisfy ∇· [ρ(r)v(r)] = 0. As a representative case we illustrate in figure 1(a)
nonequilibrium steady state of a three-dimensional liquid undergoing
unidirectional compressional flow. Flow along a single given direction occurs
e.g. under the influence of gravity, where sedimentation of colloids leads to both
compression in the lower parts of the sample and expansion in the upper parts of
the sample. Here we disregard transient phenomena and investigate an idealized
periodic system, where flowing steady states can form.

This chosen uniaxial flow in planar geometry is complimentary to DDFT, as
density gradients are relevant and the density profile alone already contains much
non-trivial information about the dynamics that the system undergoes. Hence this
specific geometry is often used to carry out generic tests; see e.g. the investigation
of the quality of force-based DDFT [47, 48]. In contrast, shear flow is very
different, as any motion that occurs perpendicular to the density gradient is not
captured by equation (1); we refer the reader to [41, 42] for a description of
efforts to include these effects within DDFT via different types of modifications
of equation (1).

In order to elucidate the physics in the chosen uniaxial compressional setups,
we follow the splitting (15) of the superadiabatic power functional into structural
and flow contributions and hence decompose the superadiabatic force field
accordingly as

fsup(r) = fstr(r)+ fflow(r), (18)

where the right hand side consists of the nonequilibrium structural force field
fstr(r) and the flow force field fflow(r). Both of these force contributions arise
from the microscopic interparticle interactions, as coarse-grained in a
microscopically sharp way to the one-body level. We lay out in the following the
benefits of the structure-flow splitting (18) and its definition via flow reversal
symmetry.

First, on the more practical level, equation (18) allows to carry out a
corresponding splitting of the force density balance (13) (we divide by ρ(r) to
obtain force fields). The result is a set of two coupled equations of motion, with
one of them depending explicitly on the velocity profile and the second one
depending explicitly on the density profile:

γv(r) = fflow(r)+ fext,f(r), (19)

0= fstr(r)− kBT∇ lnρ(r)+ fad(r)+ fext,s(r). (20)

Building the sum of equations (19) and (20) and multiplying by the density
profile restores the full force density balance (13). The external force field is split

9

6.8 “Perspective: How to overcome dynamical density functional theory”

125



J. Phys.: Condens. Matter 35 (2023) 271501 Perspective

Figure 1. Illustration of unidirectional compressional flow of a liquid. The three-dimensional
system is set into motion (red arrows) by the action of an external force profile fext(x) (blue arrows)
which acts along the x-axis. The system retains planar geometry such that spatial inhomogeneities
only occur as a function of x. The density profile ρ(x) (orange curve) and the velocity profile v(x)
(red curve) are both stationary in time but inhomogeneous in position. The local one-body current
J(x) = ρ(x)v(x) = const and as a result the system is in a nonequilibrium steady state. The
corresponding adiabatic system is in equilibrium (it has no mean flow) and it has by construction an
unchanged density profile ρ(x). In the adiabatic system the spatial variation of ρ(x) is stabilized by
the action of an external force field −∇Vad(x) (olive arrows), which acts solely in the adiabatic
system.

according to fext(r) = fext,f(r)+ fext,s(r), where the two terms couple to the flow
via fext,f(r) in equation (19) and to the structure via fext,s(r) in equation (20).

On the superficial level the two equations (19) and (20) appear to be
independent of each other, as no single field appears explicitly in both equations.
However, the two equations are indeed intimately coupled to each other by the
interparticle interactions, as represented by both the adiabatic and the two
superadiabatic (flow and structural) force fields. These three intrinsic force
contributions provide the physical representation of the true nonequilibrium
steady state dynamics.

The flow-structure splitting (18) is uniquely determined by the symmetry
properties of the forces upon motion reversal of the system [60]. Motion reversal
is a discrete symmetry operation, and hence different from continuous invariances
where Noether’s theorem applies [45–51]. One considers a ‘reversed’ system,
which is also in steady state and possesses an unchanged density profile ρ(r). The
flow, however, is directed against the velocity orientation in the original ‘forward’
system. Hence the velocity profile in the reversed system is simply −v(r). As a
result the current also acquires a minus sign, −ρ(r)v(r), which however does not
affect the (vanishing) divergence, ∇· [−ρ(r)v(r)] = 0. Thus the reversed state
indeed is stationary. The two superadiabatic contributions are then defined
to be unchanged [fstr(r)] and inverted [−fflow(r)] in the reversed system.
Consequentially, the superadiabatic force field in the reversed system is the
difference fstr(r)− fflow(r).

Analyzing the symmetry properties of the adiabatic force field is
straightforward. We recall that fad(r) is a density functional via equation (10).
The density profiles in the forward and in the reversed systems are identical
though. Hence fad(r) is invariant under motion reversal. Motion reversal is a
useful device in order to (i) rationalize the nonequilibrium behaviour according to
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the split force balance (19) and (20), and to (ii) classify the dependence of
superadiabatic forces on the velocity field into even powers, which constitute
fstr(r), and odd powers, which form fflow(r).

We can demonstrate this mechanism explicitly on the basis of the above flow
and structural power functionals (16) and (17). Superadiabatic force fields are
generated via the functional derivative (12) with respect to the current or,
analogously, by functionally deriving by v(r, t) and dividing the result by ρ(r, t).
The resulting superadiabatic one-body force field consists of two components.
The viscous flow force and [56, 59] and the structural force follow respectively as

fflow(r) =
η

ρ(r)
∇[ρ(r)2∇· v(r)], (21)

fstr(r) =− χ

ρ(r)
∇{ρ(r)3[∇· v(r)]2}, (22)

where equation (21) is odd (linear) and equation (22) is even (quadratic) in the
derivatives of the velocity field, as desired and we re-iterate that both expressions
are only valid for small enough velocity gradients.

One might wonder where all this genuine nonequilibrium physics leaves the
DDFT! Some readers will find the instantaneous dynamics, as generated from an
adiabatic free energy according to (1), to be more appealing and intuitive than
the thinking in terms of the above described apparently intricate functional
relationships. Why not live with equation (1), use it, and simply accept its
defects? In order to address this question and to demonstrate why this path is
severely restricted from the outset, we turn in section 7 to an explicit
demonstration of the functional relationship that governs the nonequilibrium
physics, i.e. the kinematic functional map from the one-body mean motion to the
internal force field. Before doing so, we demonstrate that Noether’s theorem of
invariant variations has much to say about our present setup.

6. Noether force sum rules

We discuss one of the arguably simplest cases of exploitation of the inherent
symmetries of a thermal many-body system, that of global translational invariance
of its statistical mechanics [45, 46]. We consider a ‘shifting’ transformation,
where all particle coordinates change according to the map ri → ri + ϵ, where
ϵ= const. This uniform shifting operation leaves all interparticle distance
unchanged, ri− rj → (ri+ ϵ)− (rj+ ϵ)≡ ri− rj. As a consequence the
interparticle potential is invariant under the transformation, which we can express
as the identity u(r1, . . . ,rN) = u(r1 + ϵ, . . . ,rN+ ϵ). Here equality holds
irrespectively of the magnitude and the direction of the shifting vector ϵ.

The Noether argument proceeds with a twist. Despite the absence of
dependence on ϵ, we can nevertheless differentiate both sides of the equation
with respect to ϵ and the result will be a valid identity. We obtain
0= ∂u(ri+ ϵ, . . . ,rN+ ϵ)/∂ϵ=

∑
i ∇i u(r1, . . . ,rN), where we have set ϵ= 0

after taking the derivative. We multiply by −1 and insert 1=
´

drδ(r− ri), which
yields

−
ˆ

dr
∑

i

δ(r− ri)∇i u(rN) = 0. (23)

The expression on the left hand side allows to identify the locally resolved
interparticle force operator F̂int(r) =−∑

i δ(r− ri)∇i u(rN), such that
equation (23) attains the form

´

drF̂int(r) = 0. This identity holds for each
microstate rN and hence it remains trivially valid upon averaging over the
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many-body distribution function, irrespective of whether this is in- or
out-of-equilibrium. We can hence conclude the vanishing of the global
interparticle force, expressed as the integral over the mean force density
Fint(r) = ⟨F̂int(r)⟩ as

ˆ

drFint(r, t) = 0. (24)

Equation (24) holds at all times t and it can be viewed as a consequence of
Newton’s third law, see the discussion in [45]. Using the adiabatic-superadiabatic
force splitting (11) one can further conclude that the both global contributions
need to vanish individually,

ˆ

drFad(r, t) = 0, (25)

ˆ

drFsup(r, t) = 0. (26)

The proof can either be based on the fact that equation (25) is merely
equation (24) for the special case of an equilibrium system, from which then
equation (26) follows from the force splitting (11). Alternatively and starting
from a very fundamental point of view, the global translational invariance of the
excess free energy functional Fexc[ρ] and of the superadiabatic free power
functional Pexc

t [ρ,v], here considered instantaneously at time t, lead directly
to equations (25) and (26), see [45, 46] for detailed derivations.

It is interesting to apply the Noether concept to the flow-structure splitting
equation (18) of the superadiabatic force field. One can see straightforwardly,
from the symmetry upon motion reversal, that both the global structural force and
the global flow force need to vanish individually:

ˆ

drρ(r)fflow(r) = 0, (27)

ˆ

drρ(r)fstr(r) = 0. (28)

We prove by contradiction and assume that it is not the case, i.e. that each integral
gives the same global force, but with opposite sign, such that the sum vanishes
and equation (26) remains valid. Per construction, fflow(r) changes sign in the
motion reversed system, but fstr(r) does not. Hence equation (26) can only be
satisfied in the motion-reversed system provided that both the flow and structural
contribution vanish separately.

We can explicitly test the validity of the sum rules (27) and (28) for the above
analytical force approximations (21) and (22). The respective integrals are
η
´

dr∇[ρ(r)2∇· v(r)] = 0 and χ
´

dr∇{ρ(r)3[∇· v(r)]2}= 0, which follows
from the divergence theorem, as boundary terms vanish. Hence the simple
non-local velocity gradient power functional approximations (16) and (17) have
passed the global Noether validation test. This is nontrivial, as the proof rests on
the specific structure of the integrands being gradients, which for more general
analytical forms will not be the case. This exemplifies the merits of Noether sum
rules for assessing and by extension also constructing theoretical nonequilibrium
force approximations.

The Noether concept carries much further. Hermann and Schmidt [45] present
a generalization of the global sum rules, such as the vanishing of the total
superadiabatic force (26), for so-called time direct correlation functions. These
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are defined via functional derivatives of the superadiabatic power functional, in
generalization of the superadiabatic force density as generated via the
derivative (12) with respect to the current distribution. We have shown [45] that
these time direct correlation functions satisfy additional memory sum rules and
we expect the corresponding identities to be helpful in the study of temporal
nonlocality. Further work was addressed at the variance of global fluctuations,
which were shown to be constrained by Noether invariance at the second order
global level [50]. Noether’s theorem also yields the locally resolved force balance
relationship in quantum mechanical many-body systems [49]. Very recently,
striking two-body force-force and force-gradient correlation functions for the
precise and novel characterization of disordered (liquid and gel) systems [51]
were revealed. Exploiting Noether’s concept in a statistical mechanical setting is
robust against changes of ensemble, [46] presents the transfer of the grand
ensemble formalism [45] to canonical systems. Considering global rotational
invariance leads to (classical) spin–orbit coupling of torque identities [45].

We return to steady states and demonstrate that the seemingly entirely formal
functional relationships do in fact apply to real systems. We present in the
following new computational methodology that we use to demonstrate the
functional point of view. We will also demonstrate that the sum rules (26)
and (27) are highly valuable in providing checks for numerical results.

7. Machine learning the kinematic map

Machine learning proves itself to be an increasingly useful tool in a variety of
settings in soft matter, ranging from soft matter characterization [83], engineering
of colloidal self-assembly [84], to the inverse design of soft materials [85]. Pivotal
studies were addressed at colloidal structure detection [86], the identification of
combinatorial rules in mechanical metamaterials [87], the learning of many-body
interaction potentials for spherical [88] and for anisotropic particles [89], and the
prediction of the dynamics of supercooled liquids from their static properties [90].

Concerning slow dynamics, machine learning was used for obtaining
memory kernels for generalised Langevin dynamics [91], classifying the age [92],
assessing the structural heterogeneity [93], and investigating dimensionality
reduction of local structure [94] of glasses. Machine learning was applied to
equilibrium reactive processes such as molecular isomerization [95] and to the
behaviour of rare diffusive molecular dynamics trajectories [96].

Machine learning plays an important role in the inverse design for
self-assembly of soft materials [97, 98]. Examples thereof include
sequence-specific aggregation of copolymers [99], inverse design of
multicomponent colloidal crystals by reverse engineering the Hamiltonian of the
system [100], characterizing the self-assembly of three-dimensional colloidal
systems [101], controlling colloidal crystals via morphing energy landscapes
[102], and learning free energy landscapes using artificial neural networks [103].

In a liquid state theory-informed approach, Limmer and his coworkers have
considered potentials based on local representations of atomic environments, in
order to learn intermolecular forces at liquid-vapor interfaces [104]. They relate
their machine-learning approach to the local molecular field theory by Weeks and
coworkers [105, 106], see [107] for a description of the relationship of this
approach to DFT.

More specifically, in the context of classical density functional theory, an early
and pioneering study formulated a neural-network approach to liquid crystal
ordering in confinement [108]. Free energy density functionals were obtained for
one-dimensional fluids from a convolutional neural network [109] and an
analytical form of an excess free energy functional was generated from an
equation learning network [110]. Cats et al [111] recently used machine learning
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to improve the standard mean-field approximation of the excess Helmholtz
free-energy functional for a three-dimensional LJ system at a supercritical
temperature. These significant reserach efforts were devoted to tailoring
analytical forms of model free energy functionals, by training certain key
components such as spatial convolution kernels, and much insight into the inner
workings of excess free energy functionals was gained [109–111]. Very recent
developments include using physics-constrained Bayesian inference of state
functions [112] and to emulate functionals by active learning with error control
[113]. The results of DFT calculations were also used as training data for
investigating gas solubility in nanopores [114].

However, here we proceed very differently and moreover do so
out-of-equilibrium. We use the LJ model and the identical planar geometry
as in [111], such that the density profile ρ(x) depends only on a single position
coordinate x. We consider steady states and retain planar symmetry by
considering flow that is directed in the x-direction, such that the current
J(x) = J(x)ex, where J(x) is the magnitude of the current and ex is the unit vector
in the x-direction. Both the density profile ρ(x) and the velocity field
v(x) = J(x)/ρ(x) are independent of time. The continuity equation (5) then
implies 0= ∂ρ(x)/∂t=−∂[v(x)ρ(x)]/∂x, from which one obtains by spatial
integration ρ(x)v(x) = J0 = const. Here the value of J0 determines the intensity of
the flow; we recall the illustration shown in figure 1.

We base the machine learning procedure on a convolutional neural network, as
was done e.g. in [109], and following [109–111] we use many-body computer
simulations to provide training, validation, and test data. In contrast to these
equilibrium studies though, in order to address the nonequilibrium problem we
need to represent the physical time evolution on the many-body trajectory level.
We use the recently developed highly performant adaptive BD algorithm [7] and
apply it to the three-dimensional LJ fluid. As laid out above, in order to address
situations of planar symmetry we drive the system only along the ex-direction.
The specific form of the driving force field fext(x)ex is however irrelevant, as the
training data only serves to extract the intrinsic kinematic functional relationship.

In order to cover a sufficiently broad range of flow situations,
we represent the external force field as a truncated Fourier series
fext(x) =

∑nmax
n=0An sin(2πnx/L+Bn), where L is the size of the cubic simulation

box with periodic boundary conditions, An are random amplitudes with zero mean
and uniform distribution inside of a given finite interval, and Bn are random
phases. We truncate at order nmax = 4 such that the length scale L/(2πnmax) is
comparable to the LJ molecular size σ. Ten percent of our simulation runs are
carried out in equilibrium, i.e. for A0 = 0. We use N= 500 LJ particles inside of a
cubic simulation box of size L= 10σ. The temporal duration of each run is
1000τ , where τ = σ2/D0 is the Brownian time scale. After initialization the
system is randomized for 1τ at a very high temperature. Then we wait for 100τ to
allow the system to reach a steady state and then collect data during the remaining
time. In total we use 1000 such simulation runs; these are subdivided for purposes
of training (520), validation (280) and testing (200). The maximal current
encountered during training was J0σ2τ = 4.93. A more detailed account of our
machine-learning strategy is given in the appendix

Our aim is to machine-learn and hence to explicitly demonstrate the kinematic
map, ρ(r),v(r)→ fint(r) in steady state. We present the learning algorithm with
inputs ρ(x),v(x) and target fint(x). The data for these three fields are obtained
from building steady state averages via the adaptive BD over the corresponding
one-body operators. We recall the microscopic definition of the interparticle
one-body force density Fint(r) via equation (7) and we refer the reader to
appendix of [52] for a description of several methods to sample the current in BD
and hence obtain the overdamped velocity profile v(r). Finally, we use the
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standard counting method for the density profile ρ(r), although more efficient
‘force sampling’ methods [115–118] exist. At this stage we neither impose
adiabatic-superadiabatic splitting (11), nor structure-flow splitting (18), nor do we
use any analytical model form of the functional relationship. We rather work on
the level of the bare one-body simulation data, generated in the above described
randomized uniaxial flow situations of the desired planar symmetry.

We refer to the result of this procedure as the machine-learned internal force
field f ⋆int(x, [ρ,v]). This represents a ‘surrogate model’ in the sense of the
terminology of the machine learning community. By construction this data
structure depends functionally on the density profile and on the velocity profile.
Importantly the external force field fext(x), as given by the above described
randomized Fourier series, has not been used in the training, which was rather
based solely on the intrinsic force field and its kinematic dependence on the
density profile and the velocity field.

In order to test the validity of the functional relationship and to address the
question whether f ⋆int(x, [ρ,v]) indeed represents the true fint(r, t, [ρ,v]) of power
functional theory, as restricted to the present planar and steady situation, we
consider a toy flow situation as an application. We choose the density profile
to consist of a single (co)sinusoidal deviation from the bulk, ρ(x) = [0.5+
0.2cos(2π x/L)]σ−3. In order for the system to be in steady state, the velocity
then necessarily needs to satisfy v(x) = J0/ρ(x), where the strength of the current
J0 = const is a free parameter.

We proceed in two ways. First, we check for self-consistency. Therefore we
solve the force density balance relationship (6) for the external force field, which
yields the explicit result:

fext(x) = kBT
∂ lnρ(x)

∂x
+ γv(x)− f ⋆int(x, [ρ,v]). (29)

As is explicit in equation (29), inputting the toy state ρ(x), v(x) on the right hand
side yields a concrete machine learning prediction for the external force field on
the left hand side. We then input this result for fext(x) as the driving force field in a
single adaptive BD simulation run and expect this procedure to reproduce the
density and velocity profile of the toy state. The reproductive success will
however materialize only provided that (i) the functional kinematic dependence
actually exists and that (ii) it is accurately represented by the neural network.

The results, shown in figure 2, demonstrate the accomplishment of the
reconstruction of the toy state. This establishes that the machine learned
functional provides a numerically highly accurate representation of the true
internal force functional. That quantitative differences between results from direct
BD and from machine learning occur for the case of strongest flow (J0σ2τ = 5) is
not surprising, given that the value of the current is beyond the maximum
encountered during training (Jσ2τ = 4.93). However, despite the quantitative
deviations of the prediction for the interparticle force field, the qualitative
behaviour of the network remains entirely reasonable.

We take this validation via the machine learning to be a practical,
data-science-level verification of the existence of the power functional kinematic
map. We recall the original formal construction [43, 54] and its subsequent
confirmation via custom flow [52, 53].

Turning to the physics of the compressional flow, we use the
adiabatic-superadiabatic decomposition (11) together with the flow-structure
splitting (18) to analyze both the machine-learned functional f ⋆int(x, [ρ,v]) as well
as the direct simulation results. As anticipated, both flow and structural force
fields have nontrivial spatial variation, see figure 2. The flow force primarily
contains viscous effects that stem from the dissipation that the compressional and
extensional regions of the flow pattern generate. The structural force field
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Figure 2. Kinematic profiles and force fields for uniaxial compressional flow of the LJ fluid.
Results are shown from machine learning (lines) and from direct adaptive BD simulations
(symbols). Functional relationships are represented by vertical arrows. Shown are the density profile
ρ(x), the one-body current J(x) and the external force field fext(x) (top row) as a function of the
scaled distance x/σ, where σ is the LJ length scale and kBT/ϵ= 1.5 throughout. The density and
the current functionally determine both the interparticle force field fint(x) via the kinematic map and
the superadiabatic force field fsup(x) via the superadiabatic kinematic map (middle row). The
internal force field fint(x) splits into superadiabatic and adiabatic force contributions. The adiabatic
force field fad(x) is a density functional via the Mermin-Evans map of density functional theory. The
structural and flow force fields are split according to their symmetry upon motion reversal. The
colour code represents different values of the current J0σ2τ = 0,1,2,3,4,5 (from violet to yellow,
see the center panel in the top row). The two insets show the predictions from the analytical velocity
gradient functionals (21) and (22) on the same scale as the respective main panel; the transport
coefficients are chosen as η/(ϵτσ3) = 0.35 and χ/(ϵτ 2σ6) = 0.075 to give good agreement with
the quasi-exact data. The system with J0 = 0 is at rest in equilibrium and it doubles as the adiabatic
state because its density profile is identical to that of the flowing systems (as shown in the first
panel). The small differences in superadiabatic forces from BD and from machine learning for the
case of the highest current considered, J0σ2τ = 5, occur as this value is beyond those encountered
in the training data.

becomes more strongly inhomogeneous and also larger in magnitude upon
increasing the amplitude of the flow. This trend is necessary to provide a balance
for the increasingly asymmetric and growing external force field, which in turn is
required to keep the density profile unchanged upon increasing the throughput
through the prescribed density wave.

The power functional predictions (21) and (22) capture these effects
reasonably well given the simplicity of the analytical expressions, see the insets
in figure 2. We find our numerical results to satisfy the Noether sum rules (26)
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and (27) to very good accuracy. The values of the prefactors η and χ in
equations (21) and (22) characterize the dominant behaviour of the system in
response to spatial variation of the flow. The parameter η/(ϵτσ3) = 0.35
measures viscosity and χ/(ϵτ 2σ6) = 0.075 quantifies the strength of
nonequilibrium structure formation. We regard these amplitudes as being
well-defined transport coefficients, which will determine the leading behaviour of
the system in situations where higher-order gradient contributions are small or
even irrelevant. Using our methodology, the precise values of η and χ can be
obtained systematically from straightforward comparison to the data from the BD
simulations or the machine learning model.

It remains to point out the stark contrast with the standard DDFT (1), which
gives a trivial null result in the present setup by construction: the density profile
remains unchanged upon increasing flow, and so does the adiabatic force field. So
the DDFT provides no mechanism to account for the genuine nonequilibrium
physics; see the appendix for further details.

8. Conclusions

For the purpose of assessing the status of the DDFT equation of motion (1) we
have first described two exact limits that this approximation reproduces: the
dynamics of the noninteracting diffusive ideal gas (see equation (4)) and the
spatially inhomogeneous static equilibrium limit (see equation (2)). On general
grounds one expects the DDFT to perform well when the situation under
consideration is close to one of these limits. In particular near the static case this
is nontrivial, as the system might be dense and spatially highly structured, as
evident by a strongly inhomogeneous density profile. Provided that the dynamics
are driven weakly enough via a time-dependent external potential then the DDFT
[41, 42] can be a highly useful device, which enables one to describe the
temporal evolution as a chain of equilibrium states, labelled by time. As the
strictly static case (DFT) can correctly describe arbitrary spatial inhomogeneities,
such adiabatic time evolution can provide highly nontrivial information. It is
challenging, however, to know a priori whether or not the nonequilibrium
situation under investigation will be close to adiabatic. Leaving the use of bare
physical intuition aside, we are not aware of any simple quantitative criterion that
would allow one to judge a priori whether DDFT is reliable or not. In this sense,
the DDFT approximation can be viewed as being uncontrolled.

In general the contributions beyond the equilibrium physics will be relevant.
On the level of the formally exact one-body equation of motion (14), the
superadiabatic force field fsup(r, t) will then contribute and will potentially do
very significantly so. Together with the adiabatic force field, which follows from
the equilibrium excess free energy functional via −∇δFexc[ρ]/δρ(r, t), their sum
constitutes the full interparticle forces. These force fields are coarse-grained, in a
microscopically sharp way, to the one-body level of dynamical correlation
functions. We have argued (i) that power functional theory is a concrete formal
structure that allows to obtain fsup(r, t) from a generating functional and (ii) that
simple approximate forms already capture much relevant nonequilibrium physics
and they do so in a transparent and systematic way, and (iii) that machine learning
can be used as a practical representation.

We have described and exemplified for uniaxial steady compressional flow of
the three-dimensional LJ fluid the kinematic functional map that governs the
exact nonequilibrium dynamics on the one-body level of dynamic correlation
functions. As this description is based on a single position coordinate and a single
time variable, it is of both conceptual and practical simplicity. As described by
power functional theory the superadiabatic interparticle force field functionally
depends on the density and the velocity field, i.e. fsup(r, t, [ρ,v]), for overdamped
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Brownian motion. The functional dependence is causal, i.e. on the values of the
density profile and velocity field at previous times, in general up to an initial state.
The superadiabatic force field carries this kinematic dependence, i.e. on the
history of ρ(r, t) and v(r, t), but crucially it is independent of the external force
field that drives the system.

We have explicitly demonstrated the functional map ρ(r, t),v(r, t)→ fint(r, t)
by establishing this functional relationship via machine learning the intrinsic
force field. This includes as a special case the equilibrium map ρ(r, t)→ fad(r, t),
as it is relevant for the approximative adiabatic time evolution via the DDFT (1).
Using the force balance then gives direct access to the form of the required
external force field via equation (29). The machine-learned model of the
functional map hence enables ‘instant custom flow’ at negligible computational
cost at the time of use. We recall that the custom flow method [52, 53] is based on
the kinematic functional map, such that from knowing the kinematic one-body
fields, the external force field that is necessary to generate the given time
evolution follows straightforwardly from the exact force balance (6).

An analytical approach to one-body functional maps leads to the simple
structure of velocity gradient forms for the viscous and structural superadiabatic
forces, as exemplified in equations (16) and (17) for compressional flow, i.e. for
velocity fields with nonvanishing divergence. As we have shown, the resulting
predictions for the flow force (21) and for the structural force field (22) represent
a reasonable description of the simulation data and its representation via the
machine-learned functional. We attribute the remaining differences to
higher-order terms [60] which we have not addressed here for simplicity and
which we expect to become increasingly relevant under stronger driving. As we
have shown, our results from direct simulation, from machine learning, and from
the analytical approximations, satisfy exact global Noether sum rules.

We have restricted our discussion to a single and relatively easily accessible
type of nonequilibrium dynamics, that of stationary uniaxial compressional flow
that represents a model steady (batch) sedimentation situation. The power
functional approach allows to go much further, including the treatment of
viscoelasticity [57], as arising from superadiabatic memory, deconfinement under
shear [58], the dynamic decay of the van Hove pair correlation function as
governed by drag, viscous and structural forces [69, 70], and the complex forms
of both flow and structural forces that arise under spatially complex forms of
driving [60]. Time-dependent uniaxial flow is relevant in a variety of situations,
including colloidal stratification [119, 120] and sedimentation [121].

Although power functional theory operates on the one-body level of dynamical
correlation functions, two-body correlation functions are accessible both formally
via the nonequilibrium Ornstein–Zernike route [43] and explicitly by the
dynamical test particle limit. The latter is the dynamic generalization of Percus’
static test particle limit [62], which identifies two-point correlation functions,
such as g(r) as also recently shown to be intimatedly related to thermal Noether
invariance at second order [51], with one-body density profiles in an external
potential. This is set equal to the interparticle pair potential.

The dynamical test-particle limit goes further in that it describes the test
particle via its own dynamical degrees of freedom, which are coupled to those of
all other particles in the system. The concept was originally formulated as an
approximation within DDFT [63, 64] and formally exactly within power
functional theory [67]. Two-body superadiabatic effects were shown via
simulation work to be significant [68–70] and they arise naturally in an exact
formulation of the test particle dynamics [67]. The test particle limit allowed for a
rationalization of the dynamical pair structure as e.g. experimentally observed in
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two-dimensional colloids [10]. Recently an approach to DDFT based on the
two-body level was formulated [122] and earlier work was addressed at
construction of dynamical density functional theories from exactly solvable limits
[123]; we recall that [41, 42] provide exhaustive overviews. In event-driven BD
simulations superadiabatic forces were shown to consist of drag, viscous, and
structural contributions [69, 70]; see [43] for an extended discussion. The physics
of active particles [71–75] is very significantly governed by a vigorous interplay
between superadiabatic and adiabatic forces, both of which are very strong, as the
tendency of these systems to self-compress leads naturally to very high local
densities.

Furthermore, relevant and interesting microscopic models that go beyond the
simple fluid paradigm of a pair potential, such as the monatomic water model by
Molinero and Moore [124, 125] and the three-body gel by Saw et al [126, 127],
are accessible. Despite the complexity of both its defining Hamiltonian and the
intricate transient network structure, the inhomogeneous viscous response
of the three-body gel was recently demonstrated [61] to be surprisingly well
captured by a simple power functional flow approximation. We finally recall that
superadiabatic effects transcend overdamped dynamics, and are relevant both in
quantum dynamics [43, 81, 82] and in classical molecular dynamics [43, 79, 80].

While we have restricted ourselves to discussing the point of view of
functional relationships, it would be interesting to explore in future work possible
cross connections to other theoretical approaches, such as Onsager’s variational
principle for soft matter [128–131], stochastic thermodynamics [132], large
deviation theory [133, 134], mode-coupling theory [135, 136], generalized
hydrodynamics [137], local molecular field theory for nonequilibrium systems
[138], as well as to the physics of nonequilibrium phase transitions [139],
Brownian solitons [140], and crystal dynamics [141–144] and non-isothermal
situations [145]. Implications of the machine-learning methodology are
summarized at the end of the appendix.
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Appendix. Simulation and training details

Initialization

The nonequilibrium many-body physics that we investigate falls into the class of
temporal initial value problems. This holds true both on the full many-body
(phase space) level, as accessible via the simulations or formally via the
Smoluchowski equation [43], as well as on the reduced one-body level of the
temporal kinematic fields, i.e. the time-dependent density profile and current
distribution. Evidently one-body initial data needs to be available in order to start
the time evolution according to either the approximate DDFT (1) or the formally
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exact power functional equation of motion (14). In typical applications of one of
these frameworks to a dynamical problem, the system is taken to be in an
equilibrium state at a starting time t0 such that the current vanishes and the
density profile is known. Standard ways [146] to specify an initial state include
choosing the bulk and possibly applying (simple) external fields and letting the
system relax therein. The DFT point of view allows for more general
initializations as one can choose an equilibrium system with an arbitrary spatially
inhomogeneous density profile ρ(r, t0) as the starting point.

We recall from section 1 that for an equilibrium system with given interparticle
interactions, knowledge of the density profile [in the present case ρ(r, t0)] is
sufficient to formally exactly determine all static thermal properties. This fact [4,
150] constitues one of the major virtues of static DFT. Leaving representability
issues aside, prescribing a (physically sensible) form of ρ(r, t0) is feasible, as one
can picture this as being generated by an appropriate form of corresponding
external potential Vext(r, t0), where t0 acts as a mere label to specify the initial
state. As laid out above in section 1, the description formally requires to have
access to the free energy density functional F[ρ], which implicitly contains the
full static information about the thermal physics of the system.

In particular, the equilibrium many-body probability distribution function
Ψ(rN, t0) is uniquely determined, for given interparticle interactions and given
knowledge of the density profile [3, 4, 150]. (In the notation we have dropped the
dependence on momenta, which is trivial in the present situation.) One pictures
the system to have been in the same equilibrium state also at all prior times t< t0
and having undergone time evolution in this quiescent state up to t0. As an aside,
the equilibrium dynamics can then be characterized for bulk liquids on the
two-body level by the van Hove dynamical correlation function [3, 63–70,
147–149], with much recent progress from the power functional point of
view [69, 70].

Obtaining a statistical description requires in principle to average over the
initial distribution of microstates. In the context of many-body simulations, in
practice this necessitates to carry out a sufficient number of independent
realizations of the time evolution that is under consideration. Representative
studies relied on e.g. 104 realizations for the transient dynamics of hard spheres
under a temporally switched shear field [57], and on 2× 106 realizations [80] for
investigating superadiabatic acceleration effects that occur in Molecular
Dynamics. There are also special cases, such as test particle concepts that allow
efficient sampling of the bulk van Hove function via building moving averages
[69, 70]. We also point out work [151, 152] which address the initial state
dependence in the context of quantum mechanical time-dependent density
functional theory.

Steady states

In the present model situation of uniaxial compressional steady flow (we recall its
graphical illustration in figure 1) there is no need to temporally resolve the
one-body fields, as these are invariant in time. Hence we proceed in the standard
way of replacing the average over an ensemble of inital states with a temporal
average over a single trajectory of sufficiently long duration. Recalling the details
that are given in section 7, we average over time evolutions each with duration
1000τ , with τ = σ2/D0 denoting the Browian time scale for self diffusion with
diffusion constant D0 = kBT/γ, where γ is the friction constant against the
background. The strategy of identifying temporal and ensemble averages relies on
having an ergodic system of which the time evolution indeed explores the entirety
of the ensemble. As we deal with a liquid in the present illustrative case, we
expect ergodicity to hold.
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In order to validate this expectation, we have investigated the possibility of
dependence of the steady state results on the initial state of the simulation; see
figure 3 for illustrations of the chosen four different (crystalline and disordered)
microstates. We recall that we evolve the system over a waiting time of 100τ
before starting to sample the one-body correlation functions. The resulting steady
state profiles, see figure 3, bear no traces of the different initialization, and the
data of each of the four runs collapse onto each other. As this behaviour is already
observed on the level of starting with individual differing microstates, we expect
no changes if we were to start with a representative sample of, say 104,
microstates in order to numerically approximate an entire distribution.

Training procedure

The results shown in figure 3 also serve to illustrate our training procedure in
more detail. We use randomized forms of the external force field fext(x) via
superimposing Fourier modes that are compatible with the box size L via:
fext(x) =

∑nmax
n=0An cos(2πnx/L+Bn), which we cut off at nmax = 4. The

amplitudes An and phases Bn are generated randomly within a cutoff, which i)
makes the specific training protocol free of having to perform manual choices and
ii) removes any further bias thus easing the interpretation of the quality of the
machine learning predictions. Our currently adopted random training strategy is
suited to investigate issues of generality, universality and transferability both of
the underlying mathematical structure of power functional theory and of its
presently proposed specifically tailored implementation via supervised machine
learning. Nevertheless, as our supervised learning procedure is general, one could
well tune for specific applications and rather train on the basis of situations that
are close to the eventual use of the network, see e.g. [111] for a corresponding
enlightening study.

Our supervision protocol operates on the level of the simulation output in a
specifically organized way of (functional) dependencies of the obtained
histograms that represent the one-body distributions. All three involved functions
are taken from straightforward sampling in adaptive BD. The density profile ρ(x)
is obtained from the standard counting method. (We recall reduced-variance
sampling techniques such as force sampling [115–117], which could help in
acquiring numerical training data more efficiently.)

The current distribution J(x) can be sampled via the force balance equation or
alternatively via a temporally centered derivative of the particle trajectories. Here
the position resolved histogram is filled with the displacement vector of each
particle, between the position in the next and in the previous time step; see the
appendix of [52] for an in-depth description. The velocity profile then follows
straightforwardly from v(x) = J(x)/ρ(x).

Finally the interparticle force density Fint(x) is sampled in an analogous way
on the basis of a position-resolved histogram that simply accepts the
instantaneous interparticle force that acts on each given particle. The interparticle
force field is then obtained by simple normalization with the density profile,
fint(x) = Fint(x)/ρ(x).

From a data science point of view, and possibly even when working in a
physics-informed way, one might use the information in all three fields ρ(x), v(x)
and fint(x) to analyze and make predictions of the dynamical behaviour of the
system. However, our present approach is very specific and leaves no choice in
the general setup of the supervised learning. We have ρ(x) and v(x) as inputs and
fint(x) as the output or target of the neural network; we recall the description in
section 4 of the functional relationships that apply to the nonequilibrium physics.
As concrete illustration we show three representative training data sets in figure 3.
We find the success of the learning procedure to be robust against changes in even
simple network topology and choice of hyperparameters. We attribute these
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Figure 3. Three representative cases (systems 1, 2, and 3) of nonequilibrium steady states under
external driving, as used for training the neural network. The results are obtained from adaptive BD
simulations under the influence of a temporally static external force field fext(x) (top row) that
consists of a random superposition of spatial Fourier modes. The zeroth Fourier mode represents a
constant force offset, which either vanishes (system 1) or drives the system out of equilibrium
(systems 2 and 3). The steady states are characterized by spatially and temporally constant currents
J(x) = J0 = const, with J0 = 0 in equilibrium (system 1) and J0 > 0 under drive (systems 2 and 3).
The density profile ρ(x) (second row) is temporally constant and spatially inhomogeneous, as
induced by the action of the external force field. The inhomogeneous velocity profile is simply the
inverse v(x) = J0/ρ(x) (third row). For each system 1, 2 and 3, the results for the respective steady
state profiles ρ(x),v(x), and the interparticle force field fint(x) (fourth row) are independent of the
type of initialization, as demonstrated by the results from the four differently initialized simulation
runs (indicated by differently coloured symbols) lying on top of each other. Here each system is
alternatively initialized via one of four protocols to select the initial microstate: simple cubic (green)
or close packed (yellow) crystals or an equilibrated bulk liquid state (violet) or an inhomogeneous
slab-like confined liquid (blue). Representative simulation snapshots in steady state (‘final states’
after 1000τ ) for system 2 illustrate the spatial structure of the flowing liquid; no imprints of the
initialization can be perceived. The machine learning is based on training data ρ(x) and v(x) [or
alternatively to the latter J(x) or ∂v(x)/∂x] that lead to the target interparticle force field fint(x) for
each given training system (1000 in total) in the supervised learning. While we here solely illustrate
the training procedure, we show in figures 2, 4, and 5 how the trained model can be used to both
predict and design nonequilibrium steady states.

22

6 Publications

138



J. Phys.: Condens. Matter 35 (2023) 271501 Perspective

Figure 4. Demonstration of the machine-learned kinematic force map and its use in the design of
nonequilibrium steady states. Shown are three different target shapes of the density profile ρ(x) (left
column): cosine wave (top row, results are identical to those shown in figure 2), triangle wave
(second row), and sawtooth-like wave (third row). For each of the three density waves the current
profile (second column) J(x) = J0 = const, and we prescribe alternative values J0τ/σ2 = 0
(equilibrium), 1, 2, 3, 4, and 5 (all nonequilibrium). Our aim is to obtain the specific form of fext(x)
via our trained machine learning model which then generates the target shapes of ρ(x) and J(x).
That this procedure indeed is successful is validated with BD simulations as shown via the symbols,
as both ρ(x) and J(x) are reproduced to high accuracy. Each of the three target density profiles ρ(x)
(lines) is strikingly matched by the simulation results (symbols); the data for the external force
profile fext(x) (right column) conincide per construction, as the output from machine learning is
taken as the input force field in the many-body simulations that are carried out to assess the
accuracy of the design procedure.

features to the fact that the mapping is formally exact, as summarized in the main
text and reviewed in detail in [43].

Universality and inverse design

The thus obtained functional relationship f ⋆int(x, [ρ,v]) not merely interpolates
between the training situations, but it rather captures the genuine correlated nature
of the statistical physics under consideration. We recall the target cosine-shaped
density wave (presented in figure 2 and replotted in the first row of figure 4 as a
reference). This situation was not genuinely part of the training but certainly close
in character. As a further demonstration we apply the network to a triangular
density wave (second row in figure 4) and also to a sawtooth-like density wave
(third row in figure 4), which are further removed from the situations encountered
during training. The excellent match with the direct simulation results of the
density profile and current distribution validates our approach.
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Figure 5. Shape of the external force field fext(x) (upper panel) that stabilizes the target
nonequilibrium sawtooth density profile ρ(x) (lower panel) with current strength J0σ2/τ = 5 (as
also shown in the third row of figure 4). The force field is generated either from power functional
theory via equation (A1) or from machine learning DDFT via equation (A2). While capturing the
correct shape of the external force profile, the DDFT produces in this case a quantitative error
between maximal and minimal force of size ϵ/σ. The respective results for the density profiles are
obtained from direct simulations. The power functional design meets the target profile in a
quasi-exact way, whereas quantitative deviations occur in DDFT in particular near the cusps of the
wave.

We finally return to the DDFT and to the purpose of the present Perspective of
discussing its virtues and shortcomings. We present as a final example, see
figure 5, its application to the sawtooth state. Shown is the external force profile,
as obtained from the machine-learned power functional, via the instant custom
flow equation (29), which we reproduce for convenience:

fext(x) = γ
J0
ρ(x)

+ kBT
∂ lnρ(x)

∂x
− f ⋆int(x, [ρ,v]). (A1)

In the present case this constitutes a (numerical) quasi-exact solution; we recall
the excellent agreement of the resulting kinematic profiles, shown in figure 4,
with the direct simulation results. We can now easily compare this to the adiabatic
DDFT prediction, as the equilibrium states were part of our training protocol
(cases of vanishing zeroth mode of the external force field). We can
straightforwardly implement this on the level of the neural network by simply
considering no flow, i.e. setting the velocity profile v(x) = 0, which yields a
quasi-exact representation of the adiabatic force; we recall the perfect agreement
shown in figure 4 for the cases with no flow, where J0 = 0 (dark purple symbols
and lines). Hence within DDFT the instant custom flow equation (A1) reduces to
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the following simple form:

fDDFT
ext (x) = γ

J0
ρ(x)

+ kBT
∂ lnρ(x)

∂x
− f ⋆ad(x, [ρ]). (A2)

Here the machine-learned adiabatic force field is obtained simply by evaluating
the full nework at vanishing velocity, i.e. f ⋆ad(x, [ρ]) = f ⋆int(x, [ρ,v= 0]). The
comparison shown in figure 5 indicates qualitatively correct behaviour of the
DDFT but quantitative errors of magnitude ϵ/σ.

The effects being quantitatively small should not lead one to conclude that the
physics are irrelevant. First, as laid out above, the planar uniaxial geometry is
intrinsically favorable for the DDFT. Secondly, we have chosen moderate values
for temperature and for density to ease our current pilot study for the use of
machine learning. This renders the situation relatively simply. However, as
emphasized above, a priori it is very difficult to assess whether or not the DDFT
will be sufficient to obtain a reliable estimate of the real time evolution. For a very
recent demonstration of quantitatively large superadiabatic (viscous and
structural) forces, we point the reader to the study by Sammüller et al [61] of the
nonequilibrium dynamics of a three-body colloidal gel former [126, 127].

Implications and related work

We take the quantitative success and computational ease of applying supervised
machine learning to the formal functional dependencies of nonequilibrium
many-body flow, as presently considered in a simple uniaxial flow geometry, as
an incentive to summarize several possible connections that could be explored in
future work. Our approach fits into the broader picture of coarse-graining
many-body systems out of equilibrium [44] and it is very specific in terms of input
and output variables of the neural network. The supervised machine learning
method gives the interparticle force field directly, in contrast to approaches that
are based on learning the excess free energy functional [109–112] which then
upon differentiation according to equation (10) give the (adiabatic approximation
for the) interparticle force density. DDFT was also used in learning the physics of
pattern formation from images [153], and for importance sampling in adaptive
multiscale simulations, see [42, 154] for a list of several further examples.

In the terminology of multiscale simulation methods for soft matter systems
[155], in our method we learn the characteristics of a fine-grained model (chosen
as the LJ fluid in the present model study) and, while not strictly obtaining a
coarse-grained model, are able to reduce the fine-grained information
systematically to the one-body level in a microscopically resolved way. It would
be interesting to see whether our approach is useful in the context of adaptive
simulation techniques [156–158] as applied e.g. to coupling boundaries of open
systems [159].

We would need to go beyond the presently considered steady states to address
memory effects, as are relevant both in classical [69, 70, 160, 161] and in quantum
systems [151, 152]. Given the recent interest in force-based quantum-mechanical
density functional theory [162, 163], we could imagine that apart from quantum
power functional theory [43, 49, 81, 82] our study could potentially be
inspirational in other force-based approaches to quantum dynamics [164–167].
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We present a hybrid scheme based on classical density functional theory and
machine learning for determining the equilibrium structure and thermodynamics of
inhomogeneous fluids. The exact functional map from the density profile to the one-
body direct correlation function is represented locally by a deep neural network. We
substantiate the general framework for the hard sphere fluid and use grand canonical
Monte Carlo simulation data of systems in randomized external environments during
training and as reference. Functional calculus is implemented on the basis of the neural
network to access higher-order correlation functions via automatic differentiation
and the free energy via functional line integration. Thermal Noether sum rules are
validated explicitly. We demonstrate the use of the neural functional in the self-
consistent calculation of density profiles. The results outperform those from state-
of-the-art fundamental measure density functional theory. The low cost of solving an
associated Euler–Lagrange equation allows to bridge the gap from the system size of the
original training data to macroscopic predictions upon maintaining near-simulation
microscopic precision. These results establish the machine learning of functionals as
an effective tool in the multiscale description of soft matter.

classical density functional theory | machine learning | statistical mechanics | soft matter

The problem with density functional theory (DFT) is that you do not know the density
functional. Although this quip by the late and great Yasha Rosenfeld (1) was certainly
meant in jest to a certain degree, it does epitomize a structural assessment of classical
DFT (2–5). As a general formulation of many-body statistical physics, the framework
comprises a beautiful and far-reaching skeleton of mathematical formalism centered
around a formally exact variational minimization principle (2, 6). In practice, however,
the theory needs to be fleshed out by approximations of all means conceivable in our
efforts to get to grips with the coupled many-body problem that is under consideration.
Specifically, it is the excess (over ideal gas) intrinsic Helmholtz free energy Fexc[�],
expressed as a functional of the position-resolved density profile �(r), which needs to be
approximated.

Decades of significant theoretical efforts have provided us with a single exact functional,
that for nonoverlapping hard rods in one spatial dimension, as obtained by another hero
in the field, Jerry Percus (7). Nevertheless, useful DFT approximations range from the
local density approximation for large-scale features which are decoupled from microscopic
length scales, to square-gradient functionals with their roots in the 19th century, to the
arguably most important modern development, that of the fundamental measure theory
(FMT) as kicked off by Rosenfeld (8) and much refined ever since (9–16). FMT is a
geometry-based framework for the description of hard sphere systems and it has deep
roots in the Percus–Yevick (17) and scaled-particle theories (4), which Rosenfeld was
able to unify and generalize based on his unique theoretical insights (18).

The realm of soft matter (19–21) stretches far beyond the hard sphere fluid. FMT
remains relevant though in the description of a reference system as used, e.g., in studies
of hydrophobicity, where the behavior of realistic water models (22, 23) is traced back
to the simpler Lennard-Jones fluid, which in turn is approximated via the hard sphere
FMT functional plus a mean-field contribution for describing interparticle attraction
(20, 24, 25). Further topical uses of FMT include the analysis of the three-dimensional
electrolyte structure near a solid surface (26, 27) and the problem of the decay length of
correlations in electrolytes (28).

There is a current surge in the use of machine learning techniques in soft matter, e.g., for
its characterization (29), engineering of self-assembly (30), structure detection (31), and
for learning many-body potentials (32, 33). Within classical DFT, machine learning was
used to address ordering of confined liquid crystals (34), and free energy functionals were
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obtained for one-dimensional systems from convolutional (35)
and equation-learning (36) networks as well as within a Bayesian
inference approach (37). Cats et al. (38) used machine learning
to improve the standard mean-field approximation of the excess
Helmholtz free-energy functional for the Lennard-Jones fluid. In
nonequilibrium, de las Heras et al. (39) have reported a method
to machine-learn the functional relationship of the local internal
force for a steady uniaxial compressional flow of a Lennard-Jones
fluid at constant temperature. As prescribed by power functional
theory (40, 41), the functional dependence in nonequilibrium
not only incorporates the density profile but also the one-body
current.

In this work, we return to the problem of describing and
predicting the structure and thermodynamics of inhomogeneous
equilibrium fluids. We show that a neural network can be trained
to accurately represent the functional dependence of the one-
body direct correlation function with respect to the density
profile. The presented methods are directly applicable to virtually
arbitrary fluids with short-ranged interparticle interactions. In
the following, we focus on the well-studied hard sphere fluid in
order to exemplify our framework and to challenge the available
highly accurate analytic approaches from liquid integral equation
theory and FMT. We give more details about the feasibility of
generalizations in the discussion. Reference data for training and
testing the model are provided by grand canonical Monte Carlo
(GCMC) simulations that cover a broad range of randomized
inhomogeneous environments in planar geometry.

We implement functional calculus on the basis of the trained
neural functional to infer related physical quantities and demon-
strate their consistency with known literature results both in bulk
and in inhomogeneous systems. In particular, we highlight the
accessibility of the fluid pair structure, the determination of free
energies and equations of state as well as the validation of thermal
Noether sum rules (42). These results corroborate that the neural
functional exceeds its role as a mere interpolation device and
instead possesses significant representational power as a genuine
density functional for the prediction of nontrivially related
physical properties. We apply the trained neural network in the
DFT Euler–Lagrange equation, which enables the self-consistent
calculation of density profiles and which hence constitutes a
neural-network-based DFT or short neural DFT. This method
alleviates conventional DFT from the burden of having to find
suitable analytic approximations while still surpassing even the
most profound existing treatments of the considered hard sphere
fluid via FMT functionals (8, 13, 14) in accuracy. We further
demonstrate the fitness of the method for the straightforward
application to multiscale problems. Neural DFT therefore
provides a way to transfer near-simulation microscopic precision
to macroscopic length scales, which serves as a technique to
predict properties of inhomogeneous systems which far exceed
typical box sizes of the original training data.

This work is structured as follows. The relevant physical back-
ground of liquid state theory is provided in Section A.1. Details
of the simulations as well as of the neural network are given in
Sections A.2 and A.3. The training procedure and results for the
achieved metrics that measure its convergence are presented in
Section A.4. We proceed by testing physical properties of the
trained model and use automatic differentiation of the neural
network in Section B.1 to access pair correlations, which are then
compared to bulk results from both the Percus–Yevick theory and
from simulations. The consistency of the neural direct correlation
functional to satisfy thermal Noether sum rules is validated in
Section B.2, and different ways to obtain the bulk equation

of state as well as free energies in inhomogeneous systems are
given in Section B.3. In Section C.1, we show the application of
the neural functional to the self-consistent calculation of density
profiles via the DFT Euler–Lagrange equation and describe the
technical details and conceptual advantages of this neural DFT
over analytic approaches. In Section C.2, the results are compared
to those from FMT, and in Section C.3, the relevance of the
method for making macroscopic predictions is illustrated for
cases of randomized external potential and for sedimentation
between hard walls on length scales that far exceed the training
simulation box sizes. We conclude with a discussion of the results
and give an outlook on possible improvements and extensions of
the method as well as to its application for different fluid types,
in more general geometries and in nonequilibrium.

Results
A. Machine Learning Intrinsic Correlations.
A.1. Physical background. We start with the standard relation for
the one-body direct correlation function c1(r) of liquid state
theory (4),

c1(r) = ln �(r) + �Vext(r)− ��, [1]

where r denotes the spatial position and � = 1/(kBT ) with the
Boltzmann constant kB and absolute temperature T . The three
terms on the right-hand side of Eq. 1 represent respectively
the ideal gas contribution, the external potential Vext(r) and
the influence of the particle bath at chemical potential �. The
logarithm in Eq. 1 is understood as ln[Λ3�(r)] with the
thermal wavelength Λ, which can be set to the particle size �
without any loss of information in the present classical context.
For a prescribed external potential Vext(r), knowledge of the
corresponding equilibrium density profile �(r) allows to compute
c1(r) explicitly via Eq. 1. This relationship can be viewed as
a locally resolved chemical potential balance: the contribution
from the ideal gas, kBT ln �(r), from the external potential,
Vext(r), and from interparticle interactions, −kBTc1(r), add up
at each position to �, which is necessarily uniform throughout
an equilibrium system.

However, the notation in Eq. 1 is oblivious to a central result
shown by Evans (2), thereby kicking off a modern theory for the
description of inhomogeneous fluids. For given type of internal
interactions, the spatial variation of the function c1(r) is already
uniquely determined by the spatial form of the density profile �(r)
alone, without the need to invoke the external potential explicitly.
From this vantage point of classical DFT, the dependence of c1(r)
on �(r) is not merely pointwise but rather with respect to the
values of the entire density profile, which determine c1(r) at each
given position r. Formally, this relationship is exact (2, 4), and it
constitutes a functional dependence c1(r; [�]), which is indicated
by brackets here and in the following and which is in general
nonlinear and nonlocal. As we will demonstrate, the existence
of such a universal functional mapping makes the problem
of investigating inhomogeneous fluids particularly amenable to
supervised machine learning techniques.

In most formulations of classical DFT, one exploits the fact
that the intrinsic excess free energy functional Fexc[�] acts as a
functional generator such that the one-body direct correlation
function is obtained via functional differentiation with respect to
the density profile,

c1(r; [�]) = −
��Fexc[�]
��(r)

. [2]
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A compact description of standard formulae for the calculation
of functional derivatives can be found in ref. 41. In order to make
progress in concrete applications, one typically needs to rely on
using an approximate form of Fexc[�] for the specific model under
consideration, as determined by its interparticle interactions.
DFT is a powerful framework, as using c1(r; [�]) obtained from
Eq. 2 with a suitable expression for Fexc[�] turns Eq. 1 into an
implicit equation for the equilibrium density profile �(r). In the
presence of a known form of Vext(r), one can typically solve
Eq. 1 very efficiently, allowing ease of parameter sweeps, e.g., for
exhaustive phase diagram explorations. On the downside, Fexc[�]
and thus also c1(r; [�]) remain approximate, and the development
of analytic tools has certainly slowed down over several years if
not decades.

Here, we proceed differently and bypass the excess free energy
functional Fexc[�] at first. Instead, we use a deep neural network
to learn and to represent the functional relationship �(r)→ c1(r)
directly, which has significant advantages both for the generation
of suitable training data as well as for the applicability of the
model in the determination of fluid equilibria. This investigation
is based on GCMC simulations that serve to provide training,
validation, and test data. Discriminating between these three
roles of use is standard practice in machine learning and we give
further details below.
A.2. Simulation method. Generating the simulation data is
straightforward, and we use the following strategy, adopted to
planar situations where the position dependence is on a single po-
sition variable x while the system remains translationally invariant
in the y and z direction. This geometry is highly relevant to iden-
tify the physics in planar capillary and adsorption situations and
facilitates ease of accurate sampling. We employ randomized sim-
ulation conditions by generating external potentials of the form

Vext(x) =
4∑

n=1
An sin

(
2�nx
L

+ �n

)
+
∑
n

V lin
n (x), [3]

where An and �n are randomly selected Fourier coefficients
and phases, respectively, and L is the simulation box length in
the x direction. The phases �n are chosen uniformly in the
interval [0, 2�), and values of An are drawn from a normal
distribution with zero mean and variance 2.5. We choose
L = 20�, although there is no specific compliance requirement
for the neural network (see below), and the lateral box lengths
are set to 10� to minimize finite-size effects. Periodic boundary
conditions apply in all spatial directions. The sinusoidal terms in
Vext(x) are complemented by up to five piecewise linear functions
V lin(x) = V1 + (V2 − V1)(x − x1)/(x2 − x1) for x1 < x < x2
and 0 otherwise, for which the parameters 0 < x1 < x2 < L,
V1, and V2 are again chosen randomly. The locations x1 and x2
are distributed uniformly while V1 and V2 follow again from an
unbiased normal distribution with variance 4. Additionally to
the discontinuous linear segments, we explicitly impose planar
hard walls in a subset of the simulations by setting Vext(x) =∞
for x < xw/2 and x > L − xw/2, i.e., near the borders of
the simulation domain; the width xw of the wall is chosen
randomly in the interval 1 ≤ xw/� ≤ 3. To cover a broad range
from dilute to dense systems, the chemical potential is chosen
uniformly within the range −5 ≤ �� ≤ 10 for each respective
GCMC simulation run. The observed mean densities range
from 0.006�−3 to 0.803�−3, yet smaller and much larger local
densities occur due to the inhomogeneous nature of the systems.

In total, 750 such GCMC runs are used, where for given
form of Vext(x), the planar one-body profiles �(x) and c1(x) are

obtained. The former is acquired from straightforward histogram
filling and the latter from evaluating Eq. 1 on the basis of the
sampled histogram for �(x) as well as the known form of Vext(x)
and value of � for the specific run under consideration. As Eq. 1 is
undefined for vanishing density, we have excluded regions where
�(x) = 0 such as within the hard walls. By modern standards of
computational resources, the workload for the generation of the
simulation data is only moderate at a total CPU time of∼104 h.
A.3. Neural network. We use a deep neural network (43) to
represent the functional map from the density profile to the local
value of the one-body direct correlation function at a given point.
That is, instead of the entire function, we construct the network
to output only the scalar value c1(x) for a certain position x when
supplied with the surrounding inhomogeneous density. The
relevant section of the density profile comprises the values of �(x)
in a specified window around a considered location x, as described
below. Despite the locality of the method, access to the entire
(discretized) one-body direct correlation profile is immediate via
evaluation of the neural network at pertinent positions x across
the domain of interest. Multiple local evaluations of the network
remain performant on highly parallel hardware such as GPUs
when passing the input accordingly in batches. A schematic
picture of the network architecture is given in Fig. 1 and is
explained in the following.

The functional dependence on the density profile is realized
by providing discretized values of �(x) on an equidistant grid
with resolution Δx = 0.01�. As c1(x; [�]) depends only on the
immediately surrounding density profile around a fixed location
x, we restrict the input range x′ to a sufficiently large window
x′ ≤ |x − xc|. We choose the cutoff xc = 2.56� based on
simulation data for the bulk direct correlation function (44) and
on the evaluation of training metrics for different window sizes xc .
Increasing the value of xc further led to no improvement in the
performance of the trained neural network.

This behavior is expected from theoretical considerations, as
the one-body direct correlation function vanishes quickly for
short-ranged pair potentials (4). We recall that in FMT, xc = �
by construction. Note that the choice of c1(x; [�]) as our target
functional is not coincidental but that its quick spatial decay
rather is a pivotal characteristic central to the success of our

Fig. 1. We represent the functional mapping from the density profile �(x)
to local values of the one-body direct correlation function c1(x) in planar
geometry via a neural network. The density profile is discretized on a regular
spatial grid with resolution 0.01� and given within a region around the
location of interest to the input layer. Three fully connected layers with
continuously differentiable activation functions enable the inference of the
nonlinear and nonlocal functional map. The output layer consists of a single
node which yields the predicted value of c1(x) at the chosen location.
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method. To contrast this, assume that one attempts to model
the functional mapping �loc(x) = �− Vext(x)→ �(x), thereby
naively imitating the simulation procedure. This task poses major
challenges due to the long-range nature of density correlations
induced by an external potential, which is circumvented in our
case by the choice of a more manageable target functional.

The input layer involves 513 nodes and is followed by three
fully connected hidden layers with 512 units each. The output
layer consists of a single node for the scalar value of c1(x) at
the specified location x. In order to realize a nonlinear input–
output mapping of the neural network, activation functions
are applied to the output of each node within a hidden layer
(see also ref. 43 for a pedagogical introduction to the design
of neural networks). We deviate here from the most common
choice of a rectified linear unit (ReLU) and instead employ
continuously differentiable activation functions such as the
exponential linear unit or the softplus function (45). This
choice leads to substantial improvements during training and
in particular when using automatic differentiation to evaluate
two-body quantities; see Sections B.1 and B.2. We attribute
the superior performance to the fact that activation functions
which are not continuously differentiable and which vanish in
certain domain ranges (such as ReLU) reinforce sparsity of the
activation output, i.e., the tendency to set many units of a hidden
layer identically to zero (46). While this property is desired in
many machine learning tasks (e.g., for classification), it hinders
the accurate representation of the functional relation c1(x; [�]) in
our case. The resulting neural functional for the one-body direct
correlation function is denoted in the following by c?1(x; [�]) and
related quantities which follow from it by inference are marked
accordingly by a superscript star.
A.4. Training procedure and metrics. The machine learning rou-
tines are implemented in Keras/Tensorflow (43) and we use the
standard Adam (47) optimizer for the adjustment of the network
parameters in order to fit c?1(x; [�]) against the simulation
reference c1(x). The problem at hand is a regression task. Hence,
the mean squared error is chosen as a suitable loss function and the
mean average error serves as a validation metric. Since the model
shall infer the pointwise value c1(x) from a density section around
a specified location x, see Fig. 1, the simulation data cannot be
passed as they are to the neural network. Instead, windowed
views of the density profile have to be generated prior to the
training loop, which correspond to the target value c1(x) at the
center x of the respective window. A periodic continuation of all
simulation profiles is valid due to periodic boundary conditions.
Additionally, we use data augmentation to benefit from the
inherent mirror symmetry (i.e., x → −x) of the problem and
thus effectively double the number of training datasets. As is
customary, we separate the independent simulation results prior
to performing the machine learning routines: 150 are kept aside as
a test set, 150 serve as validation data to monitor training progress
and 450 are used for the actual training of the neural network.

Modeling the functional relationship of c1(x; [�]) locally, i.e.,
inferring pointwise values individually instead of outputting the
entire profile at once, has numerous conceptual and practical
advantages. Regarding the feasibility of the neural network in
concrete applications, one is free to choose an arbitrary box length
L when gathering training data and more importantly to readjust
the value of L when using the trained neural network for making
predictions (cf. Section C.3). From a physical point of view,
providing only local density information has the merit of already
capturing the correlated short-range behavior of c1(x; [�]). If
the neural network were to output the entire one-body direct
correlation profile from a given density profile �(x) at once,

this inherent locality would have to be learned instead, hence
leading to a much more elaborate training process. Last, the
fine-grained nature of the training data turns out to be highly
beneficial from a machine learning perspective. Note that one can
generate 9·105 input–output pairs from 450 training simulations
in the present context (with the values being doubled after
data augmentation). The increased cardinality of the training
set enables better generalization of the model and also prevents
overfitting, e.g., to the statistical noise of the sampled profiles.

We train the model for 100 epochs in batches of size 256 and
decrease the learning rate exponentially by ∼ 5% per epoch
from an initial value of 0.001. This results in a best mean
average error of 0.0022 over the validation set, which is of the
same order as the estimated average noise of the simulation data
for c1(x). Therefore, we deem our neural network to possess
full representational power of the local functional relationship
c1(x; [�]) within the conditions of the provided simulation data.

B. Examining the Neural Correlation Functional.
B.1. Two-body bulk correlations. Besides monitoring standard
metrics such as the mean average error over a test set, arguably
deeper physical insights into the rigorous structure of the statisti-
cal mechanics at hand serve for assessing the quality of the neural
functional c?1(x; [�]). We first ascertain that the model gives an
accurate representation of the physics of bulk fluids. Despite
the apparent simplicity of this case, this is a highly nontrivial
test as the training data solely covered (strongly) inhomogeneous
situations. For this, we investigate the pair structure and aim at
implementing the two-body direct correlation functional, which
is formally defined as the functional derivative (4)

c2(r, r′; [�]) =
�c1(r; [�])
��(r′)

. [4]

On the basis of the neural network, we can make use of
the powerful automatic differentiation techniques. This allows
to create an immediate analog of Eq. 4 via c?2(x, x

′; [�]) =
�c?1(x; [�])/��(x

′), where the functional derivative �/��(x′)
is evaluated by reverse mode automatic differentiation with
respect to the input values of the discretized density profile.
In common machine learning frameworks, this requires only
high-level code, e.g., GradientTape in Keras/Tensorflow (43).
The numerical evaluation of c?2(x, x

′; [�]) is performant as reverse
mode automatic differentiation generates executable code that is
suitable for building derivatives with respect to multiple input
variables simultaneously.

We obtain the bulk direct correlation function in planar
geometry as the special case c̄b2(x, �b) = c2(0, x; [�b]), where
we have introduced the bulk density �b(x) = �b = const. (In
the notation, the parametric dependence on �b is dropped in the
following). Note that c̄b2(x) is distinct from the more common
radial representation cb2(r), as our geometry implies an integration
over the lateral directions y and z, i.e.,

c̄b2(x) =
∫

dy dz cb2

(
r =

√
x2 + y2 + z2

)
= 2�

∫
∞

x
dr rcb2(r),

[5]

where the last equality follows from using radial coordinates and
substitution. The standard radial form cb2(r) can however be
recovered by differentiating Eq. 5 with respect to x such that
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cb2(r) = −
c̄b′2 (r)
2�r

, [6]

where c̄b′2 (r) denotes the derivative of c̄b2(x) evaluated at x = r.
Numerical artifacts might occur particularly for small values of r
as evaluating Eq. 6 requires the numerical derivative of c̄b2(x) as
well as a division by r.

We perform a Fourier transform of the planar real space
representation c̄b2(x) and utilize radial symmetry in Fourier space.
This acts as a deconvolution of Eq. 5 and directly yields the radial
Fourier (Hankel) transform of cb2(r),

c̃b2(k) =
4�
k

∫
∞

0
dr r sin(kr)cb2(r). [7]

The inverse transform is identical to Eq. 7 up to a factor of
(2�)−3 upon interchanging r and k. To go further, the bulk
Ornstein–Zernike equation (4)

c̃b2(k) =
h̃(k)

1 + �bh̃(k)
, [8]

is used to obtain the total correlation function h̃(k) from c̃b2(k)
in Fourier space after rearrangement. Recall that the radial
distribution function follows directly via g(r) = h(r) + 1; here,
h(r) is the real space representation of h̃(k). The static structure
factor S(k) is then given as:

S(k) = 1 + �bh̃(k). [9]

In Fig. 2, results of c̄b2(x), c
b
2(r), c̃

b
2(k), h̃(k), and S(k) are

shown for different bulk densities �b�3 = 0.4, 0.7, 0.9. From our
neural functional, we obtain c̄b?2 (x) = �c?1(0; [�])/��(x)|�=�b ,
i.e. the autodifferentiated network is evaluated at spatially
constant density �b. The total correlation function and the
static structure factor follow from Eqs. 8 and 9 after having
computed c̃b?2 (k) via a numerical Fourier transform of c̄b?2 (x). For
comparison, we also depict reference data obtained analytically
from the Percus–Yevick theory (17) and reproduced from
simulation results of Groot et al. (44). Good agreement is found
between simulation and the autodifferentiated neural network,
while the Percus–Yevick result shows noticeable deviations in
c̄b2(x). The latter overestimates the depth of the core region x < �,
and this discrepancy increases for larger bulk densities. The neural
functional yields a clear improvement over the Percus–Yevick
theory and shows only marginal differences to the simulation
results of ref. 44 for both the planar real space and the radial
Fourier space representation of the two-body direct correlation
function. In h̃(k) and S(k), the severity of the discrepancies
of simulation and machine learning data to the Percus–Yevick
results decreases, but a difference is still noticeable in particular for
large bulk densities. A slight mismatch to the simulation reference
is observed in the magnitude and phase of the oscillations of the
Percus–Yevick static structure factor SPY(k), and this correction is
reproduced very well by the neural functional. Note that although
one arrives at radial representations of the quantities h̃(k) and
S(k) in Fourier space, performing the radial backtransform to real
space numerically according to the inverse of Eq. 7 is generally a
“notoriously difficult task” (48) and is not considered here.

This successful test reveals that, while being trained solely
with one-body profiles, the neural functional c?1(x; [�]) contains
full two-body information equivalent in bulk to the radial

A

B

C

Fig. 2. We compare (A) the planar direct correlation function c̄b2(x), (B) its
radial Fourier space representation c̃b2(k), and (C) the static structure factor
S(k) for different bulk densities �b�3 = 0.4,0.7,0.9 (as indicated). Data are
shown as obtained from the Percus–Yevick theory (dotted), from simulation
results by Groot et al. (44) (dashed) and from our neural functional c?1(x; [�])
(solid), where c̄b?

2 (x) is acquired via automatic differentiation. The inset in
panel (A) shows the radial direct correlation function cb2(r) as obtained via
Eq. 6. In panel (B), the inset depicts the total correlation function h̃(k) in
Fourier space, which follows from c̃b2(k) via the bulk Ornstein–Zernike Eq. 8.
The inset in panel (C) displays the deviation of S(k) to the Percus–Yevick
result SPY(k) for the simulation data and the neural functional. Simulation
and machine learning results are in very good agreement with each other
while the Percus–Yevick theory shows quantitative discrepancies.

distribution function g(r). The pair correlations can be accessed
via automatic differentiation at low computational cost, and
they are consistent with known bulk results. We recall that
this is a mere by-product of the neural network and that no
such two-body information has been explicitly incorporated
into the training. More so, Fig. 2 demonstrates that the bulk
quantities c̄b2(x), c̃b2(k), h̃(k), and S(k) as obtained from
c?1(x; [�]) substantially outperform the Percus–Yevick theory and
almost attain simulation quality. In SI Appendix, we illustrate
that higher-order correlations such as the three-body direct
correlation functional c?3(x, x

′, x′′; [�]) follow analogously via
nested automatic differentiation. On this level, differences to
FMT results are even more prominent than the deviations
to the two-body Percus–Yevick results. As we will show in
Section C.2, the accuracy of predictions from the neural network
also holds in inhomogeneous situations, where FMT serves again
as an analogous and arguably even more challenging theoretical
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baseline than the Percus–Yevick bulk theory. Before doing so, we
lay out additional consistency tests and quality assessments that
are applicable in inhomogeneous systems.
B.2. Noether sum rules. In order to further elucidate whether
c?1(x; [�]) quantitatively reproduces fundamental properties of
equilibrium many-body systems, we make use of exact sum rules
that follow from thermal Noether invariance (42):

∇c1(r) =
∫

dr′ c2(r, r′)∇ ′�(r′), [10]

∫
dr �(r)

∫
dr′ �(r′)∇c2(r, r′) = 0. [11]

Both Eqs. 10 and 11 apply in any equilibrated inhomogeneous
system regardless of the type of internal interactions. While
the interparticle interaction potential does not appear explicitly
in Eqs. 10 and 11, it nevertheless determines the functionals
c1(r; [�]) and c2(r, r′; [�]). Recall that the spatial gradient of the
one-body direct correlation function can be identified with the
internal equilibrium force profile, fint(r) = kBT∇c1(r) (41).

We verify that the neural functional complies with the above
sum rules Eqs. 10 and 11 as follows. Analogous to Section B.1,
we use autodifferentiation to evaluate Eq. 4, but this time, we
retain the full inhomogeneous structure of c?2(x, x

′; [�]). The
left-hand side of Eq. 10 is obtained straightforwardly from
simple evaluation of the neural functional and numerical spatial
differentiation. As input for �(x), we use the simulated density
profiles of the test set. Care is required when evaluating the
spatial gradients∇�(x),∇c?1(x; [�]) and∇c?2(x, x

′; [�]) due to the
amplification of undesired noise, which we reduce by applying a
low-pass filter after having taken the numerical derivatives. The
volume integrals reduce in planar geometry to

∫
dr = A

∫
dx ,

where A is the lateral system area.
In Fig. 3, three typical profiles for the left- and right-hand

side of Eq. 10 are shown. In all three systems, both sides
of the equation coincide up to numerical noise due to the
required spatial derivatives. Additionally, we define errors via
scalar deviations from equality in Eqs. 10 and 11 respectively as

e1 =
∥∥∥∥∇c1(x)− A

∫
dx′ c2(x, x′)∇ ′�(x′)

∥∥∥∥
∞

, [12]

e2 = A2
∫

dx �(x)
∫

dx′ �(x′)∇c2(x, x′), [13]

where ‖ · ‖∞ denotes the maximum norm. Fig. 3 A and B depict
results for e1 and e2 resolved with respect to the mean density
�̄ =

∫
dr �(r)/V for all 150 density profiles of the test set, where

V denotes the volume of the system. The small magnitudes
of the observed error values indicate that the neural network
satisfies the Noether identities 10 and 11 to very high accuracy.
Outliers are caused mostly by the moderate numerical noise of
the spatial gradients (Fig. 3, III ) and are no hindrance in practical
applications of the neural functional.

This confirmation demonstrates that our method transcends
the neural network from a mere interpolation device of the
simulation training data to a credible standalone theoretical
object. The fact that one is able to carry out consistent
and performant functional calculus indeed renders c?1(x; [�])
a neural-network-based density functional. Besides functional
differentiation, we show next that functional line integration acts
as the inverse operation and provides access to the corresponding
free energy. SI Appendix gives further insight into the symmetry
properties of c?2(x, x

′; [�]), which serve as a prerequisite for the

A

B

Fig. 3. Typical profiles of the right- and left-hand sides of Eq. 10 are shown
for three test scenarios in panels (I), (II), and (III), where one can verify
their high level of agreement across the entire inhomogeneous systems.
Additionally, the respective scalar discrepancies e1 and e2 of the Noether
identities Eqs. 10 and 11 are displayed, defined as (A) the maximum norm
of the difference of left- and right-hand side of Eq. 10 and (B) the value of
the left-hand side of Eq. 11. Across all mean densities �̄ of the test set, the
sum rules are satisfied to very high accuracy by our model. Some outliers
remain which we attribute to the numerical computation of spatial gradients
appearing in Eqs. 10 and 11; see also panel (III) for an example of the noise
that this introduces in the respective terms of Eq. 10 particularly in the vicinity
of hard walls.

existence of a generating excess free energy functional F ?
exc[�]; we

recall Eq. 2.
B.3. Equation of state and free energy. Although the machine
learning procedure operates on the level of the one-body direct
correlation function, the excess free energy Fexc[�] is accessible
by functional line integration (49):

�Fexc[�] = −
∫ 1

0
d�

∫
dr �(r)c1(r; [��]). [14]

Here, ��(r) = ��(r) is a sequence of density profiles that
are linearly parametrized by � in the range 0 ≤ � ≤ 1. The
limits are �0(r) = 0 such that Fexc[0] = 0, and �1(r) = �(r),
which is the target density profile that appears as the functional
argument on the left-hand side of Eq. 14. Other parametrizations
of ��(r) are conceivable but change the concrete form of
Eq. 14. On the basis of c?1(x; [�]), we implement Eq. 14
via �F ?

exc[�] = −A
∫ 1

0 d�
∫

dx �(x)c?1(x; [��]) and evaluate the
integrals numerically; as before, A denotes the lateral system area.

We first return to bulk systems and illustrate in the following
three different routes toward obtaining the bulk equation of
state from the neural network. For this, we introduce the excess
free energy density as  b(�b) = Fexc[�b]/V . From the neural
functional, the excess free energy density  ?

b (�b) can be acquired
via F ?

exc[�b] from functional line integration along a path of bulk
densities according to Eq. 14. Alternatively and equivalently,
one can simply evaluate the neural direct correlation functional
at bulk density �b and due to translational symmetry at arbitrary
location (e.g., x = 0) such that cb?1 = c?1(0; [�b]). Simplifying
Eq. 2 in bulk reveals that

 ?′
b (�b) = −kBTcb?1 , [15]

where the prime denotes the derivative with respect to the bulk
density argument. The excess free energy density  ?

b (�b) follows
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A

B

Fig. 4. We show (A) the equation of state P(�b) obtained via different
methods and (B) deviations to the Carnahan–Starling result PCS(�b) (dotted
black line). The neural equation of state P?(�b) is calculated via Eq. 16 in
which the excess free energy density follows from functional line integration
according to Eq. 14 (solid purple line), from evaluation of the bulk value
cb?
1 (pink dots), see Eq. 15, and via the low-wavelength limit of c̃b?

2 (k) (blue
crosses), see Eq. 17. For comparison, the Percus–Yevick equations of state
according to the virial (dashed gray line) and compressibility (dashed brown
line) route are shown. Bulk densities �b beyond the stable fluid phase
are shaded in gray. All three routes coincide very well up to and within
the metastable region, with functional line integration leading to the most
accurate results. We additionally depict a simulation-based equation of state
(B, dotted red line) due to Kolafa et al. (50), which our neural functional is
able to reproduce very accurately in the stable fluid region, hence exceeding
in precision the Carnahan–Starling equation of state.

from ordinary numerical integration across bulk densities up to
the target value �b. The numerical accuracy to which both routes
coincide serves as a further valuable consistency test.

Additionally, one obtains the bulk pressure P(�b) from the
excess free energy density via

P(�b) =
(
 ′b(�b) + kBT

)
�b −  b(�b). [16]

The pressure is equally accessible from a further route which
incorporates previous results for the bulk pair structure via their
low-wavelength limits according to ref. (4):

�
∂P
∂�b

∣∣∣∣
T

=
�

�b�T
=

1
S(0)

=
1

1 + �bh̃(0)
= 1− �b c̃b2(0),

[17]
where one can identify the isothermal compressibility �T =
�−1
b (∂�b/∂P)T . From Eq. 17, P(�b) is obtained by evaluation of

either of the bulk correlation functions (Section B.1) in Fourier
space at k = 0 for different bulk densities and by subsequent
numerical integration toward the target value of �b.

We compare the results in Fig. 4, where the equation of
state P?(�b) of the neural network was acquired from functional
line integration across bulk systems, cf. Eq. 14, from evaluation
of one-body bulk correlation values cb?1 , cf. Eq. 15, and from
the low-wavelength limit of two-body bulk correlations, cf.
Eq. 17. One finds that the results of all three routes are
consistent with each other and that they match very well the
Carnahan–Starling equation of state (51), thus outperforming
the Percus–Yevick theory as already observed for the bulk pair
structure in Section B.1. A slight deviation can be noticed
when evaluating P?(�b) via Eq. 17, which constitutes the

most indirect route detouring to two-body correlations. This
may reflect the small discrepancy of the neural functional to
simulation results (cf. Fig. 2) and the sensitivity of the low-
wavelength limit of the static structure factor to remaining finite
size effects (52). Notably, functional line integration is the most
reliable method, and the corresponding results even surpass the
Carnahan–Starling equation of state in accuracy. Fig. 4B shows
the reproduction of a highly accurate simulation-based equation
of state due to Kolafa et al. (50). We recall again that neither
bulk information nor data for free energies or pressures was
given explicitly in the training of the neural network. Instead,
the beyond-Carnahan–Starling precision is achieved solely by
extracting direct one-body correlations from simulation data of
randomized inhomogeneous systems in planar geometry. In SI
Appendix, we additionally demonstrate that the neural functional
is fit for the application of dimensional crossover (53) in order to
obtain the bulk equation of state for the two-dimensional hard
disk fluid within a reasonable range of packing fractions.

For a concise comparison of free energies in inhomogeneous
situations, additional reference data have to be acquired from
simulations. In our grand canonical setting, thermodynamic
integration (54) with respect to the chemical potential can be
used to measure the grand potential according to

Ω[�] = −
∫ �

−∞

d�′ 〈N 〉. [18]

Here, the integration starts from an empty system withΩ[0] =
0 and traverses the chemical potential up to the target value �.
One needs to measure the mean number of particles 〈N 〉 in
a sufficient number of simulations with intermediate chemical
potentials −∞ < �′ ≤ � to evaluate Eq. 18 numerically. The
excess free energy then follows directly from

Fexc[�] = Ω[�]− Fid[�]−
∫

dr �(r)(Vext(r)− �), [19]

where Fid[�] = kBT
∫

dr �(r)(ln �(r) − 1) is the ideal gas free
energy. Thermodynamic integration according to Eq. 18 has
been performed for 22 systems of the test set to yield reference
values F sim

exc for the excess free energy via Eq. 19. The systems were
selected to cover a broad range of excess free energy values, and
FMT results for Fexc were used as a further theoretical estimate
for this selection.

In Table 1 and Fig. 5, we show errors of Fexc to the quasi-exact
simulation values when calculating the excess free energy via
Rosenfeld and White Bear MkII FMT as well as from functional

Table 1. The absolute and relativemean average error
of the excess free energy Fexc as obtained via the Rosen-
feld andWhiteBearMkII FMT functionals is compared to
the result from functional line integration of the neural
correlation functional

�〈|Fexc − F sim
exc |〉 〈|Fexc − F sim

exc |/F sim
exc 〉

Rosenfeld 0.540 1.75%
White Bear MkII 0.0159 0.104%
Neural functional 0.0127 0.097%

The reference values Fsim
exc were obtained via thermodynamic integration according to

Eqs. 18 and 19 for a subset of the test systems. The results of the neural functional
surpass the Rosenfeld FMT significantly and even yield a slight improvement over the
highly accurate White Bear MkII theory. The angular brackets denote an average over the
22 test simulations.
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Fig. 5. We compare free energies of inhomogeneous test systems as
obtained via Rosenfeld (turquoise squares) and White Bear (purple triangles)
FMT as well as with functional line integration of the neural correlation
functional c?1(x; [�]) (yellow circles). The discrepancy Fexc − Fsim

exc of the
respective method to the simulation result Fsim

exc is shown. Rosenfeld FMT
systematically underestimates Fexc, whereas White Bear MkII FMT as well as
our neural functional yield almost exact results. The neural network performs
slightly better for large excess free energies as occur primarily in dense
systems.

line integration according to Eq. 14 of the neural functional.
For both FMT methods, a DFT minimization (cf. Section C.1)
is performed to yield a self-consistent density profile �(x),
which serves as input to the respective analytic FMT expression
for Fexc[�]. Hence, we compare consistently equilibrium states
(according to the respective theory) corresponding to the same
form of the external potential.

The comparison reveals that the neural functional significantly
outperforms Rosenfeld FMT and still yields slightly more accu-
rate values for the excess free energy than the very reliable White
Bear theory. Regarding the above-described bulk results for the
free energy, this behavior is both consistent and expected, as the
Rosenfeld and White Bear MkII functionals can be associated
with the Percus–Yevick compressibility and Carnahan–Starling
bulk equations of state respectively. Still, the test in inhomoge-
neous systems is a more rigorous one than in bulk, as the full
nonlocal functional representation is invoked when providing
c?1(x; [�]) with an inhomogeneous density profile as input. Given
that the functional line integration of c?1(x; [�]) via Eq. 14 is
practically immediate, one can deemF ?

exc[�] itself a corresponding
neural functional for the excess free energy that enables a full
description of the thermodynamics of inhomogeneous fluids to
high accuracy. As we present below, this quantitative precision
is preserved when applying the neural functional in a predictive
manner in the self-consistent calculation of density profiles.

C. Predicting Inhomogeneous Fluids via Neural DFT.
C.1. Going beyond analytic approximations. In the previous sec-
tion, the trained model has been put to test by deriving related
quantities such as c?2(x, x

′; [�]) from autodifferentiation and
F ?

exc[�] from functional line integration in order to assess its
performance against analytic and numerical reference results. We
now turn to the application of the neural functional c?1(x; [�]) in
the context of the self-consistent determination of density profiles
according to the DFT Euler–Lagrange equation. This is achieved
by rearranging Eq. 1 to the standard form (2, 4)

�(r) = exp (−�(Vext(r)− �) + c1(r; [�])) . [20]

A fixed-point (Picard) iteration with mixing parameter � can
be used to determine the density profile from Eq. 20 according to

�(r)← (1− �)�(r)
+ � exp (−�(Vext(r)− �) + c1(r; [�])) .

[21]

The degree of convergence is determined from the remaining
difference of right- and left-hand side of Eq. 20. With the trained
neural functional at hand, one can evaluate the one-body direct
correlation function in Eq. 21 via the surrogate c?1(x; [�]) in each
iteration step. In the following, the use of c?1(x; [�]) in this context
will be referred to as neural DFT.

We note two minor technical points concerning the use of the
neural functional in the Picard iteration. It was observed that a
conservative choice of � is necessary during the first few iterations
to ensure numerical stability. After this burn-in, the mixing
parameter can be set to usual values (e.g.� = 0.05). Furthermore,
the convergence criterion has to be relaxed as compared to typical
choices in analytic DFT methods due to the remaining intrinsic
uncertainty of c?1(x; [�]). The mean average error after training,
cf. Section A.4, provides an estimate for the expected relative
uncertainty of the density profile according to Eq. 20. Depending
on the specific problem, the error might not decrease any further
than that during the iteration of Eq. 21. Neither of these points
caused any practical hindrance in applications.

The treatment of Eq. 20 in neural DFT is conceptually not
different from that in standard DFT methods. However, the
model c?1(x; [�]) relieves the theory from being restricted by
the available approximations for the one-body direct correlation
function as generated from analytic expressions of the excess free
energy functional Fexc[�] via Eq. 2. We emphasize that, unlike
in previous work (35, 37), no analytic ansatz had to be provided
and that our method is generic for the determination of a
suitable functional from a given model Hamiltonian, thus indeed
constituting a “machine learning black box” (35) regarding the
training procedure. However, in contrast to a closed black box,
the inner workings of the resulting neural correlation functional
can be inspected very thoroughly via the neural functional
calculus laid out above. Also note that, while the model works
at the level of the one-body direct correlation function, the free
energy is readily available from functional line integration, cf.
Section B.3. Last, we point out that c?1(x; [�]) captures the entirety
of the intrinsic correlations and that further improvements are
conceivable by only learning differences to an analytic reference
functional. To demonstrate the capabilities of our method, we
refrain from this route and show that the trained neural functional
alone already exceeds the accuracy of FMT.
C.2. Comparison to FMT. In the following, we benchmark the
self-consistent inhomogeneous density profiles obtained via
neural DFT against FMT results. For this comparison, the
Rosenfeld (8) and White Bear MkII (13) FMT functionals
are considered and the simulated density profiles are taken
as quasi-exact reference data. The FMT functionals are the
most profound analytic description of the hard sphere fluid
with the White Bear MkII theory being the state-of-the-art
treatment of short-ranged intermolecular repulsion in classical
DFT. Nevertheless, measurable and systematic deficiencies still
remain, e.g., in highly correlated systems (55). We point the
reader to ref. 14 for a thorough account of FMT and to ref. 56
for a very recent quantitative assessment. Note that the tensorial
weights of Tarazona (15) to describe hard sphere freezing are not
included in our investigation.

The comparison is set up as follows. For each hard sphere
system of the test set (Section A.4), we determine the density
profile �(x) from the Rosenfeld and White Bear MkII FMT
functionals as well as from c?1(x; [�]) via the Picard iteration
Eq. 21 of the Euler–Lagrange Eq. 20. For this, only the known

8 of 12 https://doi.org/10.1073/pnas.2312484120 pnas.org

6.9 “Neural functional theory for inhomogeneous fluids: Fundamentals and applications”

155



form of the external potential Vext(x) and the value � of the
chemical potential are prescribed. As reference density profiles
are available from GCMC simulations, we can evaluate the error
Δ�(x) of each of the DFT results relative to the simulation data
for �(x). From here, different scalar metrics for the quantitative
agreement of self-consistent DFT profiles and simulation results
are considered.

In Fig. 6, both global and local error measures for the deviation
of FMT as well as neural DFT to simulation data are depicted. For
the assessment of the global error, we show the L2-norm ‖Δ�‖2
of the discrepancy to the reference profile, which is normalized
by the mean density �̄ of each system respectively. As the test data
cover very dilute to very dense systems, this relative global error
measure is plotted as a function of �̄ to discern the behavior
with respect to varying global average density. Similarly, we
define an estimate for the relative local error by evaluating the
maximum norm ‖Δ�‖∞ of the density deviation divided by
the maximum value ‖�‖∞ of the GCMC density profile. This
quantity is resolved against the maximum ‖�‖∞ of the respective

A

B

Fig. 6. Measures of discrepancy of self-consistent density profiles to simu-
lation results across the test set are presented. We show (A) the normalized
L2-norm ‖Δ�‖2/�̄ as a function of the mean density �̄ for judgment of the
average error over the inhomogeneous system, and (B) the relative maximum
norm ‖Δ�‖∞/‖�‖∞ as a function of the largest local density ‖�‖∞ to reveal the
magnitude of local errors, e.g. at density peaks. The self-consistent density
profiles are obtained from Rosenfeld (turquoise squares) and White Bear MkII
(purple triangles) FMT (8, 13) as well as from employing our neural functional
c?1(x; [�]) in the DFT Euler–Lagrange equation (yellow circles). Regarding both
global and local error, the neural network outperforms the analytic FMT
functionals and reduces the respective errors up to an order of magnitude,
especially in large-density regimes.

inhomogeneous density, thus enabling the detection of local
discrepancies, e.g., in the vicinity of maxima and discontinuities
of the density profile.

One recognizes that neural DFT yields substantially better
results than the FMT functionals with regard to both error
measures. Compared to the Rosenfeld results, both the global
and the local errors are decreased by approximately an order of
magnitude. Surprisingly, even the White-Bear MkII functional
is not able to match the accuracy of the neural DFT, which is
noticeable especially for large values of �̄ and of ‖�‖∞.
C.3. Simulation beyond the box. A particular advantage of the
local nature of the neural functional c?1(x; [�]) is its applicability
to systems of virtually arbitrary size. As explained in Section A.3,
it is sufficient to provide the density profile within a rather narrow
window as input to the neural network to infer the value of the
one-body direct correlation function at the center of the density
section. The model c?1(x; [�]) can therefore be used directly in the
Euler–Lagrange Eq. 20 for the prediction of planar systems of
arbitrary length. Due to the low computational demands of solv-
ing this equation self-consistently, this method is suitable even
in multiscale problems where macroscopic length scales compete
with and are influenced by microscopic correlations and packing
features. Although one could argue that analytic DFT methods
already account for such tasks, importantly the neural functional
c?1(x; [�]) acts as a drop-in replica of the (almost) simulation-like
description of the intrinsic correlations. Therefore, neural DFT
facilitates to fuse simulation data with common DFT methods,
thus providing a means to “simulate beyond the box.”

Simulation beyond the box is demonstrated in Fig. 7, where
the system size has been increased to 1,000� while the numerical
grid size remains unchanged at 0.01�. Our setup implies that
for colloids of, say, size � = 1 μm, we have spatial resolution of
10 nm across the entirety of a system of macroscopic size 1 mm.
We consider both a highly correlated fluid in a rapidly varying
external potential as well as the diffusive sedimentation behavior
(57) in a weak gravitational potential. The former case is realized
by generating a sequence of randomized external potentials via
Eq. 3 which are spatially connected; the chemical potential is
set to zero. Neural DFT yields a highly inhomogeneous density
profile in this system and resolves the microscopic variations
accurately at low computational cost. In the sedimentation
column, a local chemical potential �loc(x) = � − Vext(x) =
(10 − 0.01x/�)kBT is imposed which decreases linearly with
respect to the height x, and the system is bounded from the
bottom (x = 0) and the top (x = 1,000�) by hard walls. The
spatial variation of �loc(x) is chosen small enough to enable
thermal diffusion across the whole sedimentation column and to
yield locally an almost bulk-like behavior except near the upper
and lower hard walls. The method reproduces both the highly
correlated nature of �(x) in the vicinity of the walls as well as its
intermediate behavior within the sedimentation column, which
follows closely the bulk equation of state (Section B.3), as one
would expect within a local density approximation (4). In both
cases, the computational cost for the determination of �(x) with
neural DFT is negligible as compared to analogous many-body
simulations, which are hardly feasible on such length scales.

Discussion
In this work, we have outlined and validated a machine learning
procedure for representing the local functional map from the
density profile to the one-body direct correlation function via
a neural network. The resulting neural functional was shown
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Fig. 7. Neural DFT is used to obtain the density profile �(x) (blue lines) of the hard sphere fluid (A) in a highly correlated system with randomized external
potential Vext(x) (gray dashed line) and (B) in a sedimentation column of height 1,000� that is bounded by hard walls at the bottom and at the top of the system.
Near-simulation microscopic accuracy is retained at low computational cost by the application of neural DFT in the highly correlated large-scale system. For the
case of sedimentation, strongly oscillating behavior at the lower wall as well as mild adsorption at the top can be resolved. As the spatial variation of the local
chemical potential �loc(x) is negligible, the density profile reproduces the equation of state within the sedimentation column, which is verified by a comparison
to the Carnahan–Starling equation of state (dotted black line).

to be applicable as a powerful surrogate in the description of
inhomogeneous equilibrium fluids. This was demonstrated for
the hard sphere fluid, where we have used GCMC simulations
in randomized inhomogeneous planar environments for the
generation of training, validation, and test data. Density and
one-body direct correlation profiles followed respectively from
direct sampling and from evaluation of Eq. 1.

DFT elevates the role of the one-body direct correlation
function c1(x) to that of an intrinsic functional c1(x; [�])
depending on the density profile �(x) but being independent of
the external potential. We exploited this fact in the construction
of our neural network, which takes as input a local section of the
discretized density profile around a fixed location x and outputs
the value of the one-body direct correlation functional c1(x; [�])
at that specific location. Establishing a pointwise inference of
c1(x; [�]) instead of trying to represent the global functional
mapping of the entire one-body profiles comes with various
advantages, such as independence of the box size, the correct
description of the short-range behavior of c1(x; [�]), and a very
significant improvement of training statistics.

The nonlinear and nonlocal functional relationship was
realized by fully connected hidden layers with smooth activation
functions and a standard supervised training routine was used.
The achieved mean average error over the test set was of the
same order of magnitude as the noise floor of the simulations,
thus being indicative of full representational power of the neural
correlation functional within the considered simulation data.
Whether the quality of the model can be improved further
by performing more extensive sampling to reduce the statistical
noise of the simulation profiles remains to be investigated in the
future. Additionally, active and reinforcement machine learning
techniques could be useful for interleaving the training and
simulation process, thereby guiding the generation of reference
data in order to explore the space of inhomogeneous systems
more efficiently and exhaustively.

The neural functional was put to test by verifying numerous
physical relations in bulk and in inhomogeneous systems.

In particular, it was shown that the two-body direct correlation
functional c2(x, x′; [�]) as well as higher-order correlations are
accessible from the model via automatic differentiation. In bulk,
the pair structure as described by the neural network significantly
outperforms the Percus–Yevick theory and is even able to com-
pete with simulation results (44), although no bulk data was used
during training. In inhomogeneous situations, the conformance
of the neural functional to the thermal Noether sum rules Eqs. 10
and 11 as well as to spatial symmetry requirements holds to high
accuracy. The excess free energy Fexc[�] is readily and efficiently
available via functional line integration of the model according to
Eq.14 and the results agree with those obtained from simulations.
The bulk equation of state can be acquired consistently from
various routes with the results attaining simulation quality (50)
and in particular exceeding the very reliable Carnahan–Starling
equation of state (51) in accuracy. Dimensional crossover is
feasible for the calculation of the bulk equation of state for the
two-dimensional hard disk system.

Arguably the most important consequence of the neural
functional framework is the applicability of c?1(x; [�]) in the
self-consistent calculation of density profiles by solving the
Euler–Lagrange equation (20) of classical DFT. As the one-
body direct correlation function is faithfully represented by the
neural network, one is exempted from having to find analytic
approximations for c1(x; [�]) or for its generating functional
Fexc[�]. Although FMT provides such approximations for the
hard sphere fluid with high precision, we could demonstrate that
our neural functional outperforms both the Rosenfeld (8) as well
as the White Bear MkII (13) functional. For this, Eq. 20 was
solved self-consistently for all 150 randomized local chemical
potentials of the test set to obtain �(x), where c1(x; [�]) was
given either analytically by FMT or evaluated via c?1(x; [�]). The
comparison of the results to the simulated density profiles reveals
that neural DFT yields global and local errors that are up to an
order of magnitude lower than those of FMT.

Furthermore, due to the flexibility that comes with the local
functional mapping, the neural network could be used as a means
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to “simulate beyond the box.” That is, while the training was
based solely on simulation data from systems of manageable size,
the resulting model c?1(x; [�]) is directly applicable for predictions
on much larger length scales. We demonstrated this by imposing
a spatial sequence of randomized external potentials on a length of
1,000�. While the explicit numerical simulation of such a system
is comparatively cumbersome, neural DFT offers a way to achieve
close to simulation-like accuracy at low computational effort.
Furthermore, we have considered a sedimentation column with
a height of 1,000� that is bounded by hard walls. Neural DFT
is capable of both resolving microscopically the adsorption at the
walls as well as efficiently capturing the long-range density decay
with increasing height. The presented fusion of machine learning
and DFT can therefore be another useful technique to make
headway in the multiscale description of soft matter (58–60).

Even though we saw no need for a more sophisticated training
procedure in our investigations, it could be useful to consider
physics-informed machine learning (61) as a technique for
enforcing exact physical relations of the underlying problem
directly during training. Sum rules in bulk or in inhomogeneous
systems, e.g., the thermal Noether identities Eqs. 10 and 11,
might be suitable candidates for this task. Analogous to the
evaluation of derivatives in physics-informed neural networks, we
have shown the necessary quantities to be accessible by automatic
differentiation of the neural functional.

When considering nonequilibrium systems, power functional
theory (PFT) (40, 41) establishes an exact functional many-body
framework which is analogous to that of DFT in equilibrium. A
central ramification of PFT is the existence of a functional map
from the time-dependent one-body density �(r, t) and current
J(r, t) to the internal force profile fint(r, t; [�, J]), which is in
general nonlocal in space and causal in time t. Recent work
by de las Heras et al. (39) demonstrated that machine learning
this kinematic internal force functional yields highly promising
results and overcomes the analytic and conceptual limitations of
dynamical density functional theory. In this regard, our method
can be put into a more general context as it may be viewed as a
mere special case for equilibrium systems where J(r, t) = 0. The
topical problem of accurately describing nonequilibrium many-
body physics is certainly a natural contender for the application
and extension of our neural functional framework, with many
practical questions arising, e.g., concerning the generation of
training data or the choice of neural network architecture.

While much insight could be gained by considering the hard
sphere fluid, the application of our machine learning procedure
is arguably even more useful for particle models that lack
satisfactory analytic density functional approximations. Although
mean-field descriptions account surprisingly well for soft and
attractive contributions (62, 63), e.g., in the Lennard-Jones
fluid, analytic efforts to go beyond this approximation are sparse
(64–66). We demonstrate the generality of our method in SI
Appendix, where we show that the machine learning routine
applies directly to the (truncated) Lennard-Jones interaction
potential in an isothermal supercritical setting. In the future,
providing the temperature as a further input quantity to a
modified neural network is a valuable goal in order to tackle
the full physics of such thermal systems. As a proper treatment of
the arising phase transitions and interfacial phenomena is already
subtle in simulation, the machine learning perspective might
provide further insights. We expect the general method to hold
up even for complex particle models, e.g., containing many-body
interactions (22), provided that sufficiently accurate training data
of sufficient quantity can be generated.

For the treatment of anisotropic particles, the neural network
must be extended to accommodate for the additional orienta-
tional degrees of freedom. Recent advances in molecular DFT
could be helpful in guiding appropriate augmentations of our
method (67, 68). Related to the increased dimensionality due to
anisotropy, the extension of the machine learning procedure from
planar symmetry to more general geometries is worth contem-
plating. Especially for fully inhomogeneous three-dimensional
problems, the amount of required training data seems restrictive
at first. However, we have shown in this work that results
obtained in planar geometry already capture the essence of
internal interactions. Therefore, it may be feasible to base the
machine learning predominantly on data in reduced geometrical
settings and to incorporate remaining nontrivial effects due to
the more general geometry by supplementing only a few selected
higher-dimensional simulations. In particular, we highlight in
this context the promising development of equivariant neural
networks (69–72), which serve as a means of casting underlying
symmetries of a problem directly into the neural network
architecture. Recent applications in the physical domain show
that this method facilitates robust training and generalization
on the basis of much reduced datasets as compared to common
machine learning approaches which do not intrinsically enforce
symmetry (73–75). In our case, exploiting inherent symmetries
of the direct correlation functional via the use of equivariant
neural networks is certainly valuable when further orientational
or spatial degrees of freedom are to be considered.

Last, we point out useful cross-fertilization of machine learning
ideas regarding topical applications in quantum DFT (76). In
particular, the analogous functional mapping to the classical one-
body direct correlation functional c1(r; [�]) is given quantum me-
chanically by the exchange-correlation potential vxc(r; [n]) which
depends functionally on the one-body electron density n(r). Due
to the immediate analogy, obtaining the exchange-correlation
energy functional Exc[n] might be feasible with functional line
integration similar to our treatment of Fexc[�] via Eq. 14, which
here becomes Exc[n] =

∫ 1
0 d�

∫
dr n(r)vxc(r; [n�]) with n�(r) =

�n(r). Albeit lacking the neural functional calculus that we
presented here, Zhou et al. (77) have successfully demonstrated
the machine learning of the functional mapping from the electron
density to local values of the exchange-correlation potential
vxc(r). Specifically, they trained a convolutional neural network
on the basis of three-dimensional quantum chemical simulation
data of small molecules and could obtain accurate predictions
for larger molecules. This success is akin to the multiscale
applicability of our neural correlation functional c?1(r; [�]). In
general, however, most machine learning strategies in quantum
DFT have considered different functional mappings (78–83). In
light of our results for classical systems, we deem the analogous
machine learning of the local functional relationship of vxc(r; [n])
the arguably most promising approach in the development of a
neural quantum DFT with the goal of chemical accuracy and
generic applicability.

Data,Materials, and Software Availability. Code, data sets and models have
been deposited in Zenodo (84)
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Higher-order correlations. Analogous to Sec. B.1, we demonstrate that higher-order correlations can be obtained from the
neural correlation functional by nested automatic differentiation. This is due to the fact that the hierarchy of direct correlation
functions cn(r, r′, . . . , r(n−1); [ρ]), n ≥ 2, is accessible from successive functional derivatives of the one-body direct correlation
functional (1),

cn(r, r′, . . . , r(n−1); [ρ]) = δn−1c1(r; [ρ])
δρ(r′) . . . δρ(r(n−1))

. [1]

As illustrated in the main text, translational symmetry can be applied in bulk fluids such that the resulting bulk correlation
function cb

n(r, . . . , r(n−2)) = cn(0, r, . . . , r(n−2); [ρb]) only incorporates n− 2 remaining position coordinates.
We specialize again to the planar geometry of our neural functional and show in Fig. S1 the three-body bulk correlation

function c̄b⋆
3 (x, x′) for a bulk density of ρb = 0.7σ−3. While the computation of c̄b⋆

2 (x) is practically immediate via a single
reverse mode autodifferentiation pass, going to the three-body correlation function comes at the price of having to evaluate
the Hessian of c⋆

1(x; [ρ]), for which different strategies exist (2). In principle, one can proceed by nesting autodifferentiation
layers to obtain further members of the hierarchy Eq. (1), albeit being restricted by the practicability of the actual evaluation
and the efficacy of the result. Note that the computational effort at the three-body level is by no means restrictive and that
growing numerical demands are expected when considering higher-order correlations. The computation and analysis of c̄b

3(x, x′)
might be especially useful for more complex fluid models, e.g. containing internal three-body interactions (3).

We compare c̄b⋆
3 (x, x′) to analytic approximations based on FMT. For both the Rosenfeld and the White Bear MkII

functional, the three-body bulk direct correlation function is analytic in Fourier space. We point the reader to Ref. (4) for
an expression of the original Rosenfeld result in terms of vectorial weight functions and to Refs. (5, 6) for an equivalent
representation via scalar weights. As the weight functions remain unchanged, the White Bear MkII result follows immediately
from the modification of the excess free energy density as laid out in Ref. (7).

A cumulant expansion of the bulk result of the three-body direct correlation function in Fourier space can be transformed to
real space analytically, which in planar geometry gives

c̄b
3(x, x′) = − bR4

a
exp

(
−x2 + xx′ − x′2

aR2

)
, [2]

where the width parameter a and the prefactor b are determined by

a = ν

κ

3
5

53 − 25η + 8η2

30 + 2η + 5η2 − η3 , [3]

b = κ
8π

3
√

3
30 + 2η + 5η2 − η3

(1 − η)5 , [4]

with the packing fraction η = πρb/6. The correction factors ν and κ are set to unity in the Rosenfeld FMT and attain the forms

ν = 53 − 35η + η2 + 5η3

53 − 25η + 8η2 , [5]

κ = 30 − 6η
30 + 2η + 5η2 − η3 , [6]

in the White Bear MkII case.
The comparison reveals that the form of the neural three-body bulk correlation function c̄b⋆

3 (x, x′) is plausible and that it
captures genuine features which go beyond both FMT descriptions. The Rosenfeld FMT yields a large discrepancy in the core
region x, x′ ≈ 0, which is significantly unterestimated as compared to the results from the neural functional and from the White
Bear theory. We recall that, as in Sec. C.2, the tensorial weights of Tarazona (8) have not been used in the FMT functionals
and that their inclusion might be particularly relevant on the level of higher-order correlations. In this vein, investigating
members of the direct correlation hierarchy Eq. (1) with the neural correlation functional could be a valuable aid for testing
and refining analytic FMT functionals.

Spatial symmetry of the neural two-body direct correlation functional. A further consistency test of c⋆
2(x, x′; [ρ]) arises due to its

expected symmetry with respect to an interchange of the planar position coordinates x and x′. Recall that the excess free
energy functional Fexc[ρ] generates the two-body direct correlation function according to

c2(r, r′; [ρ]) = − δ2βFexc[ρ]
δρ(r)δρ(r′) , [7]

see Eq. (2) and Eq. (4) of the main text. One can directly recognize from the symmetry of the second functional derivative in
Eq. (7) that c2(r, r′; [ρ]) = c2(r′, r; [ρ]) must hold.

On the basis of the neural direct correlation functional in planar geometry, assessing the validity of the identity

c⋆
2(x, x′; [ρ]) = c⋆

2(x′, x; [ρ]) [8]
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is a highly nontrivial test. This is due to the fact that c⋆
2(x, x′; [ρ]) evaluated at certain positions x and x′ follows from

automatic differentiation of c⋆
1(x; [ρ]), where the input density window is centered around the location x, see Sec. B.1. On the

other hand, when formally evaluating c⋆
2(x′, x; [ρ]), where the arguments x and x′ are now reversed, the density window is

centered around x′, hence constituting a generally very different and a priori unrelated input profile. One can expect Eq. (8) to
be recovered only if the physical implications of Eq. (7) are captured correctly by the neural functional. Note that Eq. (8)
is a necessary condition for the existence of a unique neural excess free energy functional F ⋆

exc[ρ], which can practically be
obtained via functional line integration, see Sec. B.3. We exemplify in Fig. S2 that the neural two-body direct correlation
functional c⋆

2(x, x′; [ρ]) obtained via autodifferentiation of c⋆
1(x; [ρ]) indeed satisfies the symmetry requirement Eq. (8) to very

high accuracy.

Neural equation of state for hard disks via dimensional crossover. Although the neural functional c⋆
1(x; [ρ]) was acquired

explicitly for the three-dimensional hard sphere fluid, dimensional crossover techniques can be used to obtain bulk results for
the two-dimensional hard disk system. This is facilitated by investigating the behavior of the hard sphere fluid under narrow
confinement, which constitutes a quasi-two-dimensional scenario. With this method, one obtains the equation of state for the
hard disk fluid from c⋆

1(x; [ρ]), as we demonstrate in the following.
We proceed similar to Sec. B.3 and utilize Eq. (16) to express the pressure P (ρb) via the excess free energy density ψb(ρb),

which we aim to compute for a range of bulk densities ρb. Whereas c⋆
1(x; [ρ]) was evaluated for the three-dimensional bulk fluid

at spatially constant density, cf. Eq. (15), here a suitable density profile ρ2D(x) is constructed as input to the neural direct
correlation functional in order to emulate narrow planar confinement. For this, we choose

ρ2D(x) = ρb

xw
Θ

(∣∣∣x− xw

2

∣∣∣) [9]

with the Heaviside function Θ(·); note that Eq. (9) is a Dirac series and yields the Dirac distribution for xw → 0. The neural
direct correlation functional is then evaluated at the center of this assumed slit, and the values c⋆

1(0; [ρ2D]) are used analogous
to Sec. B.3 for the determination of P ⋆

2D(ρb). The equation of state for the associated two-dimensional hard disk system follows
formally for xw → 0. As this limit is not directly accessible in practice, we assess the obtained values for finite but small slit
widths 0.3 ≤ xw/σ ≤ 1 and extrapolate to xw = 0 via a quadratic fit.

The resulting equation of state P ⋆
2D(ρb) for the two-dimensional hard disk fluid as obtained from this dimensional crossover

on the basis of the neural network is shown in Fig. S3. We additionally display analytic equations of state from scaled particle
theory (9) and by Henderson (10) which serve as reference. One recognizes that reasonable results can be achieved for low and
medium densities, but that deviations to analytic results become noticeable for ρb > 0.7σ−2. Nevertheless, it is both surprising
and reassuring that the neural functional is capable of predicting correlations in narrow confinement, as no such situations
were explicitly included in the training data. Recall that hard walls were imposed only at the borders of the simulation box of
length L = 20σ and that the inhomogeneous external potential within the simulation domain consisted solely of Fourier modes
and of piecewise linear functions, cf. Eq. (3) in the main text. Presumably, improvements over the results presented in Fig. S3
could be obtained especially for large densities by including situations of very narrow confinement explicitly in the training
data. From our outset, the successful achievement of a viable two-dimensional equation of state serves as a demonstration that
c⋆

1(x; [ρ]) indeed captures the intricate functional relationship of the underlying physical problem instead of acting as a mere
interpolation tool with respect to the encountered training data.

Neural DFT for the Lennard-Jones fluid. We illustrate the generalizability of our machine learning framework to other particle
types by considering the truncated Lennard-Jones fluid with pairwise interparticle potential

ϕ(r) =

{
4ϵ

[(
σ
r

)12 −
(

σ
r

)6
]
, r ≤ rc,

0, r > rc,
[10]

where r is the interparticle distance, ϵ is the dispersion energy and the cutoff radius is set to rc = 2.5σ. Analogous to Sec. A.2
of the main text, reference data is generated via GCMC simulations of 800 systems with randomized external conditions of
which 500 are used for training and 150 respectively for validation and testing. We focus on the isothermal behavior of the
supercritical fluid and hence set kBT = 1.5ϵ. The chemical potential varies uniformly in a range of −8 ≤ βµ ≤ 4 and the
external potential is generated as described in the main text, cf. Eq. (3).

To accomodate the longer-ranged interactions compared to the hard sphere fluid, the size of the density window to be
input into the neural network is increased to xc = 4σ whilst keeping the design of the hidden layers unchanged (see Sec. A.3).
The training results in a mean average error of 0.0035 and larger values of xc led to no further improvement in the training
statistics. The slight increase of the mean average error as compared to the hard sphere case (see Sec. A.4) can be attributed
to noisier simulation data, which results from the decreased efficiency of GCMC method when simulating soft interactions with
larger cutoff radius instead of hard spherical particles with an interaction range of σ.

After successfully training the neural functional for the Lennard-Jones fluid, we employ c⋆
1(x; [ρ]) in neural DFT to determine

self-consistent density profiles for all 150 test systems. The Picard iteration proceeds without problems and analogously to
Sec. C.1. The results are compared with the standard mean field DFT treatment of the Lennard-Jones fluid. Here, the repulsive
part of Eq. (10) is approximated by a hard core interaction, for which we utilize the White Bear MkII FMT functional. An
additive mean field contribution FMF[ρ] =

∫
dr

∫
dr′ ρ(r)ρ(r′)ϕatt(|r − r′|)/2 to the excess free energy functional incorporates
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the attractive part ϕatt(r) of the Lennard-Jones potential. The function ϕatt(r) is equal to Eq. (10) for r ≥ rmin = 21/6σ and it
is set to −ϵ for r < rmin.

Local and global deviations of both neural DFT and the analytic mean field DFT to the simulation reference data are
presented in Fig. S4. The neglection of correlations in the mean field treatment leads to considerable errors across the whole
test set. Contrarily, the neural DFT achieves close-to-simulation results and outperforms the analytic DFT by up to two orders
of magnitude in the considered error measures.

This successful test demonstrates the transferability of our machine learning framework across particle models and indicates
its utility especially for Hamiltonians which lack satisfactory analytic DFT treatments. Although the considered interparticle
potential Eq. (10) is still short-ranged, we see much potential to extend our method to long-ranged interactions as occur
e.g. in charged systems. The resulting algebraic decay of direct correlations could be tackled in various ways: i) It might be
sufficient in some cases (e.g. for screened interactions) to simply extend the cutoff range xc of the density input. ii) In order
to achieve a better scaling of the number of input nodes with growing xc, one could change the corresponding discretization
of ρ(x) to employ variably spaced sampling points instead of a fixed discretization interval. This would still enable to finely
resolve the vicinity of the considered location x while also incorporating information about long-range density correlations.
iii) An alternative approach emerges by treating the long-range behavior of c1(r; [ρ]) analytically, similar to the treatment of
the Hartree term in quantum DFT, see e.g. Ref. (11). Hence, the neural functional could be trained as is on the remaining
short-ranged part of c1(r; [ρ]) to recover full quasi-exact information about intrinsic correlations.
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Fig. S1. The three-body direct correlation function is shown in bulk at density ρb = 0.7σ−3. We depict (a) the Rosenfeld and (b) the White Bear MkII FMT results for the
planar representation c̄b

3(x, x′), which were obtained analytically according to Eq. (2) by a cumulant expansion in Fourier space and a subsequent backtransform. Within our
neural functional framework (c), c̄b⋆

3 (x, x′) is acquired via nested automatic differentiation of c⋆
1(x; [ρ]).
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Fig. S2. We show (a) the density profile ρ(x) of an inhomogeneous system of the test set and (b) the corresponding neural two-body direct correlation function, which is
obtained for each position x with respect to x′ − x. A linear transformation is applied to display c⋆

2(x, x′; [ρ]) as a function of x and x′ in panel (c). This transformation is
visualized by corresponding gray lines in panels (b) and (c) which indicate the extent of the detailed view (solid) and slices where x + x′ = const. (dotted). The results
exemplify that the neural network reproduces the symmetry property Eq. (8) of the two-body direct correlation function very accurately.
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Fig. S3. The equation of state P2D(ρb) for two-dimensional hard disks is depicted, which is obtained from the neural functional via dimensional crossover. For comparison,
we show analytic results according to scaled particle theory (9) and by Henderson (10). Although the training data for the three-dimensional hard sphere fluid did not cover
narrow confinement within hard walls, c⋆

1(0; [ρ]) reproduces very reasonable behavior when applied to such quasi-two-dimensional situations and yields acceptable results for
densities up to ρb ≈ 0.7σ−2.
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Fig. S4. Neural DFT (yellow circles) is compared to the standard mean field DFT (purple triangles) for the truncated Lennard-Jones fluid. As in Fig. 6, (a) the normalized
L2-norm ∥∆ρ∥2/ρ̄ as a function of the mean density ρ̄, and (b) the relative maximum norm ∥∆ρ∥∞/∥ρ∥∞ as a function of the largest local density ∥ρ∥∞ are considered.
While considerable deviations to the reference profiles are observed for the hard sphere plus mean field treatment, neural DFT achieves almost simulation-like accuracy with
global and local errors being decreased by up to two orders of magnitude.
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Abstract
We describe recent progress in the statistical mechanical description of many-body systems via
machine learning combined with concepts from density functional theory and many-body
simulations. We argue that the neural functional theory by Sammüller et al (2023 Proc. Natl
Acad. Sci. 120 e2312484120) gives a functional representation of direct correlations and of
thermodynamics that allows for thorough quality control and consistency checking of the
involved methods of artificial intelligence. Addressing a prototypical system we here present a
pedagogical application to hard core particle in one spatial dimension, where Percus’ exact
solution for the free energy functional provides an unambiguous reference. A corresponding
standalone numerical tutorial that demonstrates the neural functional concepts together with the
underlying fundamentals of Monte Carlo simulations, classical density functional theory,
machine learning, and differential programming is available online at https://github.com/sfalmo/
NeuralDFT-Tutorial.

Keywords: density functional theory, statistical mechanics, machine learning,
inhomogeneous fluids, fundamental measure theory, neural functional theory,
differential programming

1. Introduction

The discovery of the molecular structure of matter was still in
its infancy when van der Waals predicted in 1893 on theoret-
ical grounds that the gas–liquid interface has finite thickness.
The theory is based on a square-gradient treatment of the dens-
ity inhomogeneity between the coexisting phases [1, 2] and it
is consistent with van der Waals’ earlier treatment of the gas–
liquid phase separation in bulk. Both the bulk and the inter-
facial treatments are viewed as simple yet physically correct

∗
Author to whom any correspondence should be addressed.

Original Content from this work may be used under the
terms of the Creative Commons Attribution 4.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

descriptions of fundamental phase coexistence phenomena by
modern standards of statistical mechanics.

What was unknown then is that an underlying formally
exact variational principle exists. This mathematical struc-
ture was recognized only much later, first quantum mechan-
ically by Hohenberg and Kohn [3] for the groundstate of a
many-body system, subsequently byMermin [4] for finite tem-
peratures, and then classically by Evans [5]. The variational
principle forms the core of density functional theory and the
intervening history between the quantum [4] and classical
milestones [5] is described by Evans et al [6]; much back-
ground of the theory is given in [7–9]. Kohn and Sham [10, 11]
re-introduced orbitals via an effective single-particle descrip-
tion, which facilitates the efficient treatment of the many-
electron quantum problem.

Practical applications of density functional theory require
one to make concrete approximations for the central

1 © 2024 The Author(s). Published by IOP Publishing Ltd
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functional. (We recall that a functional maps an entire function
to a number.) Quantum mechanically one needs to approx-
imate the exchange-correlation energy functional Exc[n], as
depending on the electronic density profile n(r), and classic-
ally one needs to get to grips with the excess (over ideal gas)
intrinsic Helmholtz free energy Fexc[ρ], as a functional of the
local particle density ρ(r).

A broad range of relevant problems and intriguing col-
lective and self-organization effects in soft matter [12] have
been investigated on the basis of classical density functional
theory [5–9]. Exemplary topical studies include investigations
of hydrophobicity [13–16], the orientation-resolved molecu-
lar structure of liquids [16], the three-dimensionally resolved
atomic structure of electrolytes [17, 18], and the asymptotic
decay of ionic structural correlations [19].

Owing to its rigorous formal foundation, density functional
theory provides a microscopic, first-principles treatment of the
many-body problem. The numerical efficiency of (in prac-
tice often approximate) implementations allows for exhaustive
model parameter sweeps, for systematic investigation of bulk
and interfacial phase transitions, and for the discovery and tra-
cing of scaling laws. Exact statistical mechanical sum rules
[20–23] integrate themselves very naturally into the scheme
and they provide consistency checks and can form the basis for
refined approximations. Nevertheless, at the core of such stud-
ies lies usually an approximate functional and hence resorting
to explicit many-body simulations is common in a quest for
validation of the predicted density functional results.

Inline with topical developments in other branches of
science, the use of machine learning is becoming increas-
ingly popular in soft matter research. Recent applications
of machine learning range from the characterization of soft
matter [24], reverse-engineering of colloidal self-assembly
[25], local structure detection in colloidal systems [26], to
the investigation of many-body potentials for isotropic [27]
and for anisotropic [28] colloids. Brief overviews of machine
learning in physics [29] and in particular in liquid state theory
[30] were given recently.

Density functional theory lends itself towards machine
learning due the necessity of finding an approximation for the
central functional. Corresponding research was carried out in
the classical [31–42] and quantum realms [43–51]. The clas-
sical work addressed liquid crystals in complex confinement
[31], the functional construction of a convolutional network
[32] and of an equation-learning network [33], the improve-
ment of the standard mean-field approximation for the three-
dimensional Lennard–Jones system [34] with the aim of
addressing gas solubility in nanopores [35], the use physics-
informed Bayesian inference [36, 37], active learning with
error control [38], and the physics of patchy particles [39].

The quantum mechanical problem was addressed on the
basis of machine learning the exchange-correlation potential
[43–45], testing its out-of-training transferability [43], using
a three-dimensional convolutional neural network construct
[45], considering hidden messages from molecules [46], and
using the Kohn–Sham equations already during training via a
regularizer method [47]. The Hamiltonian itself was targeted
via deep learning with the aim of efficient electronic-structure

Figure 1. Illustration of hard rods in one spatial dimension that are
exposed to a position-dependent external potential Vext(x). In
response to the external influence a spatially inhomogeneous density
profile ρ(x) emerges in equilibrium at temperature T and chemical
potential µ. The particles with position coordinates xi and particle
index i = 1, . . . ,N have radius R and diameter σ = 2R. A
configuration is forbidden (bottom row) if any two particles overlap,
i.e. if their mutual distance is smaller than the particle diameter σ.

calculation [48]. A recent perspective on these and more
developments was given by Burke and co-workers [50]. Huang
et al [51] argue prominently that quantum density functional
theory plays a special role in the wider context of the use of
artificial intelligenece methods in chemistry and in materials
science.

While the central problem of quantum density functional
theory is to deal with the exchange and correlation effects
between electrons that are exposed to the external field gener-
ated by the nuclei, classical statistical mechanics of soft mat-
ter relies on a much more varied range of underlying model
Hamiltonians. The effective interparticle interactions in soft
matter systems cover a wide gamut of different types of repuls-
ive and attractive, short- and long-ranged, hard-, soft-, and
penetrable-core behaviours.

In particular the hard core model plays a special role. For
hard core particles the pair potential between two particles
is infinite if the particle pair overlaps and it vanishes other-
wise. Hard core particles are relatively simple as temperat-
ure becomes an irrelevant variable while the essence of short-
ranged repulsion and the resulting molecular packing remain
captured correctly [52, 53]. The statistical mechanics of the
bulk of one-dimensional hard core particles was solved early
by Tonks [54]. The free energy functional is known exactly due
to Percus [55–59] and his solution provides the general struc-
ture and thermodynamics of the system when exposed to an
external potential, see figure 1 for an illustration. The math-
ematical form of Percus’ free energy functional was one of
the sources of inspiration [60] for Rosenfeld’s powerful funda-
mental measure density functional for three-dimensional hard
spheres [61–68]. One-dimensional hard rods are also central
for nonequilibrium physics [69–73] and the Percus functional
forms a highly useful reference for developing and testing
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machine learning techniques in classical density functional
theory [32, 33, 36–38].

In recent work, de las Heras et al [40] and Sammüller et al
[41] have put forward machine learning strategies that oper-
ate on the one-body level of correlation functions. Here we
address in detail the neural functional theory [41] for inhomo-
geneous fluids in equilibrium. We argue that this approach
constitutes a neural network-based theory, where multiple dif-
ferent and mutually intimately related neural functionals form
a genuine theoretical structure that permits investigation, test-
ing, and to ultimately gain profound insight into the nature of
the coupled many-body physics. Thereby the training is only
required for a single neural network, from which then all fur-
ther neural functionals are created in straightforward ways.
The method allows for multi-scale application [41] as is per-
tinent for many areas of soft matter [74–76]. It is furthermore
applicable to general interactions, as exemplified by success-
fully addressing a supercritical Lennard–Jones fluid [41], thus
complementing analytical efforts to construct density func-
tional approximations. Such work was based, e.g. on hierarch-
ical integral equations [77, 78], on functional renormalization
group methods [79–81], and on fundamental measure theory
[82–84].

Here we use the one-dimensional hard core model to illus-
trate the key concepts of the neural functional theory, as the
required sampling can be performed easily and Percus’ func-
tional provides an analytical structure that we can relate to
the neural theory. The Percus functional is one of the very
few general classical free energy density functionals that is
analytically known for a continuum model (see e.g. also [85,
86]) and this fact provides further motivation for our study. A
hands-on tutorial that demonstrates the key concepts of con-
structing a neural direct correlation functional, generating the
required data from Monte Carlo simulations, testing against a
numerical implementation of the Percus functional, and work-
ing with automatic differentiation is available online [42].

The paper is structured into individual subsections, as
described in the following; each subsection is self-contained
to a significant degree such that Readers are welcome to
select the description of those topics that match their own
interests and individual backgrounds. An overview of key con-
cepts of the one-body neural functional approach is given in
section 1.1. This hybrid method draws on classical density
functional concepts, as summarized in section 1.2. Functional
differentiation and integration methods are described in
section 1.3.

Readers who are primarily interested in the use of machine
learning may want to skip the above material and rather start
with section 2.1, where we describe how to construct and train
the neural correlation functional on the basis of many-body
simulation data. We concentrate on the specific model of one-
dimensional hard core particles and complement and contrast
the neural functional by the known exact analytical results for
this model, as described in section 2.2. Model applications for
predicting inhomogeneous systems based on neural density
functional theory are described in section 2.3.

Several methods of neural functional calculus are described
in section 3. Manipulating the neural correlation functional by

Figure 2. Illustration of the relevant functional maps of the neural
functional theory. The external potential Vext(r) generates a
one-body density profile ρ(r) that is associated with a one-body
direct correlation function c1(r). At given temperature T, chemical
potential µ, and for a specific form of the external potential Vext(r),
Monte Carlo simulations provide data for the corresponding density
profile ρ(r) and for the direct correlation function c1(r). Machine
learning is used to represent the functional map ρ→ c1 via a deep
neural network. The functional dependence of c1(r) on the density
profile is of much shorter spatial range as compared to the training
data obtained from Vext → ρ.

functional integration and automatic functional differentiation
is described in sections 3.1 and 3.2, respectively. The applic-
ation of Noether sum rules as a standalone means for qual-
ity control of the neural network is presented in section 3.3.
Functional integral sum rules are shown in section 3.4. A brief
overview of key concepts of neural functional representations
in nonequilibrium are presented in section 4. We give conclu-
sions in section 5.

1.1. Neural functional concepts

The neural functional framework [41] rests on a combination
of simulation, density functional theory, and machine learn-
ing. Data that characterizes the underlying many-body system
is generated via grand canonical Monte Carlo simulations of
well-defined, but random external conditions. Based on these
results the one-body direct correlation functional is construc-
ted as a neural network that accepts as an input the relevant
local section of the density profile. Thismethod allows for very
efficient data handling as only short-ranged correlations con-
tribute; figure 2 depicts an illustration.

The neural one-body direct correlation functional c1(r, [ρ])
forms the mother network for the subsequent functional cal-
culus. Automatically differentiating the mother network with
respect to its density input yields the two-body direct correl-
ation functional c2(r,r ′, [ρ]) as a daughter functional. Two-
body direct correlations are central in liquid state theory [8]
and they are here represented by a standalone numerical object
that is created via straightforward application of automatic
differentiation. This workflow is very different and arguably

3

6.10 “Why neural functionals suit statistical mechanics”

171



J. Phys.: Condens. Matter 36 (2024) 243002 Topical Review

much simpler in practice than the standard technique of car-
rying out the functional differentiation analytically and then
implementing the resulting expression(s) via numerical code.

Differentiating the daughter network yields a granddaugh-
ter network, which represents the three-body direct correlation
functional c3(r,r ′,r ′ ′, [ρ]). Again this is an independent and
standalone numerical computing object. Very little is known
about three-body direct correlations, with e.g. Rosenfeld’s
early investigation for hard spheres [61] and the freezing stud-
ies by Likos and Ashcroft [87, 88] being notable exceptions.
The neural functional method [41] offers arguably unpreced-
ented detailed access.

Tracing the genealogy in the reverse direction requires
functional integration, which is a general and standard tech-
nique in functional calculus. In the present case again a quasi-
standalone numerical object can be built based on mere net-
work evaluation and standard numerical integration, both of
which are fast operations. In this way, functionally integrat-
ing the mother one-body direct correlation functional creates
as the grandmother the excess free energy functional Fexc[ρ].
This mathematical object is the ultimate generating functional
in classical density functional theory for all n-body direct cor-
relation functions [5, 8, 9]. We give more details about the
interrelationships within the family of functionals below in
section 1.3.

When applied to the three-dimensional hard sphere fluid
and restricted to planar geometry, such that the density distri-
bution is inhomogeneous only along a single spatial direction,
the neural functional theory outperforms the best available
hard sphere density functional (the formidableWhite BearMk.
II fundamental measure theory [65]) in generic inhomogen-
eous situations. For spatially homogeneous fluids the neural
functional even surpasses the ‘very accurate equation of state’
[8] by Carnahan and Starling [52], despite the fact that no
explicit information about any bulk fluid properties was used
during training.

Formulating reliable strategies of how to test machine-
learning predictions constitutes in general a complex yet very
important task, not least in the light of ongoing and pro-
jected increased use of artificial intelligence in science [51].
The neural functional theory offers a wealth of concrete self-
consistency checks besides the standard benchmarking tech-
niques. Commonly and following best practice in machine
learning, benchmarking is performed by dividing the refer-
ence data, as here obtained from many-body simulations, into
training, validation and test data. The simulations in the test
data set have not been used during training and hence can
serve to assess the performance of the trained network. In
our present model application, we can perform testing directly
with respect to the exact Percus theory.

Assessing extrapolation capabilities beyond the under-
lying data set requires the availability of further refer-
ence data. In [41] this is provided by comparing (favour-
ably) against a highly accurate bulk equation of state [89]
as well as comparing against free energy reference results
obtained from simulation-based thermodynamic integration of
inhomogeneous systems.

However, due to its computational efficiency the neural
approach allows to make predictions for system sizes that
outscale significantly the dimensions of the original simula-
tion box. Sammüller et al [41] describe systems of micron-
sized colloids confined between parallel walls with macro-
scopic separation distance. The density profile is resolved over
a system size of 1 mm with nanometric precision on a numer-
ical grid with 10 nm spacing. Such ‘simulation beyond the
box’ is both powerful in terms of multiscale description of soft
matter [74–76], but is also serves as template for the more gen-
eral situation of using artificial intelligence methods far out-
side their original training realm.

In order to provide quality control, the neural functional
theory hence allows to carry out a second type of test. This
is less generic than the above benchmarking but it can nev-
ertheless provide inspiration for machine learning in wider
contexts. In the present case, the specific statistical mech-
anical nature of the underlying equilibrium many-body sys-
tem implies far-reaching mathematical structure, as it lies at
the very heart of Statistical Mechanics. Specifically, it is the
significant body of equilibrium sum rules that provide form-
ally exact interrelations between different types of correlation
functions. These sum rules hold universally, i.e. independent
of the specific inhomogeneous situation that is under consid-
eration and they hence constitute formally exact relationships
between functionals.

As the neural functional theory expresses direct correlation
functions using neural networkmethods, the sum rules directly
translate to identities that connect the different neural func-
tionals and their integrated and differentiated relatives with
each other. Crucially, these connections have both different
mathematical form, as well as different physical meaning, as
compared to the bare genealogy provided by the automatic
functional differentiation and functional integration. Without
overstretching the analogy, one could view the sum rules as
genetic testing the entire family for absence of inheritable
disease.

While the body of statistical mechanical sum rules is both
significant and diverse [20–23], here we rely on the recent
Noether invariance theory [90–98] as a systematic means to
create both known and new functional identities from the
thermal invariance of the underlying statistical mechanics [90,
91]. In particular from invariance against local shifting one
obtains sum rules that connect different generations of dir-
ect correlation functionals with each other in both locally-
resolved and global form. We present exemplary cases below
in section 3.3. Generic sum rules that emerge from the mere
inverse relationship of functional integration and functional
differentation are presented in section 3.4.

1.2. Introduction to classical density functional theory

We give a compact account of some key concepts of classical
density functional theory; for more details see [5–9]. Readers
who are primarily interested in machine learning of neural
functionals can skip this and the next subsection and directly
proceed to section 2.

4

6 Publications

172



J. Phys.: Condens. Matter 36 (2024) 243002 Topical Review

In a statistical mechanical description of a many-body sys-
tem the local density acts as a generic order parameter that
measures the probability of finding a particle at a specific loc-
ation. The formal definition of the one-body density distribu-
tion as a statistical average is:

ρ(r) =
〈∑

i

δ (r− ri)
〉
, (1)

where the sum over i runs over allN particles, ri is the position
coordinate of particle i = 1, . . . ,N, and δ(·) indicates the Dirac
distribution, here in three dimensions. The angles indicate a
thermal average over microstates, which can e.g. be efficiently
carried out in Monte Carlo simulations.

For completeness, we give a formal description of the equi-
librium average based on the grand ensemble, where it is
defined as ⟨·⟩= Tr · e−β(H−µN)/Ξ. Here the inverse temper-
ature is β = 1/(kBT), with the Boltzmann constant kB and
absolute temperature T, the Hamiltonian H, chemical poten-
tial µ and grand partition sum Ξ. The classical trace is defined
as Tr ·=

∑∞
N=0(h

dNN!)−1
´
drN
´
dpN·, where h denotes the

Planck constant and
´
drN
´
dpN is a shorthand for the high-

dimensional phase space integral over all particle positions and
momenta in d spatial dimensions. Pedagogical introductions
can be found in standard textbooks [8] and an introductory
compact account together with a description of the force point
of view is provided in [91].

The Hamiltonian has the following standard form:

H=
∑
i

p2
i

2m
+ u

(
rN

)
+
∑
i

Vext (ri) , (2)

where pi is the momentum of particle i, the interparticle inter-
action potential u(rN) depends on all position coordinates
rN = r1, . . . ,rN, and Vext(r) is an external potential energy
function that depends on position r. Hence the sum in
equation (2) comprises kinetic, interparticle, and external
energy contributions. For the common case of particles inter-
acting via a pair potential ϕ(r) that only depends on the inter-
particle distance r, the interparticle energy reduces to u(rN) =∑

ij( ̸=)ϕ(|ri− rj|)/2 where the double sum runs only over dis-
tinct particle pairs ij with i ̸= j and the factor 1/2 corrects for
double counting.

For the ideal gas the interparticle interactions vanish,
u(rN)≡ 0, and the density profile is given by the generalized
barometric law [8]:

ρid (r) = e−β(Vext(r)−µ)/Λd, (3)

where Λ denotes the thermal de Broglie wavelength, which in
the present classical case can be set to Λ = σ, with σ denoting
the particle size; for simplicity of notation here we use Λ = 1.

Taking the logarithm of equation (3) and collecting all
terms on the left hand side gives the following ideal gas chem-
ical potential balance:

lnρid (r)+βVext (r)−βµ= 0. (4)

For a mutually interacting system, where u(rN) ̸= 0,
equation (4) will not be true when replacing the ideal dens-
ity profile ρid(r) by the true density profile ρ(r) as formally
given by equation (1). Rather the sum of the three terms on
the left hand side of equation (4) will not vanish, but yield a
nontrivial contribution:

lnρ(r)+βVext (r)−βµ= c1 (r) , (5)

where the one-body direct correlation function c1(r) is in gen-
eral nonzero and arises due to the presence of interparticle
interactions in the system. (For hard core systems c1(r) typ-
ically features negative values.)

The machine learning strategy described below in
section 2.1 is based on this pragmatic access to data for
c1(r), as obtained by direct simulation of ρ(r) on the basis
of explicitly carrying out the average in equation (1) for given
form of Vext(r) and prescribed values of the thermodynamic
parameters µ and T. As the one-body direct correlation func-
tion is central in the neural functional theory, we combine
equations (4) and (5), which yields the following equivalent
form for the one-body direct correlation function,

c1 (r) = ln

(
ρ(r)
ρid (r)

)
, (6)

where ρid(r) is given by equation (3) with Λ = 1. Equation (6)
has the direct interpretation of c1(r) as the logarithm of the
ratio of the actual density profile and the density profile of the
ideal gas under identical conditions, as given by the external
potential and thermodynamic statepoint.

In alternative terminology [8] one defines the intrinsic
chemical potential as µint(r) = µ−Vext(r). The intrinsic
chemical potential and the one-body direct correlation
function are related trivially to each other via µint(r) =
kBT[lnρ(r)− c1(r)] as is obtained straightforwardly by re-
arranging equation (5).

The practical, computational, and conceptual advantage of
density functional theory lies in avoiding the explicit occur-
rence of the high-dimensional phase space integral that under-
lies thermal averages; we recall the definition of the dens-
ity profile (1) as such an expectation value. Instead, and
without any principal loss of information, one works with
functional dependencies. Rather thanmere point-wise depend-
encies, such as between the functions ρ(r), Vext(r), and c1(r)
that hold at each point r, see equation (5), a functional depend-
ence is on the entirety of a function and it has in general a
nonlocal and nonlinear structure.

Density functional theory is specifically based on the fact
[3–5] that for a given type of fluid, as characterized by its
interparticle interaction potential u(rN), and known thermo-
dynamic parameters µ and T, the form of density profile ρ(r)
is sufficient to determine the entirety of the external potential
Vext(r). Hence a unique functional map exists [3–5]:

ρ→ Vext. (7)

Here we omit the position arguments on both sides to reflect
in the notation that the functional map relates the entirety of
the density profile to the entirety of the external potential.
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Applying equation (7) to the external potential, as it occurs
in equation (5), implies that the left hand side is determ-
ined from knowledge of the density profile alone, in principle
without any need for a priori knowledge of the form of Vext(r).
Via the identity (5) we can conclude the existence of the map:

ρ→ c1, (8)

where the entirety of the density profile determines the entirety
of the direct correlation function. As a consequence the one-
body direct correlation function actually is a density func-
tional, c1(r, [ρ]), where the brackets indicate the functional
dependence, i.e. on the entirety of the argument function,
here ρ(r). We will discuss below more explicitly that the
dependence is effectively short-ranged for the case of short-
ranged interparticle interaction potentials and that this can be
exploited to great effect in the neural network methodology.

1.3. Density functional derivatives and integrals

While we have emphasized above the role of the one-body
direct correlation functional c1(r, [ρ]), primarily due to c1(r)
being directlymeasurable via equation (6), one typically rather
starts with a parent functional, the excess free energy func-
tional Fexc[ρ], in standard accounts of classical density func-
tional theory. The relationship of Fexc[ρ] and c1(r, [ρ]) is
established via functional calculus. Functional differentiation,
see [9] for a practitioner’s account, yields additional posi-
tion dependence and we use the notation δ/δρ(r) to denote
the functional derivative with respect to the function ρ(r).
Functional integration is the inverse operation. We give a brief
description of the functional relationships in the following.
An overview is illustrated in figure 3 and we will return for
a broader account below in section 3.

The method of automatic differentiation [99] is an integ-
ral part of the new computing paradigm of differentiable
programming [100]. Automatic differentiation is based on a
powerful set of techniques and it differs from both symbolic
differentiation, as facilitated by computer algebra systems, and
from numerical differentiation via finite difference, as is com-
putational bread and butter. As shown in the tutorial [42] only
high-level code is required to invoke automatic differentiation,
and both neural and analytical functionals can be differenti-
ated with little effort. As the derivative (of the functional) is
with respect to its entire input data, the method constitutes a
representation of a genuine functional derivative.

We give an overview. In the present context the functional
calculus that relates the one-body direct correlations to the par-
ent excess free energy functional is given by the following
functional integration and functional differentiation relations:

βFexc [ρ] =−
ˆ
drρ(r)

ˆ 1

0
dac1 (r, [ρa]) , (9)

c1 (r, [ρ]) =−δβFexc [ρ]

δρ(r)
. (10)

In equation (9) we have parameterized the general formal
integral

´
D[ρ] by using ρa(r) as a scaled version of the density

Figure 3. Illustration of four different generations of density
functionals. Shown are the excess free energy functional Fexc[ρ] and
the one-, two-, and three-body direct correlation functionals.
Upward arrows indicate the relationship via functional integration´
drρ(r)

´ 1
0 da with the integrand being evaluated at the scaled

density aρ(r). Downward arrows indicate functional differentiation
δ/δρ(r). The neural functional theory is based on training c1(r, [ρ])
as the generating mother functional. Implementing the arrowed
operations only requires high-level code. The resulting neural
networks, as well as functionals derived from analytical
expressions, are highly performant.

profile, with a simple linear relationship ρa(r) = aρ(r). Hence
the parameter value a= 0 corresponds to vanishing density
and a= 1 reproduces the target density profile, as it occurs in
the argument of βFexc[ρ] on the left hand side of equation (9).
We emphasize that the integral over a in equation (9) is a
simple one-dimensional integral over the coupling parameter
a. The consistency between equations (9) and (10) is demon-
strated below in section 3.4.

The perhaps seemingly very formal functional calculus
acquires new and pressing relevance in light of the neural func-
tional concepts of [41], which allow to work explicitly with
both functional derivatives and functional integrals, which
can be evaluated efficiently via the corresponding standalone
neural functionals.

In light of these benefits it is fortunate that the func-
tional differentiation-integration structure extends recursively
to higher orders of correlation functions. The next level beyond
equations (9) and (10) involves the two-body direct correlation
functional c2(r,r ′, [ρ]) and the integration and differentiation
structure is as follows:

c1 (r, [ρ]) =
ˆ
dr ′ρ(r ′)

ˆ 1

0
dac2 (r,r ′, [ρa]) , (11)

c2 (r,r ′, [ρ]) =
δc1 (r, [ρ])
δρ(r ′)

, (12)

and we refer to [8, 9, 101, 102] for background.
We can chain the functional derivatives together by insert-

ing c1(r, [ρ]) as given by equation (10) into the definition (12)
of c2(r,r ′, [ρ]). In parallel, we can also chain the functional
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integrals in equations (9) and (11). These procedures yield the
following second order functional integration and differenti-
ation relationships:

βFexc [ρ] =−
ˆ
drρ(r)

ˆ
dr ′ρ(r ′)

×
ˆ 1

0
da
ˆ a

0
da ′c2 (r,r ′, [ρa ′ ]) , (13)

c2 (r,r ′, [ρ]) =− δ2βFexc [ρ]

δρ(r)δρ(r ′)
, (14)

where the scaled density profile in equation (13) is ρa ′(r) =
a ′ρ(r). The double parameter integral in equation (13) can be
further simplified [7], as described at the end of section 3.4.
The generalization of equation (14) to the n-th functional
derivative defines the n-body direct correlation functional,
which remains functionally dependent on the density pro-
file and which possesses spatial dependence on n position
arguments. Although increasing n yields objects that become
very rapidly out of any practical reach, the neural functional
concept provides much fuel for making progress. While we do
not cover c3(r,r ′,r ′ ′, [ρ]) here, Sammüller et al have demon-
strated its general accessiblity and physical validity for bulk
fluids in [41].

We have so far focused on the properties of the intrinsic
excess free energy functional Fexc[ρ] and its density functional
derivatives. This is natural as classically Fexc[ρ] is the central
object that contains the effects of the interparticle interactions
and thus depends in a nontrivial way on its input density pro-
file. The functional Fexc[ρ] is intrinsic in the sense that it is
independent of external influence. We recall that we here work
in the grand ensemble (see e.g. [103–106] for studies address-
ing the canonical ensemble of fixed particle number). Hence
the appropriate thermodynamic potential is the grand canon-
ical free energy or grand potential. This is required in order to
determine ρ(r).

When expressed as a density functional the grand potential
consists of the following sum of ideal, excess, external, and
chemical potential contributions:

Ω[ρ] = Fid [ρ] +Fexc [ρ] +

ˆ
drρ(r) [Vext (r)−µ] . (15)

The form of the ideal gas free energy functional is explicitly
known as Fid[ρ] = kBT

´
drρ(r)[lnρ(r)− 1] and the third term

in equation (15) contains the effects of the external potential
Vext(r) and of the particle bath at chemical potential µ.

The variational principle of classical density functional
theory [4, 5, 105] ascertains that

δΩ[ρ]

δρ(r)

∣∣∣
ρ=ρ0

= 0 (min), (16)

Ω[ρ0] = Ω0. (17)

Equations (16) and (17) imply that the grand potential
becomes minimal at ρ0(r), which is the real, physically real-
ized density profile and Ω0 is the equilibrium value of the
grand potential. Recall that based on the many-body picture

we have Ω0 =−kBT lnΞ with the grand ensemble partition
sumΞ = Tre−β(H−µN).We have used the subscript 0 to denote
equilibrium but we drop this elsewhere in our presentation to
simplify notation.

Inserting equation (15) into equation (16) and using the
explicit form of the ideal free energy functional together with
the definition (10) of c1(r, [ρ]) leads to equation (5) with the
one-body direct correlations expressed as a density functional,
as anticipated in section 1.2. Exponentiating and regrouping
the terms then yields the following popular form of the Euler–
Lagrange equation:

ρ(r) = exp(−βVext (r)+βµ+ c1 (r, [ρ])) . (18)

Equation (18) is a self-consistency relation that can be solved
efficiently for the equilibrium density profile ρ(r) via iterat-
ive methods, as detailed below in section 2.3. A prerequis-
ite is that c1(r, [ρ]) is known, usually as an approximation
that is obtained from an approximate excess free energy
functional Fexc[ρ] via functionally differentiating according
to equation (10). Having obtained a numerical solution of
equation (18) for the density profile, this can then be inserted
into the grand potential functional (15) to obtain full thermo-
dynamic information via equation (17), which by construction
is consistent with the density profile.

We demonstrate in the following how this classical func-
tional background can be put to formidable use via hybridiz-
ation with simulation-based machine learning. As our aim is
pedagogical, we choose the one-dimensional hard core system
as a concrete example to demonstrate the general methodology
[41]. We complement the neural functional structure with a
description of Percus’ analytical solution, which then allows
for mirroring of the neural theory.

2. Neural functional theory

Jerry Percus famously wrote in the abstract of his 1976 stat-
istical mechanics landmark paper [55]: ‘The external field
required to produce a given density pattern is obtained expli-
citly for a classical fluid of hard rods. All direct correlation
functions are shown to be of finite range in all pairs of vari-
ables.’ Here we relate his achievement to the neural functional
theory, which allows to reproduce numerically a variety of
properties of the exact solution. We emphasize that the neural
functional theory remains generic in its applicability to fur-
ther model fluids; see the supplementary information of [41]
for the successful treatment of the supercritical Lennard–Jones
fluid in three dimensions. We refer the Reader to the provided
online resources [42] for a programming tutorial on the con-
crete application of the following concepts. Figure 4 shows a
schematic of the workflow that is inherent in the neural func-
tional concept, as described in the following.

2.1. Training the neural correlation functional

The classical fluid of hard rods that Percus considers has one-
dimensional position coordinates xi, with particle index i =
1, . . . ,N and a pairwise interparticle interaction potential ϕ(x)
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Figure 4. Schematic of the workflow of the neural functional
theory. Many-body simulations under randomized conditions are
used to sample statistically averaged and spatially resolved data that
characterize the inhomogeneous response of the considered system.
A neural network is then trained to represent the direct correlation
functional, which is subsequently applied numerically and via
neural functional methods to investigate the physics of the system in
the desired target situations.

which is infinite if the distance x between the two particles is
smaller than their diameter, x< σ, and it vanishes otherwise.
The system is exposed to an external potential Vext(x), which
is a function of position x across the system, and this in general
creates an inhomogeneous ‘density pattern’ ρ(x).

We adjust the definition (1) of the density distribution to the
present one-dimensional case:

ρ(x) =
〈∑

i

δ (x− xi)
〉
, (19)

where δ(·) here indicates the Dirac distribution in one dimen-
sion and the brackets indicate a grand canonical thermal aver-
age. Due to the hard core nature of the model, the statistical
weight of each ‘allowed’ microstate is particularly simple and
given by exp[−β

∑
i Vext(xi)+βµN]/Ξ, where Ξ is a normal-

izing factor. Allowed microstates are those for which all dis-
tinct particle pairs ij are spaced far enough apart, |xi− xj|⩾ σ.
If already a single overlap occurs, then the microstate is ‘for-
bidden’ as the interparticle potential becomes formally infin-
ite, which then creates vanishing statistical weight; we recall
the illustration in figure 1.

Despite the apparent simplicity of the many-body prob-
ability distribution, the Statistical Mechanics of the hard rod
model is nontrivial. The particles interact nonlocally over
the lengthscale σ and the external potential has no restric-
tions on its shape or on the lengthscale(s) of variation. Hence
features such as jumps and positive infinities that represent
hard walls are allowed. In bulk, Vext(x) = 0, and the solu-
tion is straightforward [8, 54]. The general case is however
highly nontrivial, which makes Percus’ above quoted opening
a very remarkable one. We present more details of his work

further below, after first laying out the general machine learn-
ing strategy of [41]. This neural functional method is neither
restricted to hard cores nor to one-dimensional systems, but
addressing this case here is useful to highlight the salient fea-
tures of the approach.

We aim for explicitly sampling the microstates of the sys-
tem according to their probability distribution via particle-
based simulations. This can be implemented efficiently, and
for the present introductory purposes in also an intuitively
accessible way, via grand canonical Monte Carlo (GCMC)
sampling. Excellent accounts of this method are given in [8,
107–109]. Briefly, a Markov chain of microstates is con-
structed, where based on a given configuration, a trial step
is proposed, which is accepted with a probability given by
a Metropolis function involving the energy difference ∆E
between the original and the trial state.

Three trial moves are used in the simplest yet powerful
scheme: (i) Selecting one particle i randomly and displacing it
uniformly within a given maximal cutoff distance. If the dis-
placement creates overlap, then the trial move is discarded.
If otherwise there is no overlap in the new configuration, the
energy difference is due to only the external potential, ∆E=
Vext(x ′i )−Vext(xi), where the prime denotes the trial position
of particle i. (ii) A new particle j is inserted at a random posi-
tion xj with energy change that accounts for both the external
potential and the chemical equilibrium with the particle bath
and hence ∆E= Vext(x ′j )−µ. (iii) Correspondingly, a ran-
domly selected particle i is removed from the system. The
acceptance of the removal happens again with a probabil-
ity given by the Metropolis function with energy difference
∆E=−Vext(xi)+µ.

Despite its conceptual simplicity GCMC is a very power-
ful method for the investigation of complex effects [107–109]
and significant extensions exist both in the form of histogram
techniques [108, 109] and the tailoring of more complex and
collective trial moves. Investigating a typical physical prob-
lem, as specified by the interparticle interactions u(rN) and the
type of considered external influence, such as walls as repres-
ented by a model form of Vext(r), requires e.g. scanning of the
thermodynamic parameters and acquiring good enough stat-
istics at each statepoint. Our ultimate goal (section 2.3) is to
perform this tasks with significant gain in efficiency via the
neural theory; we re-iterate the availability via [42] of hands-
on code examples for the present hard rod model.

We base the training on the following rewriting and adapta-
tion of the chemical potential balance equation (5) to the one-
dimensional system:

c1 (x) = lnρ(x)+βVext (x)−βµ. (20)

All quantities on the right hand side are either prescribed a pri-
ori or are accessible via the GCMC simulations: Specifically,
the density profile ρ(x) is obtained by filling a position-
resolved histogram according to the encountered microstates
as specified by its particle coordinates xi. We recall the formal
definition (19) of ρ(x) via theDirac distribution, which in prac-
tice is discretized such that sufficient finite spatial resolution,
say 0.01σ, is obtained. This ‘counting’ method is arguably the
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Figure 5. Illustration of the neural one-body direct correlation
functional c1(x, [ρ]) represented by a fully connected neural network
with three hidden layers. The topology maps a small finite window
of the density profile ρ(x) to the local value of the direct correlation
function c1(x).

most intuitive one to obtain data for the density profile. As
an aside, there is a number of force-sampling techniques that
can improve the statistical variance significantly [97, 110–112]
and that also can serve to gauge the quality of sampling of the
equilibrium ensemble [97].

While the issues of Monte Carlo sampling efficiency and
quality assessment of thermal averages can be pertinent in
higher dimensions and in physically more complex situations,
the simplicity of the present one-dimensional hard core model
makes counting according to equation (19) an appropriate
choice to obtain data for ρ(x). Then adding up the three con-
tributions on the right hand side of equation (20) yields results
for c1(x). We proceed at this data-generation stage somewhat
heretically and ignore at first the central role that c1(x) plays
for the physics of inhomogeneous systems.

In contrast to the typical deterministic setup for investig-
ating a specific physical situation described above, training
the neural network proceeds on the basis of randomized situ-
ations rather than with the ultimate application in mind; we
recall the illustration of the neural functional workflow shown
in figure 4. The motivation for using this strategy comes from
the goal of capturing via the machine learning the intrinsic dir-
ect correlations of the many-body system that then transcend
the specific inhomogeneous situations that were under consid-
eration during training. Figure 5 depicts an illustration of the
neural network topology of the trained central neural network
c1(x, [ρ]) and its relation to the physical input and output quant-
ities, i.e. to ρ(x) and c1(x).

We hence perform a sequence of simulation runs, where
each run has an input value βµ(k) and an input functional shape
βV(k)

ext (x), both of which are generated randomly. Specifically,
we combine sinusoidal functions with periodicities that are
commensurate with the box length L, linear discontinuous
segments, and hard walls in the creation of V(k)

ext (x); see [41,
42] for further details. The superscript k enumerates the

different GCMC simulation runs and in practice we per-
form 512 of these. The result is a set of corresponding dens-
ity profiles ρ(k)(x). We then use equation (20) to obtain for
each run the one-body direct correlation profiles from simply
adding up: c(k)1 (x) = lnρ(k)(x)+βV(k)

ext (x)−βµ(k). As a result
of the simulation protocol we have generated a bare data set
{βµ(k),βV(k)

ext (x), ρ
(k)(x), c(k)1 (x)} for all positions x and for all

different runs k. As a practical detail, this requires to exclude
regions where ρ(x) = 0 and Vext(x) =∞.

In order to address our declared goal to learn a functional
dependence of c1(x), we have to carve out a nontrivial depend-
ence relationship and hence restrict the data input. Motivated
by the physics, one might see the scaled chemical potential
βµ(k) and the scaled external potential βV(k)

ext (x) to be the true
mechanical origin of the shape of the direct correlation func-
tion c(k)1 (x). However, the insights provided by density func-
tional theory hint at the fact that this is not the best possible
choice of functional relationship to consider.

We recapitulate that the GCMC simulations yield data
according to:{

V(k)
ext (x

′)−µ(k)
}L

0
−→

{
ρ(k) (x)

}L

0
, (21)

where the curly brackets indicate all function values inside
of the system box, with ranges 0⩽ x ′ ⩽ L and 0⩽ x⩽ L;
the arrow indicates an input-output relationship. Applying
equation (20) to the entire data set also allows to have the direct
correlation function as an output according to:{

V(k)
ext (x

′)−µ(k)
}L

0
−→

{
c(k)1 (x)

}L

0
. (22)

If one were to mimic the simulations directly by the neural net-
work one would be tempted to base the training directly upon
equation (22). In less clearcutmachine-learning situations than
considered here, it can be a standard strategy to attempt to
represent the causal relationship, which governs the complex
mathematical or real-world system under consideration, by a
surrogate artificial intelligence model. The present functional
formulation of Statistical Mechanics hints at potential caveats,
such as the necessity of dealing with the full input and output
data sets (parameter ranges of x and x′) across the entire sys-
tem. Furthermore the specific physics of the mutually interact-
ing rods appears to play no role.

The density functional-inspired training (section 1.2) pro-
ceeds very differently. We here take a pragmatic stance and
attempt to create via training a neural representation of the
dependence of c1(x) on ρ(x) alone. This leads to a surrogate
model c1(x, [ρ]) based on the following mapping{

ρ(k) (x ′)
}x+xc

x−xc
−→ c(k)1 (x) , (23)

where the input on the left hand side consists of function val-
ues ρ(k)(x ′) that lie inside the density window centered at x,
i.e. only the values x′ that lie within a narrow interval x− xc ⩽
x ′ ⩽ x+ xc. Here xc is a cutoff parameter that for short-ranged
interparticle potentials is of the order of the particle size. For
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the present one-dimensional hard core system we set xc = σ.
Instead of having to output an entire function, as would be the
case when attempting to learn via equation (22), here the out-
put is merely the single value of the direct correlation function
at the center of the density window. We recall that this target
value is obtained from the simulation data via equation (20)
such that c(k)1 (x) = lnρ(k)(x)+βV(k)

ext (x)−βµ(k) for each run
k. A simple GCMC code is provided online [42], along with
a pre-generated simulation data set and a pre-trained neural
functional.

We choose the loss function to be the mean squared error
of the neural network output compared to the simulation ref-
erence value for c1(x), as obtained via equation (20). As a fur-
ther metric to gauge the training progress, we make use of the
mean absolute error of reference and output. Both choices are
standard [100]. The quadratic loss is convenient as it is analyt-
ical and hence the machine-learning gradient-based methods
directly apply. The mean absolute error is nonanalytical due
to the modulus involved, but it is a useful supporting quantity
that has a very direct interpretation.

After training the mean absolute error was of the order
of ∼0.013, which implies that the neural network prediction
deviates on average by this value from the simulation data.
Although the simulation data carries some statistical noise,
its effect is comparatively smaller, when taking the numerical
solution of the Percus theory (detailed below) as the reference.

Our training data consists of 512 simulation runs using a
simulation box size of L= 10σ. Each of the simulation runs
requires only about three minutes runtime on a single CPU
core of a standard desktop machine.

We use a standard fully-connected artificial neural network
with three hidden layers that respectively possess 128, 64
and 32 nodes. We use 201 input nodes to represent the dens-
ity profile in a finite window of size 1σ and spatial bin size
0.01σ, where we recall that σ is the particle size. To accom-
modate the local functional mapping, we reshape the train-
ing data into input density windows and corresponding output
values of c1(x), where we also apply twofold data augment-
ation by exploiting mirror symmetry of the simulation res-
ults. Excluding regions where Vext(x) =∞ and hence where
equation (20) is not defined, this results in ∼106 input-output
pairs.

From the above description and without considering the
background in density functional theory it is not evident that
the training will be successful and minimize the loss satisfact-
orily to yield a trained network c1(x, [ρ]). From amathematical
point of view, this raises the questions whether a correspond-
ing object c1(x, [ρ]) indeed exist and whether it is unique. And
if so, is its structure simple enough that it can be written down
explicitly?

2.2. Percus’ exact direct correlation functional

Due to Percus singular achievement [55] the one-body dir-
ect correlation functional c1(x, [ρ]) for interacting hard rods
in one spatial dimension is known analytically and this has
triggered much subsequent progress, see e.g. [56–58, 60–65].
The functional dependence on the density profile is nonlocal,

as one would expect from the fact that the rods interact over
the finite distance σ, and it is also nonlinear, as is consist-
ent with the behaviour of a nontrivially interacting many-body
system. The spatial dependence is characterized by convolu-
tion operations which, despite performing the task of coarse-
graining, retain the full character of the microscopic interac-
tions. The Percus functional provided motivation for develop-
ing so-called weighted-density approximations [8], where the
density profile is convolved with one or several weight func-
tions that are then further processed to give the ultimate value
of the density functional.

We here give the Percus direct correlation functional in
Rosenfeld’s geometry-based fundamental measure represent-
ation, see [59] for a historical perspective. Instead of work-
ing with the particle diameter σ as the fundamental length-
scale, Rosenfeld rather bases his description on the particle
radius R= σ/2, which allows to find deep geometric mean-
ing in Percus’ expressions and to also generalize to higher
dimensions [60, 61, 65].

The exact form [60] of the one-body direct correlation func-
tional is analytically given as the following sum:

c1 (x, [ρ]) =−Φ0 (x−R)+Φ0 (x+R)
2

−
ˆ x+R

x−R
dx ′Φ1 (x

′) .

(24)

Here the two functions Φ0(x) and Φ1(x) each depend on two
weighted densities n0(x) and n1(x) in the following form:

Φ0 (x) =− ln [1− n1 (x)] , (25)

Φ1 (x) =
n0 (x)

1− n1 (x)
. (26)

The weighted densities n0(x) and n1(x) are obtained from the
bare density profile via spatial averaging:

n0 (x) =
ρ(x−R)+ ρ(x+R)

2
, (27)

n1 (x) =
ˆ x+R

x−R
dx ′ρ(x ′) . (28)

The discrete spatial averaging at positions x±R in the
weighted density (27) parallels that in the first term of
equation (24). Similarly the position integral over the inter-
val [x−R,x+R] in equation (28) appears analogously in the
second term of equation (24). These similarities are not by
coincidence. The structure is rather inherited from the grand-
mother (excess free energy) functional, as is described in
section 3.1.

Having the analytical solution (24)–(28) for c1(x, [ρ])
allows for carrying out numerical evaluation and comparing
against results from the neural functional c1(x, [ρ]). The range
of nonlocality, i.e. the distance across which information of
the density profile enters the determination of c1(x, [ρ]) via
equations (24)–(28) is strictly finite, as announced in Percus’
abstract [55]. As two averaging operations, each with range
±R, are chained together, the composite procedure has a range
of±2R=±σ, inline with our truncation of the density profiles
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Figure 6. Representative density profiles that the inhomogeneous hard rod system exhibits under the influence of an external potential. The
results are obtained from numerically solving equation (29) upon using either the neural direct correlation functional c1(x, [ρ]) or Percus
exact solution thereof. The three cases comprise (a) two hard walls with separation distance 9σ and chemical potential βµ= 2, (b) two hard
walls with much smaller separation distance 2σ and identical chemical potential βµ= 2, and (c) sedimentation-diffusion equilibrium under
gravity with a locally varying chemical potential, βµloc(x) = βµ−βVext(x) = 2− 0.05x/σ; here the linearly varying contribution accounts
for the influence of gravity on the system and confinement is provided by two widely spaced hard walls at x= 0.5σ and x= 99.5σ. Note the
crossover in panel (c) from the strongly oscillatory behaviour near the lower wall to a very smooth density decay, effectively following a
local density approximation [8], upon increasing the scaled height x/σ.

in the training data sets according to equation (23). A numer-
ical implementation of Percus direct correlation functional is
available online [42].

2.3. Application inside and beyond the box

Actually making the predictions for the hard rod model is
now straightforward as we can resort to density functional the-
ory and its standard use in application to physical problems.
The arguably most common method for solving the Euler–
Lagrange equation self-consistently is based on equation (18),
which we re-express for the one-dimensional case considered:

ρ(x) = exp(−βVext (x)+βµ+ c1 (x, [ρ])) . (29)

We recall that the range of nonlocality of c1(x, [ρ]) is lim-
ited to only the particle size σ and that we were able to extract
the functional dependence from simulation data obtained by
sampling in boxes of size L. Although the value of L could
in principle be imprinted in subtle finite size effects that
c1(x, [ρ]) has acquired, the size L of the original simulation
box has vanished and the application of the neural functional
in equation (29) is fit for use to predict properties of much lar-
ger systems. As an example, [41] demonstrates the scaling up
by a factor of 100 from the original simulation box to the pre-
dicted system of three-dimensional hard spheres under gravity.

The numerical solution of equation (29) can be efficiently
performed on the basis of Picard iteration where an initial
guess of the density profile is inserted on the right hand side
and the resulting left hand side is used to nudge the initial

guess in the correct direction toward the self-consistent solu-
tion. This is numerically fast and straightforward to imple-
ment, see the tutorial [42]. A common choice is to mix five
percent of the new solution to the prior estimate.

As laid out above, we choose the one-dimensional hard core
model due to both the availability of Percus’ functional and
the computational ease of both numerical evaluation of the
analytical expressions and of carrying out many-body sim-
ulations. On the downside, the model does not form a very
credible platform for assessing the numerical efficiency gain
of the neural theory, as in general one will be interested in
more complex systems and more complex physical situations
than addressed here. Nevertheless, to give a rough idea about
the required computational workload, minimizing the neural
density functional takes of the order of seconds on a GPU,
while the GCMC simulation runtime is of the order of sev-
eral minutes. Minimizing the analytical Percus functional is
faster than using the neural network, due to the simple struc-
ture of equations (24)–(28), which facilitates using very high-
performance fast Fourier transforms.

We show three representative examples of density profiles
for narrow to wide confinement between impenetrable walls in
figure 6. In all cases the results from using the neural functional
are numerically identical to those from the Percus functional
on the scale of the plot. The profiles in narrow (figure 6(a)) and
in moderately wide (figure 6(b)) pores show very dinstinct fea-
tures with the strongly confined system in (a) having a strik-
ing V-shape, which arises from having at most two particles in
the system, to the more generic damped oscillatory behaviour
in the moderately wide pore (b). The main panel figure 6(c)
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shows the influence of a weak gravitational field, which cre-
ates a continuously varying density inhomogeneity across the
entire system. The decay in local density occurs with a much
larger length scale as compared to the particle packing effects
that are localized near the lower wall.

The behaviour shown in figure 6(c) away from the walls
is well-represented by a local density approximation [8] (see
e.g. [113] for recent mathematical work). The local dens-
ity approximation can be a useful tool when investigating
e.g. macroscopic ordering under gravity, where the occurring
stacking sequences of different thermodynamic phases can be
traced back to the phase diagram [114, 115]. In particular the
effects on mixtures were rationalized by a range of techniques,
from generalization of Archimedes’ principle [116, 117] to
analyzing stacking sequences [114, 115]. We stress that the
present model applications constitute very significant extra-
polations from the training data that we recall was obtained
in a fixed box size L= 10σ and under the influence of ran-
domized external and chemical potentials. This is relevant in
particular for both the very confined system (figure 6(b)) and
the large system (figure 6(c)).

As a further potential application of the neural functional
theory, the dynamical density functional theory [5, 69, 118]
is similarly easy to implement numerically as equation (29)
and it is a currently popular choice to study time-dependent
problems [119, 120]. We comment on the status of the
approach [40] and howmachine learning can help to overcome
its limitations in section 4 below.

3. Neural functional calculus

We have seen in section 2 how a neural one-body direct correl-
ation functional can be efficiently trained on the basis of a pool
of pre-generatedMonte Carlo simulation data that are obtained
under randomized conditions. The specific way of organizing
the simulation data into training sets mirrors the functional
relationships given by classical density functional theory. We
have then shown that the neural functional can efficiently be
used to address physical problems, taking the one-dimensional
hard rod system as a simple example of a mutually interacting
many-body system.

We here proceed by exemplifying the depth of physical
insight that can be explored by acknowledging the functional
character of the trained neural correlation functional. Hence
we lay out functional integration (section 3.1) and functional
differentiation (section 3.2). We show sum rule construction
via Noether invariance (section 3.3), via exchange symmetry
(also section 3.3), and via functional integration (section 3.4).
The presentation in each subsection is self-contained to a con-
siderable degree and we illustrate the generality of the meth-
ods both by application to the neural functional as well as by
revisiting the analytic Percus theory.

3.1. Functional integration of direct correlations

Having captured the essence of molecular packing effects, as
they arise from the short-ranged hard core repulsion between

the particles, via the neural functional c1(x, [ρ]), begs for
speculation whether additional and as yet hidden physical
structure can be revealed. We give two plausibility arguments
why one should expect to be able to postprocess c1(x, [ρ]) in a
meaningful way to retrieve global information.

First, thermodynamics is based on the existence of very
few and well-defined unique and global quantities, such as the
entropy, the internal energy, and the free energy. Carrying out
parametric derivatives, with powerful interrelations given by
theMaxwell relations, enables one to obtain equations of state,
susceptibilities and further measurable global quantities. Our
neural direct correlation functional in contrast is a local object
with finite range of nonlocality. So how does this relate to the
global information?

The second argument is more formal. Suppose we prescribe
the form of the density profile and then evaluate the neural
functional c1(x, [ρ]) at each position x. This procedure yields a
numerical representation of the corresponding direct correla-
tion function c1(x). In the practical numerical implementation
we have a set of discrete grid points that represent the func-
tion values at these spatial locations x. Hence the entire data
set forms a numerical array or numerical vector, indexed by x.
One can then ask whether this vector could potentially be the
gradient of an overarching parent object?

The physical and the formal question can both be answered
affirmatively due to the existence of the excess free energy
density functional Fexc[ρ]. Its practical route of access, based
on functional integration along a continuous sequence of
states (a ‘line’) in the space of density functions, is strik-
ingly straightforward within the neural method. The core of
the method is to evaluate c1(x, [ρa]) as described above, but
for a range of scaled versions of the prescribed density profile
ρa(x) and then integrating in position to obtain the excess free
energy as a global value, see the functional integral given in
equation (9).

Specifically, we define a scaled version of the density pro-
file as ρa(x) = aρ(x), such that a= 0 generates the empty
state that has vanishing density profile, ρa=0(x) = 0. On the
other end a= 1 yields the actual density profile of interest,
ρa=1(c) = ρ(x). The excess free energy functional is then
obtained easily via functional integration according to

βFexc [ρ] =−
ˆ
dxρ(x)

ˆ 1

0
dac1 (x, [ρa]) . (30)

The numerical evaluation requires evaluating c1(x, [ρa]) at all
positions x in the system and for a range of intermediate val-
ues 0⩽ a⩽ 1 such that the parametric integral over a can be
accurately discretized.

Analytically carrying out the functional integral (30) on the
basis of the analytical direct correlation functional c1(x, [ρ])
as given by equations (24)–(28) is feasible. The result [56],
again expressed in the more illustrative Rosenfeld funda-
mental measure form, is given by:

βFexc [ρ] =

ˆ
dxΦ(n0 (x) ,n1 (x)) , (31)

Φ(n1 (x) ,n2 (x)) =−n0 (x) ln [1− n1 (x)] . (32)
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Here the integrand Φ(n0(x),n1(x)) plays the role of a local-
ized excess free energy density which depends on theweighted
densities n0(x) and n1(x) as given via the spatial averaging
procedures in equations (27) and (28), respectively. Inserting
equation (32) into equation (31) yields the hard rod excess free
energy functional in the following more explicit form:

βFexc [ρ] =−
ˆ
dxn0 (x) ln [1− n1 (x)] . (33)

Equation (33) is strikingly compact, given that it describes the
essence of a system of mutually interacting hard cores exposed
to an arbitrary external potential.

Although the result of the functional integral (30) has lost
all position dependence, the specific form of the density pro-
file ρ(x) is deeply baked into the resulting output value of
the functional via both the prefactor ρ(x) in the integrand in
equation (30) and the evaluation of the direct correlation func-
tional at the specifically scaled form ρa(x). In parallel with this
mathematical structure, the explicit form (33) of the Percus
functional clearly demonstrates that the resulting value will
depend nontrivially on the shape of the input density profile.

Having demonstrated that Fexc[ρ] as a global quantity can
be obtained from appropriate functional integration of a loc-
ally resolved correlation functional c1(x, [ρ]) naturally leads
to the question whether a reverse path exists that would mir-
ror the inverse structure provided by integration and differen-
tiation known from ordinary calculus.

The availability of a corresponding derivative structure for
functionals is quite significant, as this by construction gener-
ates spatial dependence, as indicated by δ/δρ(x); see e.g. [9]
for details. We can hence retrieve, or generate, the direct cor-
relation functional as the functional density derivative of the
intrinsic excess free energy functional:

c1 (x, [ρ]) =−δβFexc [ρ]

δρ(x)
. (34)

While we turn to more general functional differentiation
below, we here address again the analytical case, which is use-
ful as it reveals the origin of the double appearance of the two
spatial weighting processes in equations (24)–(28). Rosenfeld
[61] introduced two weight functions w0(x) and w1(x), which
respectively describe the end points of a particle and its interior
one-dimensional ‘volume’:

w0 (x) =
δ (x−R)+ δ (x+R)

2
, (35)

w1 (x) = Θ(R− |x|) , (36)

where Θ(x) indicates the Heaviside unit step function, i.e.
Θ(x⩾ 0) = 1 and 0 otherwise. The weighted densities n0(x)
and n1(c), as given respectively by equations (27) and (28), can
then be represented via convolution of the respective weight
function of type α= 0,1 with the density profile according to

nα (x) =
ˆ
dx ′wα (x− x ′)ρ(x ′) . (37)

In more compact notation we can express equation (37) as
nα(x) = (wα ∗ ρ)(x), where the asterisk denotes the spatial
convolution. Then the direct correlation functional is given by

c1 (x, [ρ]) =−
∑
α=0,1

(wα ∗Φα)(x) , (38)

which is an exact rewriting of the form given in equation (24).
The functions Φα are obtained as partial derivatives of the
scaled free energy density (32) viaΦα = ∂Φ/∂nα. This deriv-
ative structure reveals the mechanism for the generation of
the explicit forms Φ0(x) and Φ1(x), as respectively given by
equations (25) and (26).

3.2. Functional differentiation of direct correlations

While the above described use of functional differentiation in
an analytical setting might appear to be very formal and per-
haps limited in its applicability, we emphasize that the concept
is indeed very general. Given a prescribed functional of a func-
tion ρ(x), the functional derivative δ/δρ(x) simply gives the
gradient of the functional with respect to a change in the input
function at a specific location x.

By applying the functional derivative in the present one-
dimensional context to a given functional form of c1(x, [ρ]),
one obtains the two-body direct correlation functional and we
recall the generic expression (12):

c2 (x,x
′, [ρ]) =

δc1 (x, [ρ])
δρ(x ′)

. (39)

Using the Percus version (38) of the one-body direct cor-
relation functional and carrying out the functional derivative
on the right hand side of equation (39) gives via an analytical
calculation the following nonlocal result:

c2 (x,x
′, [ρ]) =−

∑
αα ′

(wα ∗Φαα ′ ∗wα ′)(x,x ′) . (40)

We make the double asterisk convolution structure more
explicit below. The coefficient functions in equation (40)
are obtained as second partial derivatives via Φαα ′ =
∂2Φ/∂nα∂nα ′ . Explicitly, we have Φ00(x) = 0 and the sym-
metry Φ01(x) = Φ10(x). The remaining terms are given by

Φ01 (x) =
1

1− n1 (x)
, (41)

Φ11 (x) =
n0 (x)

[1− n1 (x)]
2 . (42)

Inserting these results into equation (40) and making the
convolutions explicit yields the following expression:

c2 (x,x
′, [ρ]) =−2

ˆ
dx ′ ′

w0 (x− x ′ ′)w1 (x ′ − x ′ ′)
1− n1 (x ′ ′)

−
ˆ
dx ′ ′

w1 (x− x ′ ′)n0 (x ′ ′)w1 (x ′ − x ′ ′)

[1− n1 (x ′ ′)]
2 .

(43)
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We recall the definitions (35) and (36) of the weight func-
tions w0(x) and w1(x). The convolution structure couples two
weight functions together and each of them has a range of
R. Hence indeed the two-body direct correlations are of finite
range 2R= σ in the position difference x− x ′ [55].

While the above results for the Percus theory have been
derived by pen-and-paper symbolic calculations, the neural
functional is not amenable to such conventional techniques.
Fortunately, the framework of automatic differentiation [99]
provides a powerful alternative to both symbolic and numer-
ical differentiation methods, and it is a natural choice to
consider in the context of machine learning [100]. Via the
implementation of either modified algebra or of computational
graphs, automatic differentiation facilitates to obtain derivat-
ives directly in the form of executable code, and crucially there
is no need of any manual intervention. Automatic differenti-
ation thereby is free of the numerical artifacts that are typical
of finite difference schemes. Themethod is applicable in broad
contexts, which we illustrate in the online tutorial [42] by com-
puting the Percus result for c2(x,x ′, [ρ]) via automatic differen-
tiation of equation (38) rather than by manual implementation
of equation (43).

For completeness, we can recover the one-body direct cor-
relation functional by functional integration. We reproduce
equation (11) for the present one-dimensional geometry:

c1 (x, [ρ]) =
ˆ
dx ′ρ(x ′)

ˆ 1

0
dac2 (x,x

′, [ρa]) . (44)

On the basis of the neural representations of the direct correla-
tion functionals, this identity can be used to check for consist-
ency and for correctness of the automatic differentiation.

3.3. Noether invariance and exchange symmetry

In its standard applications Noether’s theorem is used to
relate symmetries of a dynamical physical system with asso-
ciated conservation laws. Obtaining linear momentum conser-
vation from a symmetry of the underlying action integral is a
primary example, see e.g. [91] for an introductory presenta-
tion. Besides such deterministic applications, the Noether the-
orem is currently seeing an increased use in a variety of stat-
istical mechanical settings [121–128].

The recent statistical Noether invariance theory [90–98] is
based on specific spatial displacement (‘shifting’) and rota-
tion operations. These transformations are carried out in three-
dimensional physical space and their effect is traced back to
underlying invariances on the high-dimensional phase space
and its associated thermal and nonequilibrium ensembles.

The central statistical Noether invariance concept [90, 91]
was demonstrated in a range of studies, addressing the strength
of force fluctuations via their variance [92], the formula-
tion of force-based classical density functional theory [93,
94], and the force balance in quantum many-body systems
[95]. The invariance theory has led to the discovery of
force-force and force-gradient two-body correlation functions.
These correlators were shown to deliver profound insight into

the microscopic spatial liquid structure beyond the pair cor-
relation function for a broad range of model fluids [96, 98].
Noether invariance is relevant for any thermal observable, as
associated sum rules couple the given observable to forces via
very recently identified hyperforce correlations [97].

The statistical Noether sum rules are exact identities that
can serve a variety of different purposes, ranging from theory
building via combination with approximate closure relations,
testing for sufficient sampling in simulation [97], carrying out
force sampling to improve statistical data quality and, last but
not least, testing neural functionals [40, 41]. Having the latter
purpose in mind, here we describe a selection of these Noether
identities.

As a fundamental property, the interparticle interaction
potential only depends on the relative particle positions and
not on the absolute particle coordinate values. Specifically,
whether two particles overlap in the one-dimensional system
is unaffected by displacing the entire microstate uniformly.
This invariance against global translation leads to associated
sum rules for direct correlation functions; we recall that the
direct correlations arise solely from the interparticle interac-
tions and hence they are not directly dependent on the external
potential. We quote two members of an infinite hierarchy of
identities, which is originally due to Lovett, Mou, Buff, and
Wertheim [129, 130], see equations (45) and (46) below. We
group these together with a recent curvature sum rule (47) [92].
Ultimately the identities (45) and (46) express the vanishing of
the global interparticle force, as obtained by summing over the
interparticle forces on all particles. The three sum rules read
as follows:

ˆ
dxρ(x)∇c1 (x, [ρ]) = 0, (45)

ˆ
dxρ(x)

ˆ
dx ′ρ(x ′)∇c2 (x,x ′, [ρ]) = 0, (46)

ˆ
dx [∇ρ(x)]

ˆ
dx ′ [∇ ′ρ(x ′)]c2 (x,x

′, [ρ])

=−
ˆ
dxρ(x)∇∇c1 (x) , (47)

where in the one-dimensional system the gradient is a simple
scalar position derivative, ∇= d/dx. Briefly, equation (45) is
obtained by noting that Fexc[ρ] = Fexc[ρϵ], where the displaced
density profile is given by ρϵ(r) = ρ(r+ ϵ)with displacement
vector ϵ (in three dimensional systems). Building the gradient
with respect to ϵ yields the result 0= ∂βFexc[ρϵ]/∂ϵ|ϵ=0 =´
dr(δβFexc[ρ]/δρ(r))∇ρ(r), which gives equation (45) upon

integration by parts, resorting to the one-dimensional geo-
metry, and identifying the one-body direct correlation func-
tional via equation (34); for more details of the derivation we
refer the Reader to [90, 91]. Equation (46) is then obtained
as the density functional derivative of equation (45) and re-
using equation (45) to simplify the result. Equation (47) is a
curvature sum rule that follows from spatial Noether invari-
ance at second order in the global shifting parameter ϵ [90].

Using a locally resolved shifting operation, where the dis-
placement ϵ(r) is local and depends on the spatial position r

14

6 Publications

182



J. Phys.: Condens. Matter 36 (2024) 243002 Topical Review

and hence constitutes a vector field (in the case of a three-
dimensional system), yields in one dimension the following
position-resolved identity:

∇c1 (x, [ρ]) =
ˆ
dx ′c2 (x,x

′, [ρ])∇ ′ρ(x ′) . (48)

The left hand side has the direct interpretation of the mean
interparticle force field, expressed in units of the thermal
energy kBT. This force both acts in equilibrium and it drives
the adiabatic part of the time evolution in nonequilibrium [9];
we describe some details of the nonequilibrium theory for time
evolution in section 4.

When inserting the relationship (34) of c1(x, [ρ]) to the
free energy functional Fexc[ρ] into the definition (39) of
c2(x,x ′, [ρ]) we obtain

c2 (x,x
′, [ρ]) =− δ2βFexc [ρ]

δρ(x)δρ(x ′)
, (49)

which is the one-dimensional version of the general relation-
ship (14). As the order of the two functional derivatives is irrel-
evant we obtain the following exact symmetry with respect to
the exchange of the two position arguments:

c2 (x,x
′, [ρ]) = c2 (x

′,x, [ρ]) . (50)

When applied to the neural functional, the exchange symmetry
relationship (50) is highly nontrivial, as the density windows
that enter the functionals on the left and on the right hand sides
differ markedly from each other, as do the corresponding eval-
uation positions. That both displacement effects cancel each
other and lead to the identity (50) is nontrivial and can serve
both for testing the quality of the neural direct correlation func-
tional and for demonstrating the existence of an overarching
grandmother functional Fexc[ρ].

In order to illustrate the theoretical structure, we display
numerical results in figure 7. We select a representative oscil-
latory density profile, as shown in figure 7(a), and take this as
an input to evaluate the one-body direct correlation functional
c1(x, [ρ]). This procedure yields a specific form of the dir-
ect correlation function c1(x), displayed in figure 7(b), which
belongs to the prescribed density profile ρ(x). The spatial vari-
ations of ρ(x) and c1(x) are roughly out-of-phase with each
other. The nonlinear and nonlocal nature of the functional
relationship ρ→ c1 is however very apparent in the plot. The
results from choosing the neural functional or Percus’ ana-
lytical one-body direct correlation functional agree with each
other to excellent accuracy. The agreement is demonstrated in
figure 7(b), where the two resulting direct correlation profiles
are identical on the scale of the plot.

As laid out above, the exchange symmetry (50) constitutes
a rigorous test for the two-body direct correlation functional
c2(x,x ′, [ρ]). Both the neural and the analytical functional pass
with flying colours, see figures 7(c) and (d) respectively, where
the symmetry of the respective ‘heatmap’ graph against mir-
roring at the diagonal is strikingly visible.

Figure 7. Numerical results for functional calculus and Noether
invariance. The results are shown for an exemplary oscillatory
density profile displayed in panel (a). Results for the neural
prediction for c1(x) are compared to numerically evaluating Percus’
analytical direct correlation functional (24) in panel (b). The
two-body direct correlation function c2(x,x ′) as a function of x/σ
and x ′/σ, as obtained from automatic differentiation of the neural
functional is shown in panel (c) and compared to the result from
using Percus’ analytical expression (43) in panel (d). Using the
neural functionals, the agreement of the left and right hand side of
the Noether force sum rule (48) is shown in panel (e). In all cases
the neural functional and Percus theories give numerically identical
results on the scale of the respective plot.

As a representative case for the use of a Noether sum rule
as a quantitative test for the accuracy of the neural functional
methods, we show in figure 7(e) the numerical results of eval-
uating both sides of equation (48) for the same given density
profile (shown in figure 7(a)). We find that both sides of the
equation agree with high numerical precision with each other.
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3.4. Functional integral sum rules

We next address general identities that emerge from exploit-
ing the inverse nature of functional differentiation and integ-
ration. For this, we recall the functional integral form (9) of
Fexc[ρ] and the functional derivative form (10) of c1(r, [ρ]),
which both are central for the following derivations. That
equation (9) is the inverse of equation (10) can be seen expli-
citly by functionally differentiating equation (9) as follows:

δβFexc [ρ]

δρ(r)
=−
ˆ
dr ′
ˆ 1

0
da

δ

δρ(r)
ρ(r ′)c1 (r ′, [ρa]) . (51)

We have interchanged the order of integration and functional
differentiation on the right hand side of equation (51) as these
operations are independent of each other. The functional dens-
ity derivative now acts on the product ρ(r ′)c1(r ′, [ρa]) and
we need to differentiate both factors according to the product
rule. Differentiating the first factor gives the Dirac distri-
bution, δρ(r ′)/δρ(r) = δ(r− r ′). Differentiating the second
factor generates the two-body direct correlation functional
according to equation (39) and hence δc1(r ′, [ρa])/δρ(r) =
ac2(r,r ′, [ρa]), where multiplication by the scaling factor a
arises from the identity δ/δρ(r) = aδ/δ(aρ(r)) = aδ/δρa(r).

We can hence reformulate equation (51) by rewriting the
left hand side via equation (10) and expressing the right hand
side by the two separate terms. Upon multiplication by−1 the
result is the following functional integral identity:

c1 (r, [ρ]) =
ˆ 1

0
dac1 (r, [ρa])

+

ˆ
dr ′ρ(r ′)

ˆ 1

0
daac2 (r,r ′, [ρa]) . (52)

In the first term on the right hand side of equation (52) the
position integral has cancelled out due to the presence of the
Dirac function, which leaves over the position dependence on
r, as occurring in all other terms.

In order to prove equation (52) and hence to estab-
lish that indeed equations (9) and (10) are inverse of each
other, we integrate by parts in a addressing the first integ-
ral on the right hand side of equation (52). This yields
a sum of boundary terms and an integral: c1(r, [ρ])− 0−´ 1
0 daa∂c1(r, [ρa])/∂a. The derivative with respect to the para-

meter a generates the second term in equation (52) up to the
minus sign upon carrying out the parametric derivative via
∂/∂a=

´
dr ′ρ(r ′)δ/δρa(r ′) and identifying c2(r,r ′, [ρa]) =

δc1(r, [ρa])/δρa(r ′). Hence the two integrals cancel each
other. Only the upper boundary term c1(r, [ρ]) remains, which
is the left hand side of equation (52), and hence completes the
proof.

Despite this explicit derivation via functional calculus, as
both c1(r, [ρ]) and c2(r,r

′, [ρ]) are directly available as neural
functionals, the functional integral sum rule (52) provides yet
again fresh possibility for carrying our consistency and accur-
acy checks.

Going through the analogous chain of arguments one gen-
eration younger leads to the following functional integral

relationship between the two- and three-body direct correla-
tion functionals:

c2 (r,r ′, [ρ]) =
ˆ 1

0
dac2 (r,r ′, [ρa])

+

ˆ
dr ′ ′ρ(r ′ ′)

ˆ 1

0
daac3 (r,r ′,r ′ ′, [ρa]) .

(53)

The neural functional calculus allows to obtain
c3(r,r

′,r ′ ′, [ρ]) via automatic generation of the Hessian of
c1(r, [ρ]) [41], which elevates equation (53) beyond mere
formal interest.

The structure of equations (52) and (53) expresses a general
functional relationship.When applied to the excess free energy
functional itself the result is:

βFexc [ρ] =

ˆ 1

0
daβFexc [ρa]

−
ˆ
drρ(r)

ˆ 1

0
daac1 (r, [ρa]) . (54)

We furthermore demonstrate explicitly the relationship
from daughter to grandmother via functional integration of
the two-body correlation functional to obtain the excess free
energy functional:

βFexc [ρ] =−
ˆ
drρ(r)

ˆ
dr ′ρ(r ′)

×
ˆ 1

0
da
ˆ a

0
da ′c2 (r,r ′, [ρa ′ ]) , (55)

where again the scaled density profile is ρa ′(r) = a ′ρ(r). That
equation (55) holds can be seen by chaining together the two
levels of functional integrals (9) and (44) and then simplify-
ing the two nested parameter integrals. The double paramet-
ric integral in equation (55) can alternatively be written with
fixed parametric boundaries as

´ 1
0 daa

´ 1
0 da

′c2(r,r ′, [ρaa ′ ]),
where the twice scaled density profile is defined as ρaa ′(r) =
aa ′ρ(r).

Evans [7] goes further than equation (55) by using the iden-
tity
´ 1
0 da
´ a
0 da

′f(a ′) =
´ 1
0 da(1− a)f(a), which is valid for

any function f (a), as can either by shown geometrically by
considering the triangle-shaped integration domain in the two-
dimensional (a,a ′)-plane or, more formally, by integration by
parts. The identity allows to express equation (55) in a form
that requires to carry out only a single parametric integral:

βFexc [ρ] =−
ˆ
drρ(r)

ˆ
dr ′ρ(r ′)

×
ˆ 1

0
da(1− a)c2 (r,r ′, [ρa]) . (56)

Evans [7] also considers more general cases where the para-
meter a linearly interpolates between a nontrivial initial dens-
ity profile ρi(r) ̸= 0 and the target profile ρ(r) via ρa(r) =
ρi(r)+ a[ρ(r)− ρi(r)]. In our present description we have
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restricted ourselves to empty initial states, ρi(r) = 0, but the
functional integration methodology is more general, see [7].

Throughout we have notated the functional integrals via an
outer position integral over r and an inner parametric integral
over a. This structure allows to take the common factor ρ(r)
out of the inner integral. Standard presentations often reverse
the order of integration. Taking the functional integral over the
one-body direct correlation functional as an example, both ver-
sions are identical:
ˆ
drρ(r)

ˆ 1

0
dac1 (r, [ρa]) =

ˆ 1

0
da
ˆ
drρ(r)c1 (r, [ρa]) .

(57)

Our (mild) preference for the order on the left hand side of
equation (57) has two reasons. (i) In a numerical scheme,
where one discretizes on a grid of positions r and of values
of a, the multiplication by ρ(r) is only required to be carried
out once at each gridpoint r, when using the left hand side, not
also for every value of a as on the right hand side. (ii) Although
the result of the inner integral,

´ 1
0 dac1(r, [ρa]), depends on the

specific chosen parameterization ρa(r) and is hence not unique
from the viewpoint of the entire functional, it nevertheless con-
stitutes a well-defined localized function of r.

4. Nonequilibrium dynamics

We have so far demonstrated that the equilibrium properties
of correlated many-body systems can be investigated on a very
deep level by using neural networks to represent the functional
relationship that are inherent in the statistical physics. The
required computational workload is thereby only quite mod-
erate. The neural functionals that encapsulate the nontrivial
information about correlations and about thermodynamics are
lean, robust and they can be manipulated efficiently by the
neural functional calculus outlined above.

These features of the neural theory naturally lead one
to wonder about the potential applicability beyond equilib-
rium, i.e. to situations where the considered system is driven
by external forces such that flow is generated. The recent
nonequilibrium machine-learning method by de las Heras
et al [40] is based on the dynamical one-body force balance
relationship for overdamped Brownian motion. The required
dynamical functional dependencies are those given by power
functional theory [9]. The power functional approach is form-
ally exact and it goes beyond dynamical density functional
theory [5, 69, 118, 131–133] in that it also captures nonequi-
librium interparticle force contributions that exceed those
generated by the free energy functional; see [9, 119, 120,
134] for recent reviews. Such genuine nonequilibrium effects
include viscous and structural nonequilibrium force fields [9,
135–137], which for uniaxial compressional flow of a three-
dimensional Lennard–Jones fluid were shown to be well-
represented by a trained neural network [40].

The neural nonequilibrium force fields were successfully
compared against analytical power functional approximations,
where simple and physically motivated semi-local depend-
ence on both the local density and local velocity gradients

was shown to capture correctly the essence of the forces that
occur in the nonequilibrium situation. Together with the exact
force balance equation, this allows to predict and to design
nonequilibrium steady states [40]. The approach offers a sys-
tematic way to go beyond dynamical density functional theory
and to address genuine nonequilibrium beyond a free energy
description. We recall studies based on dynamical density
functional theory that addressed non-equilibrium sedimenta-
tion of colloids [138], the self-diffusion of particles in com-
plex fluids [139], and the behaviour of the van Hove two-body
dynamics of colloidal Brownian hard disks [140] and of hard
spheres [141, 142].

Several current statistical mechanical research threads are
dedicated to the force point of view. This includes novel
force-sampling techniques that significantly reduce the seem-
ingly inherent statistical noise in many-body simulation res-
ults for key quantities such as the density profile [110–112,
143]. The statistical Noether invariance theory [90–98] gen-
erates formal expressions for force correlation functions very
naturally. Corresponding exact sum rules interrelate correl-
ations that involve forces, force gradients, and more gen-
eral observables in a hyperforce framework [97]. Force-based
density functional approaches were put forward both quantum
mechanically [144–148] and classically [93, 94].

We have briefly touched on the concept of forces when dis-
cussing the direct correlation sum rule (48). Locally resolved
force fields are central to power functional theory [9, 149–
151] for the description of the nonequilibrium dynamics of
underlying many-body systems. The connection to the present
framework is via the locally resolved interparticle force dens-
ity Fint(r, t). When expressed in correlator form, this vector
field is given as the following nonequilibrium average:

Fint (r, t) =−
〈∑

i

δ (r− ri)∇i u
(
rN
)〉

. (58)

The dependence on time t arises as the average on the right
hand side of equation (58), which is taken over the instant-
aneous nonequilibrium many-body probability distribution, as
given by temporal evolution of the Smoluchowski equation
for the case of overdamped dynamics. The interparticle force
density Fint(r, t) can be split into a sum of an equilibrium-like
‘adiabatic’ force density Fad(r, t) and a genuine nonequilib-
rium ‘superadiabatic’ contribution Fsup(r, t). Making the func-
tional dependencies explicit, as they arise in power functional
theory [9], gives the following sum of two contributions:

Fint (r, t, [ρ,v]) = Fad (r, t, [ρ])+Fsup (r, t, [ρ,v]) . (59)

Here the functional arguments are the density profile ρ(r, t)
and the one-body velocity field v(r, t) = J(r, t)/ρ(r, t), which
are both microscopically resolved in space and in time. The
numerator is the one-body current, which is given as an
instantaneous nonequilibrium average via J(r, t) = ⟨

∑
i δ(r−

ri)vi⟩, where vi(rN, t) is the velocity of particle i in the under-
lying many-body overdamped Brownian dynamics.

De las Heras et al [40] present a demonstration of the
validity of the functional dependence on ρ(r, t) and v(r, t) via

17

6.10 “Why neural functionals suit statistical mechanics”

185



J. Phys.: Condens. Matter 36 (2024) 243002 Topical Review

successful machine-learning of Fint(r, t, [ρ,v]) for inhomogen-
eous nonequilibrium steady states. The strategy for construct-
ing the neural network is similar to that described here, but
it is based on predicting the locally resolved nonequilibrium
forces rather than the equilibrium one-body direct correlations.
One important connection between equilibrium and nonequi-
librium is given by the adiabatic construction [9] that relates
Fad(r, t, [ρ]) in the nonequilibrium system to an instantaneous
equilibrium system with identical density profile ρ(r, t). The
adiabatic force field is then given as a density functional via
the standard relationship

Fad (r, t, [ρ]) = kBTρ(r, t)∇c1 (r, [ρ]) , (60)

where the density argument of the one-body direct correlation
functional c1(r, [ρ]) is the instantaneous density distribution
ρ(r, t).

For overdamped Brownian dynamics with friction constant
γ, the one-body current J(r, t) appears in the force density bal-
ance, which is given by

γJ(r, t) =−kBT∇ρ(r, t)+Fint (r, t)+ ρ(r, t) fext (r, t) , (61)

where fext(r, t) is an external force field that acts on the
system, in general in a time- and position-dependent fash-
ion. The prescription for the current is complemented by the
microscopically resolved continuity equation, ∂ρ(r, t)/∂t=
−∇ · J(r, t). Upon neglecting the superadiabatic force dens-
ity in equation (59) and hence only taking adiabatic forces
into account, i.e. approximating Fint(r, t, [ρ,v])≈ Fad(r, t, [ρ]),
one arrives at the dynamical density functional theory [5, 69,
118]. Its inherent central approximation is hence to replace
the nonequilibrium forces by effective equilibrium forces that
are obtained from the free energy functional via the adiabatic
construction [9].

Returning to the one-dimensional geometry of the hard rod
model, this leads to the following closed approximate equation
of motion for the time-dependent density profile:

∂ρ(x, t)
∂t

=D0∇ [∇ρ(x, t)− ρ(x, t)(∇c1 (x, [ρ])+βfext (x, t))] .

(62)

The derivative is simply ∇= ∂/∂x in one dimension and the
diffusion constant D0 = kBT/γ is the ratio of thermal energy
and the friction constant. Equation (62) can be efficiently
propagated in time with a simple forward Euler algorithm
and the neural representation of c1(x, [ρ]) can be used in lieu
of an analytic approximation. However superadiabatic forces,
i.e. force contributions that go beyond the adiabatic approxim-
ation of working with a free energy functional, are neglected.
These include viscous and structural nonequilibrium contribu-
tions; we refer the Reader to [9] for background and to [40]
for a recent perspective on the description of microscopic
nonequilibrium dynamics of fluids in the light of machine
learning on the basis of power functional theory.

5. Conclusions and outlook

In conclusion we have given a detailed account of the recent
neural functional theory [41] for the structure and thermo-
dynamics of spatially inhomogeneous classical many-body
systems. The approach is based on input data obtained from
Monte Carlo simulations that provide results for averaged
density profiles. Thereby the training systems are exposed to
the influence of randomized external potentials. Based on the
functional relationships that are rigorously given by classical
density functional theory, the training data is used to construct
a neural network representation of the one-body direct correl-
ation functional, which acts as a fundamental ‘mother’ object
in the neural functional theory.

From automatic functional differentiation of the one-body
direct correlation functional follow daughter and granddaugh-
ter functionals that represent two- and three-body direct cor-
relation functionals. Conversely, functional integration yields
the neural excess free energy functional, which acts as the ulti-
mate grandmother functional in the genealogy.We have shown
that chaining together the functional differentiation and integ-
ration operations yields exact functional sum rules. Further
exact identities are given by the statistical mechanical Noether
invariance theory [90–98], by variety of fundamental liquid
state techniques [8, 20–23] and by functional calculus alone
[5, 7]. We have described a selection of these sum rules in
detail and have shown how their validity can be used to carry
out consistency and accuracy checks for the different levels of
mutually related neural density functionals.

We have here in particular focused on the one-dimensional
hard rod systems for reasons of ease of data generation via
simulations [42], the availability of Percus’ exact functional
[55], the possibility of analytical manipulations to be carried
out, and not least the fundamental character of this classical
model [54]. A beginner-friendly interactive code tutorial is
provided online [42], together with stand-alone documentation
that describes the key strategies and the essence of the meth-
ods that constitute the neural functional theory [41]. We have
discussed prototypical applications for ‘simulation beyond the
box’, where the neural functional is used for system sizes that
outscale the dimension of the original training box that was
used to generate the underlying Monte Carlo data [41]. We
have also given an overview of nonequilibrium methods and
have emphasized the important role of the occurring force
fields and their functional dependencies.

We recall that a detailed description of the setup of the
paper is given before the start of section 1.1; the modular
structure of the paper invites for selective reading. An over-
view of the relevant statistical mechanical concepts is given in
section 1. The neural functional theory is described in detail
in section 2 and we have emphasized the important concept of
local learning, as illustrated in figure 2, which facilitates very
efficient network construction and training. The neural func-
tional approach allows to explicitly carry out functional cal-
culus as presented in section 3 and it is relevant for nonequi-
librium as described in section 4. We once more highlight the
availability of the online tutorial [42], which covers all key
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aspects of our study and includes a practitioner’s account of
automatic differentiation and differentiable programming.

The neural functional theory is a genuine hybrid method
that draws with comparable weight from computer simula-
tions, machine learning, and density functional theory. The
compuational and conceptual complexities of the involved
methods from each respective field are relatively low. Yet their
combination offers a new and arguably unprecedented view of
the statistical physics of many-body systems. We lay out in the
following why the approach is interesting from the viewpoints
of each of the three constituent approaches.

From the machine-learning perspective it seems unusual to
have a large set of testable self-consistency conditions avail-
able. These conditions stem from statistical mechanical sum
rules, as they follow e.g. from the Noether invariance the-
ory, the functional integration-differentiation structure, and
exchange symmetry. Taking the latter case as an example,
that the automatic derivative of a neural network satisfies the
exchange symmetry of its two (position) arguments is very
remarkable, see the graphical demonstration of the diagonal
symmetry in figure 7(c). This is a purely structural test for
the quality of the network that does not require any independ-
ent reference data as a benchmark. All presented sum rules
are of this type and they hence provide intrinsic constraints,
either genuinely following from the underlying Statistical
Mechanics or from mere functional calculus alone, which is
the case for the functional integration-differentiation formal-
ism outlined in section 3.4. Crucially, in our methodology the
constraints are not enforced during training the network, as is
done in methods of physics-informed machine learning in the
classical density functional [37] andwider [152, 153] contexts.

From a computer simulation point of view the neural func-
tional methods offer a new way of designing simulation work.
Instead of direct simulation of the physical problem at hand,
an intervening step of constructing the direct correlation func-
tional is introduced. We have shown that the direct correlation
functional can thereby be obtained explicitly and accurately.
Rather than playing the role of a formal object, its availabil-
ity as a trained neural network facilitates making fast and pre-
cise predictions in nontrivial situations. This application stage
of the neural functional theory requires very little effort both
in terms of the required numerical algorithmic structure and
the computational workload; we recall the illustration of the
neural functional workflow shown in figure 4.

From a density functional perspective the neural approach
is arguably unprecedented in its degree of access to the excess
free energy functional. We find it highly remarkable that so
much of the seemingly very abstract functional relationships
and formal concepts can be inspected and tested in computa-
tionally straightforward and highly efficient ways. The range
of these methods includes automatic differentiation to gener-
ate direct correlation functions as well as performant func-
tional integration routines. The neural functional framework
offers the possibility towork numerically with exact functional
identities with great ease. Hence the neural network techno-
logy relieves one from the task of constructing an approximate
analytical functional and manipulating it on paper.

This leaves over the question of the status of analytical
density functionals in the light of the neural network cap-
abilities. We have here deliberately chosen the exact Percus
functional for one-dimensional hard rods to demonstrate how
much insight can be gleaned from the analytical manipula-
tions; as a representative example see the nonlinear convolu-
tional structure of equations (24)–(28) along with the excellent
numerical comparison against the neural functional as shown
in figure 7(b). As the neural functional method is not restricted
to the hard core system, one can expect that having an accurate
neural functional for a given system can be of very significant
help when attempting first-principles construction of analyt-
ical free energy functionals. After all we should make use of
the tools that van der Waals did not have at his disposal!

In summary, in light of the progress reported in [40, 41] and
the present model investigation, we anticipate that a wealth
of deep questions can be addressed from the viewpoint of the
neural functional theory, including fundamental questions of
phase coexistence [154] as well as the possible construction of
fundamental measure functionals [155, 156]. While we here
have restricted ourselves to hard core systems, the principal
applicability of the neural functional theory for soft potentials
was demonstrated in [41] for (planar) inhomogeneities of the
supercritical three-dimensional Lennard–Jones fluid. Going
beyond planar geometry and addressing spatial inhomogen-
eity in two or three dimensions could benefit from the use of
equivariant neural networks [157–163], which possess the fun-
damental symmetry properties of Euclidean space.

For complex Hamiltonians the required amount of simu-
lation work to provide training data might seem as a lim-
itation. We are however optimistic that the subsequent effi-
cient use of the direct correlation functionals in the form of
neural networks can by far outweigh the training cost. Hence
the application to complex models such as the monatomic
Molinero-Moore water model [164, 165] might not be out of
reach. Furthermore it is inspiring to think that potential pro-
gress could be made in the treatment of dielectric [166] and
long-ranged forces [167].

As a final note, we re-emphasize the successful applica-
tion of the neural method to nonequilibrium flow problems
presented in [40] and it is certainly very inspiring to speculate
whether this facilitates making progress concerning questions
of slow dynamics in soft matter [153, 168, 169] and beyond
that [170].
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A Efficient evaluation of the
Stillinger-Weber potential

In simulations, the naive evaluation of the three-body interaction term (1.4) of the SW
potential via the triple sum in Eq. (1.7) comes with significant computational disad-
vantages. On the one hand, although the SW potential is short-ranged (a common
choice for the cutoff distance is 1.8σ [71, 74, 75]), the mediation by a third particle ef-
fectively doubles the interaction range, which must be considered when using advanced
evaluation schemes such as cell lists [44]. On the other hand, an explicit computation
of a triple sum remains tedious even when exploiting the finite interaction range and
it would commonly render simulations of large and dense systems prohibitively expen-
sive. Fortunately, the specific structure of Eq. (1.4) enables a rewriting of the internal
energy (1.7) that avoids a loop over particle triplets, which remedies both of the above
drawbacks. We reproduce here the gist of this reformulation as considered already in
Refs. [171, 172] for the energy and in Ref. [75] for the force calculation.

We introduce the shorthand

gij = exp
(

γσ

rij − aσ

)
(A.1)

for rij < aσ and gij = 0 otherwise and recall

cos θijk = r̂ij · r̂ik, (A.2)

where the hat indicates a unit vector r̂ = r/r. Note that Eq. (A.2) implies

cos2 θijk = Tr ((r̂ij r̂ij) · (r̂ikr̂ik)) , (A.3)

whereby Tr denotes in this context the usual matrix trace (which is not to be confused
with the phase space traces given in Sec. 1.3). From the multiplicative nature of the
SW three-body interaction (1.4), one obtains

ϕSW,3(rij , rik, θijk) = λϵ
[
Tr ((gij r̂ij r̂ij) · (gikr̂ikr̂ik)) + 2α(gij r̂ij) · (gikr̂ik) + α2gijgik

]
(A.4)

with α = − cos θ0. Observe that each additive contribution in Eq. (A.4) contains a
product of identical functions of rij and rik.

We recall the computation of the total internal energy (1.7), which can be reinter-
preted as the sum

u(rN ) = 1
2

N∑
i=1

Ui (A.5)
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of single-particle energies

Ui =
∑′

j

ϕ2(rij) +
∑′

j

∑′

k ̸=j

ϕ3(rij , rik, θijk), (A.6)

where a primed sum denotes the exclusion of particle index i. For three-body terms
ϕ3(rij , rik, θijk) that possess a structure as given in Eq. (A.4), the double summation
in Eq. (A.6) can be simplified via the introduction of the auxiliary quantities

Ti =
∑′

j

gij r̂ij r̂ij , (A.7)

si =
∑′

j

gij r̂ij , (A.8)

hi =
∑′

j

gij . (A.9)

It is straightforward to show that

Ui =
∑′

j

ϕ2(rij) + λϵ
[
Tr(T2

i ) + 2αs2
i + α2h2

i

]
− wi (A.10)

is equivalent to Eq. (A.6). A correction term

wi =
∑′

j

ϕ3(rij , rij , 0) =
∑′

j

λϵ(1 + α)2g2
ij (A.11)

is required due to the inclusion of the case j = k when squaring the quantities Ti, si

and hi as defined in Eqs. (A.7) to (A.9). Note that using Eq. (A.10) in Eq. (A.5) for
the calculation of the total internal energy now only involves double sums. Recall as
well that gij as given in Eq. (A.1) vanishes beyond a distance of aσ and that hence
Eqs. (A.7) to (A.11) do not suffer from an effective doubling of the interaction range as
would be the case in an explicit evaluation of the triple sum in Eq. (A.6).

For completeness, we also give the results of the force calculation (taken from Ref. [75]
and adapted to our notation), which follows from rigorous evaluation of fi = −∇iu(rN )
with Eq. (A.5), where the single-particle energies enter in the rewritten form (A.10):

fi = −
∑′

j

∂ϕ2(rij)
∂rij

r̂ij +
∑′

j

2λϵ(1 + α)2gij
∂gij

∂rij
r̂ij

−
∑′

j

λϵ(cij + cji)r̂ij −
∑′

j

2λϵα
gij

rij
(si − sj)−

∑′

j

2λϵ
gij

rij
(Ti + Tj) · r̂ij

(A.12)

with

cij = α2 ∂gij

∂rij
hi + 2α

(
∂gij

∂rij
− gij

rij

)
si · r̂ij +

(
∂gij

∂rij
− 2gij

rij

)
r̂ij · Ti · r̂ij . (A.13)
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B Measuring force-force and force-gradient
correlations

In the following, we pursue the account given in Ref. [136] and provide further technical
details for the sampling of the force-force and force-gradient correlations defined in
Eqs. (3.35) and (3.36). Similar to the measurement of the standard pair correlation
function g(r), a loop over particle pairs is performed in order to calculate an average
of a bulk two-body quantity. However, one not only counts the relative number of
particles separated by a certain distance, but instead also involves the forces and force
gradients of the particles in the calculation of the average.

Let ri and rj be the positions of two particles, such that r = rj − ri and r̂ = r/|r|.
The calculation of gff proceeds straightforwardly by incorporating the forces fi and fj

of particle i and j as given in Eq. (3.36). The radial and tangential components, which
appear in Eqs. (3.37) and (3.38), are obtained by the projections

(fifj)∥ = (fi · r̂)(fj · r̂), (B.1)

(fifj)⊥ = 1
2[fi − (fi · r̂)r̂] · [fj − (fj · r̂)r̂], (B.2)

where the factor of 1/2 accounts for the two equal tangential contributions of gff in a
three-dimensional bulk fluid (there is only a single radial component).

For the calculation of g∇f , we employ numerical differentiation to evaluate the force
gradients∇ifj that appear in Eq. (3.35). This is due to the fact that the implementation
of analytic Hessians of the interaction potential would have been too cumbersome for
the investigation of the various particle types in Ref. [4], in particular regarding more
complex models such as the SW or the Gay-Berne potential. Automatic differentiation
(see Sec. 4.1) could serve as a possible alternative to both numerical derivatives and
the manual implementation of analytic derivatives in the future.

As before, a splitting of the force-gradient correlation function g∇f into its radial
and tangential components is performed. Assuming fj ∦ r̂, a tangential unit vector
t̂ = t/|t| ⊥ r̂ can be constructed by choosing t = fj − (fj · r̂)r̂. The radial and
tangential parts of g∇f then follow via

(∇ifj)∥ = Di,r̂(fj · r̂), (B.3)
(∇ifj)⊥ = Di,t̂(fj · t̂), (B.4)

where Di,â is a directional derivative operator regarding the shifting of particle i along
the direction specified by the general unit vector â. The evaluation of Eqs. (B.3) and
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(B.4) is performed numerically in simulation, i.e. particle i is shifted by a small amount
(∼ 10−5σ) to calculate the arising finite difference in the force fj of particle j.

The above procedure for the evaluation of g∇f⊥ is feasible for isotropic particles.
However, anisotropic interactions, as are relevant e.g. in the considered Gay-Berne fluid
[4, 80], necessitate to alter the determination of a suitable tangential unit vector for the
evaluation of Eq. (B.4). In this case, taking the force fj of particle j as reference for the
calculation of t̂ introduces an undesired bias in the chosen tangential directions (see also
Ref. [173] for an overview of formulae and implementation techniques for anisotropic
interactions of rigid bodies). To account for this caveat, we refrain here from using
particle properties such as forces or orientations in the determination of t̂ and instead
base its construction on a randomly drawn unit vector r̂rand ∦ r̂. Then, one obtains
an unbiased tangential unit vector t̂ = t/|t| with t = r̂rand − (r̂rand · r̂)r̂, which can be
used in Eq. (B.4) to acquire results for g∇f⊥ that remain valid in the case of anisotropic
interactions.
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Neural functional theory for inhomogeneous fluids – Tutorial
Florian Sammüller

May 23, 2024

This material is available at https://github.com/sfalmo/NeuralDFT-Tutorial and it supplements the following
publication:

Why neural functionals suit statistical mechanics
Florian Sammüller, Sophie Hermann, and Matthias Schmidt, J. Phys.: Condens. Matter 36, 243002 (2024);
arXiv:2312.04681.

We show how the physics of simple fluids can be described with many-body simulations and classical density
functional theory (DFT) and how the two approaches can be combined with the help of machine learning to
a neural functional theory. The connection of the different methods is exemplified for the case of the one-
dimensional hard rod fluid with hands-on code examples and exercises in the programming language Julia. Besides
the pedagogical overview given here, a more in-depth account of the presented methodology with applications to
the hard sphere and Lennard-Jones fluids in three dimensions can be found in

Neural functional theory of inhomogeneous fluids: Fundamentals and applications
Florian Sammüller, Sophie Hermann, Daniel de las Heras, and Matthias Schmidt, Proc. Natl. Acad. Sci. 120,
e2312484120 (2023); arXiv:2307.04539.

Technical remarks
Running some of the tasks in this notebook requires a considerable amount of compute power, e.g. for the generation
of simulation data and for the training of the neural network. Keep this in mind if you are using an online
service with limited resources. For convenience, we also provide ready-to-use data sets and models, which can be
downloaded and applied in the relevant parts.

Particularly for the machine learning tasks, we recommend using a GPU, as this speeds up training and inference
considerably. Using a recent Nvidia GPU should work out of the box. For other GPU vendors, you might need to
install the corresponding Julia packages, see https://juliagpu.org/ for further details.

Part 1: Many-body simulations
Many-body simulations have long become a standard tool for the investigation of classical fluids. Conceptually,
they offer a rather straightforward way to predict the behavior of a fluid from a microscopic description, i.e. by
specifying the interactions of its constituent particles. However, simulations often come with a significant demand
of computational resources.

In the following, we focus on Monte Carlo methods for the description of equilibrium systems. Specifically, we
choose the grand ensemble where the temperature 𝑇 and the chemical potential 𝜇 are kept fixed (we also specify
the length 𝐿 of the one-dimensional domain). The statistical mechanics of such a system is then determined by
the equilibrium distribution function 𝜓(𝑥(𝑁)) ∼ exp(−𝛽(𝑈(𝑥(𝑁)) − 𝜇𝑁)) where 𝛽 = 1/(𝑘𝐵𝑇 ) with the Boltzmann
constant 𝑘𝐵. The potential energy 𝑈(𝑥(𝑁)) = 𝑢(𝑥(𝑁)) + ∑𝑁

𝑖=1 𝑉ext(𝑥𝑖) of a given microstate 𝑥(𝑁) = (𝑥1, 𝑥2, … , 𝑥𝑁)
of 𝑁 particles consists of a contribution due to an external potential 𝑉ext(𝑥) and of the internal energy 𝑢(𝑥(𝑁)).
If the particles in the fluid possess pairwise interactions, 𝑢(𝑥(𝑁)) = ∑𝑁

𝑖=1 ∑𝑁
𝑗>𝑖 𝜙(|𝑥𝑗 − 𝑥𝑖|), where 𝜙(𝑟) is the

interaction potential for a given distance 𝑟 of two particles.

1
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Monte Carlo is based on the generation of microstates according to their known equilibrium distribution. This is
done iteratively by mutating an initial state 𝐴 into a new state 𝐵 with a probability such that a given distribution
𝑃 of states is kept intact. The mutation happens in two stages: a trial transition selects a new state 𝐵, and
a criterion acc(𝐴 → 𝐵) determines if the new state 𝐵 shall be accepted or if the system shall be reset to the
previous state 𝐴. Specifically, a valid choice for this acceptance probability is the Metropolis criterion acc(𝐴 →
𝐵) = min(1, 𝑃 (𝐵)/𝑃(𝐴)).
We now apply this scheme to the grand ensemble, which yields the standard grand canonical Monte Carlo (GCMC)
method. There are three possible trial transitions: i) a particle is moved to a new position, ii) a particle is inserted,
iii) a particle is removed. The goal distribution of states 𝑃 is the grand canonical equilibrium distribution 𝜓 (see
above). When considering particle displacements, the Metropolis rate becomes

acc(𝑥(𝑁) → ̃𝑥(𝑁)) = min (1, exp[−𝛽(𝑈( ̃𝑥(𝑁)) − 𝑈(𝑥(𝑁)))])
for moving a particle and changing the initial microstate 𝑥(𝑁) to the new configuration ̃𝑥(𝑁).

Let us now illustrate this trial move with code. For simplification, we provide some utilities for common tasks
in simulation.jl, e.g. calc_energy for calculating the potential energy of one particle, pbc! for applying periodic
boundary conditions, and definitions of containers (structs) which hold the state of the System and the Histograms.

[1]: include("simulation.jl");

function trial_move(system::System; Δxmax=0.1)
if isempty(system.particles) # If no particles are in the system, do nothing

return
end
i = rand(1:length(system.particles)) # Select random particle with index i
xbefore = system.particles[i] # Save its initial position
Ebefore = calc_energy(system, i) # Calculate the initial potential energy of particle i
system.particles[i] += Δxmax * (2 * rand() - 1) # Move particle to a new position
pbc!(system, i) # Apply periodic boundary conditions (this places the particle back in the box␣

↪if it has moved outside of the valid range)
Eafter = calc_energy(system, i) # Calculate the potential energy of particle i after it has been␣

↪moved
if rand() > exp(-system.β * (Eafter - Ebefore))

system.particles[i] = xbefore # Trial move rejected. Reset particle to previous state
end

end

[1]: trial_move (generic function with 1 method)

As the particle number can fluctuate in the grand ensemble, there are additional transitions which add and remove
particles at random throughout the simulation. The acceptance probabilities of these transitions can be derived
by considering particle exchanges of the system with a virtual reservoir. We spare this derivation here and only
give the results

acc(𝑥(𝑁) → 𝑥(𝑁+1)) = min (1, 𝐿
𝑁 + 1 exp[𝛽(𝜇 − 𝑈(𝑥(𝑁+1)) + 𝑈(𝑥(𝑁)))]) ,

acc(𝑥(𝑁) → 𝑥(𝑁−1)) = min (1, 𝑁
𝐿 exp[−𝛽(𝜇 + 𝑈(𝑥(𝑁−1)) − 𝑈(𝑥(𝑁)))]) .

These trial transitions are already provided as trial_insert and trial_delete in simulation.jl, feel free to take
a look for the implementation details.

With all transitions being specified, we can write a simulation loop which consists of an equilibration stage and
a stage in which measurements take place. For each simulation step, we perform a sweep over a fixed number of
trial transitions which are chosen at random without introducing bias in the insertions and deletions.

2
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[2]: using Dates

function sweep(system::System; transitions=10, insert_delete_probability=0.2)
for _ in 1:transitions

if rand() < insert_delete_probability # Randomly select trial transition: either move or␣
↪insert/delete

rand() < 0.5 ? trial_insert(system) : trial_delete(system) # Do trial insertions and␣
↪removals with equal probability

else
trial_move(system)

end
end

end

function simulate(L::Number, μ::Number, T::Number, Vext::Function, ϕ::Function;␣
↪equilibration_time=Dates.Second(1), production_time=Dates.Second(2), sweep_transitions=10)

system = System(L, μ, T, Vext, ϕ) # The state of the system is encapsulated in this struct
histograms = Histograms(system)
equilibration_start = now()
while now() - equilibration_start < equilibration_time # Equilibration stage, no sampling

sweep(system; transitions=sweep_transitions)
end
production_start = now()
while now() - production_start < production_time

sweep(system; transitions=sweep_transitions)
sample(system, histograms)

end
get_results(system, histograms) # Normalizes histograms and returns (xs, ρ)

end

[2]: simulate (generic function with 1 method)

Equilibrium averages such as the one-body density profile 𝜌(𝑥) = ⟨∑𝑁
𝑖=1 𝛿(𝑥 − 𝑥𝑖)⟩ are obtained by sampling. For

this, the particle configuration is recorded in a position-resolved histogram, which yields the desired average after
normalization:

[3]: function sample(system::System, histograms::Histograms)
for x in system.particles

bin = ceil(Int, x / L * histograms.bins) # Calculate the bin index from the given particle␣
↪position

histograms.ρ[bin] += 1
end
histograms.count += 1 # Needed later for normalization

end

[3]: sample (generic function with 1 method)

Let us now do some simulations to illustrate the usage of the code. We just pass the length 𝐿 of our system, the
thermodynamic statepoint 𝜇 and 𝑇 , the external potential 𝑉ext(𝑥) and the pair interaction potential 𝜙(𝑟) to the
simulate function. In this tutorial, we focus on the hard rod fluid, which is characterized by forbidding the overlap
of particles as illustrated below.

3
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This behavior is reflected by the pair interaction potential

𝜙(𝑟) = {∞, 𝑟 < 𝜎,
0, 𝑟 ≥ 𝜎,

where 𝜎 specifies the particle size (we set 𝜎 = 1 in the code). As a simple test case, we choose confinement between
hard walls by setting 𝑉ext(𝑥) = ∞ at the boundaries of the domain. Change the form of the external potential as
well as the rest of the system parameters to explore the behavior of the hard rod fluid.

[4]: using Plots

L = 10.0
μ, T = 2.0, 1.0
Vext(x) = x < 0.5 || x > L - 0.5 ? Inf : 0 # Hard walls at the boundaries
ϕ(r) = r < 1.0 ? Inf : 0 # Hard core repulsion

xs, ρ = simulate(L, μ, T, Vext, ϕ; equilibration_time=Dates.Second(1), production_time=Dates.
↪Second(2), sweep_transitions=10)

plot(xs, ρ, label="ρ", xlims=(0, L), xlabel="x/σ")

[4]:

4
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Part 2: Classical density functional theory
Classical DFT is founded on a minimization principle of the grand potential Ω[𝜌], which can be expressed as a
functional of the one-body density profile 𝜌(𝑥). Its strength is therefore the reduction of a many-body problem (see
Part 1) to a formally exact description on the level of one-body quantities. By writing out entropic, external and
internal contributions of the grand potential, carrying out the functional derivative 𝛿Ω[𝜌]/𝛿𝜌(𝑥) and demanding
that it vanishes at the equilibrium density, one arrives at the Euler-Lagrange equation of DFT,

𝑐1(𝑥) = ln 𝜌(𝑥) + 𝛽(𝑉ext(𝑥) − 𝜇),

where 𝑐1(𝑥) is the one-body direct correlation function. This rather abstract object attains a fundamental meaning
in classical DFT as it captures the nontrivial effects of the internal interactions within the fluid on the one-body
level. Formally, it arises from a functional derivative,

𝑐1(𝑥; [𝜌]) = −𝛿𝛽𝐹exc[𝜌]
𝛿𝜌(𝑥) ,

where 𝐹exc[𝜌] is the excess free energy, i.e. the part of Ω[𝜌] which accounts for the beyond-ideal-gas behavior of
the interacting fluid. As an immediate consequence of 𝐹exc[𝜌] being a density functional, 𝑐1(𝑥; [𝜌]) also attains a
functional dependence on 𝜌(𝑥), which is made explicit by the bracket notation. In principle, 𝐹exc[𝜌] and 𝑐1(𝑥; [𝜌])
also depend parametrically on the temperature 𝑇 , but this dependence becomes trivial for the hard rod fluid.

By rearranging the above equation to

𝜌(𝑥) = exp(−𝛽(𝑉ext(𝑥) − 𝜇) + 𝑐1(𝑥; [𝜌])),

we can reveal its use in actual DFT applications. Given a suitable expression for 𝑐1(𝑥; [𝜌]) (which one has to
obtain somehow for a given type of model fluid), a self-consistent iteration scheme can be used to solve for 𝜌(𝑥).
One such method is the Picard iteration with mixing, in which the iteration is performed as follows:

𝜌(𝑥) ← (1 − 𝛼)𝜌(𝑥) + 𝛼𝜌EL(𝑥).

Here, 𝛼 is a mixing parameter and 𝜌EL(𝑥) = exp(−𝛽(𝑉ext(𝑥)−𝜇)+𝑐1(𝑥; [𝜌])) is the right hand side of the rearranged
Euler-Lagrange equation.

A simple DFT program proceeds as follows: The system parameters 𝜇 and 𝑇 , an external potential 𝑉ext(𝑥) and a
functional form of 𝑐1(𝑥; [𝜌]) are given, and the density profile is initialized (e.g. with a constant value) on a discrete
numerical grid that spans the domain of length 𝐿. The iteration is then started and Picard steps are performed to
update 𝜌(𝑥) as described above. If the change of 𝜌(𝑥) between iteration steps falls below a predefined numerical
tolerance, the iteration is stopped and the converged self-consistent density profile is obtained as a result. We give
an example of such a program in the following:

[5]: function minimize(L::Number, μ::Number, T::Number, Vext::Function, get_c1::Function; α::Number=0.03,␣
↪maxiter::Int=10000, dx::Number=0.01, floattype::Type=Float32, tol::Number=max(eps(floattype(1e3)),␣
↪1e-8))

L, μ, T = floattype.((L, μ, T)) # Technical detail: we will use Float32 in the machine learning␣
↪part as neural networks usually operate on single precision floats

xs = collect(floattype, dx/2:dx:L) # Construct the numerical grid
Vext = Vext.(xs) # Evaluate the external potential on the grid
infiniteVext = isinf.(Vext) # Check where Vext is infinite to set ρ = 0 there
ρ, ρEL = zero(xs), zero(xs) # Preallocate the density profile and an intermediate buffer for␣

↪iteration
fill!(ρ, 0.5) # Start with a bulk density of 0.5
c1 = get_c1(xs) # Obtain the c1 functional for the given numerical grid
i = 0
while true
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ρEL .= exp.((μ .- Vext) ./ T .+ c1(ρ)) # Evaluate the RHS of the Euler-Lagrange equation
ρ .= (1 - α) .* ρ .+ α .* ρEL # Do a Picard iteration step to update ρ
ρ[infiniteVext] .= 0 # Set ρ to 0 where Vext = ∞
clamp!(ρ, 0, Inf) # Make sure that ρ does not become negative
Δρmax = maximum(abs.(ρ - ρEL)[.!infiniteVext]) # Calculate the remaining discrepancy to␣

↪check convergence
i += 1
if Δρmax < tol

println("Converged (step: $(i), ‖Δρ‖ = $(Δρmax) < $(tol) = tolerance)")
break # The remaining discrepancy is below the tolerance: break out of the loop and␣

↪return the result
end
if !isfinite(Δρmax) || i >= maxiter

println("Did not converge (step: $(i) of $(maxiter), ‖Δρ‖: $(Δρmax), tolerance: $(tol))")
return nothing # The iteration did not converge, there is no valid result

end
end
xs, ρ

end

[5]: minimize (generic function with 1 method)

The way in which 𝑐1(𝑥; [𝜌]) appears both in the theory as well as in the code example above seems innocuous at
first. However, the crux of DFT is finding a suitable functional expression for 𝑐1(𝑥; [𝜌]) (or equivalently for 𝐹exc[𝜌])
for a given fluid model, and much of the ongoing research deals exactly with this problem. In Part 3, we will show
how to efficiently use neural networks to capture such a nontrivial functional mapping from simulation data.

In the following, we proceed analytically as the focus lies on the hard rod system, which is at present one of
very few model fluids where the exact excess free energy functional could be found. This success can be traced
back to the purely geometrical nature of this particular system. For hard spheres in 3D, fundamental measure
theory provides a similar geometric approach to the construction of excess functionals, although the results remain
approximate in this more general geometry.

For the exact hard rod density functional, which is attributed to Jerry Percus, the excess free energy can be
expressed as

𝛽𝐹exc[𝜌] = ∫ d𝑥Φ(𝑛0(𝑥; [𝜌]), 𝑛1(𝑥; [𝜌]))

where the free energy density has the specific form Φ(𝑛0, 𝑛1) = −𝑛0 ln(1 − 𝑛1). The functions 𝑛0(𝑥; [𝜌]) and
𝑛1(𝑥; [𝜌]) are weighted densities which arise from convolutions of the density profile with the weight functions
𝜔0(𝑥) = (𝛿(𝑥 − 𝑅) + 𝛿(𝑥 + 𝑅))/2 and 𝜔1(𝑥) = Θ(𝑅 − |𝑥|), i.e. 𝑛𝛼(𝑥; [𝜌]) = (𝜔𝛼 ⋆ 𝜌)(𝑥). From this excess free energy
functional, one can easily obtain by functional differentiation the result

𝑐1(𝑥; [𝜌]) = − ∑
𝛼=0,1

(𝜔𝛼 ⋆ 𝜕Φ
𝜕𝑛𝛼

) (𝑥)

for the one-body direct correlation function.

We implement a method that constructs the Percus 𝑐1(𝑥; [𝜌]) for a given numerical grid in the following. As
assistance, we provide conv_fft to evaluate convolutions efficiently in Fourier space and get_weights_Percus to
obtain 𝜔𝛼(𝑥) on the numerical grid in the file dft.jl.

[6]: include("dft.jl")

function get_c1_Percus(xs)
ω0, ω1 = get_weights_Percus(xs)
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conv(f, g) = conv_fft(f, g; dx=xs[2]-xs[1])
function (ρ)

n0, n1 = conv(ω0, ρ), conv(ω1, ρ) # Calculate the weighted densities
∂ϕ_∂n0 = -log.(1 .- n1) # Evaluate the partial derivatives of the excess free energy density
∂ϕ_∂n1 = n0 ./ (1 .- n1)
-(conv(ω0, ∂ϕ_∂n0) .+ conv(ω1, ∂ϕ_∂n1)) # Return c1

end
end

[6]: get_c1_Percus (generic function with 1 method)

Now we can perform some DFT minimizations to see if the results match the simulations. Note that in general,
you might have to adjust the mixing parameter 𝛼 to ensure convergence of the Picard iteration (see the keyword
arguments of minimize).

[7]: L = 10.0
μ, T = 2.0, 1.0
Vext(x) = x < 0.5 || x > L - 0.5 ? Inf : 0

xs, ρ = minimize(L, μ, T, Vext, get_c1_Percus)

plot(xs, ρ, label="ρ", xlims=(0, L), xlabel="x/σ")

Converged (step: 368, ‖Δρ‖ = 6.043911e-5 < 6.103515625e-5 = tolerance)
[7]:

By comparing simulation and DFT results for the same choices of 𝐿, 𝜇, 𝑇 and 𝑉ext(𝑥), we can cross-check the
validity of the density profiles of the hard rod fluid. However, it is obvious that both methods have substantial (and
quite contrary) restrictions: - The simulation data is noisy, which can only be improved with longer simulation runs.
This quickly becomes prohibitively expensive, in particular if one wishes to perform many individual simulations
to explore the behavior for different system parameters. However, one is free to change the type of considered
fluid by simply modifying the form of the internal interactions. - The DFT calculation is fast and does not suffer
from noisy results, thus enabling vast and efficient parameter studies. The results are exact for the case of hard
rods, but as illustrated above, one had to find and implement a suitable density functional in order to capture
the nontrivial intrinsic correlations. For more complex fluids, there is little hope in deriving an exact functional
analytically, and the construction of good approximations often proves to be very difficult.

In the final part of this tutorial, we will combine the advantages of both methods with the help of machine
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learning. We will demonstrate how to acquire an accurate and flexible representation of 𝑐1(𝑥; [𝜌]) by training a
neural network with simulation data. The resulting neural functional can be used in the minimization scheme as
seen above, but it can also reveal more fundamental information about the statistical mechanics of the considered
fluid.

Part 3: Neural functional theory

The survey in Part 2 indicates that classical DFT is a powerful concept for the determination of fluid equilibra,
but that it is limited by the difficulty of finding analytic expressions for 𝑐1(𝑥; [𝜌]). In the following, we will train
a neural network with simulation data (see Part 1) to obtain a representation of 𝑐1(𝑥; [𝜌]). We will then show
applications of this neural functional, which include the prediction of density profiles and the investigation of
neural functional calculus.

To generate a suitable data set, simulations of systems with randomized inhomogeneous external potentials 𝑉ext(𝑥)
and random values of the chemical potential 𝜇 are performed. For the construction of an appropriate form of
𝑉ext(𝑥), we combine Fourier modes, linear segments and hard walls, which are defined in the following. We also
write a method which generates a combination of these elementary functions with randomly chosen parameters.

[8]: Vext_sin(x; n::Int, A::Number, φ::Number, L::Number) = A * sin(2π * x * n / L + φ)

Vext_lin(x; x1::Number, x2::Number, E1::Number, E2::Number) = x > x1 && x < x2 ? E1 + (x - x1) * (E2␣
↪- E1) / (x2 - x1) : 0

Vext_wall(x; xw::Number, L::Number) = x < xw || x > L - xw ? Inf : 0

function generate_Vext(L::Number; num_sin=4, num_lin=rand(1:5), wall=true)
Avar = 1.0
sin_parameters = []
for n in 1:num_sin # Generate random parameters for periodic sine functions with increasing␣

↪frequency
push!(sin_parameters, (n = n, A = randn() * Avar, φ = rand() * 2π, L = L))

end
Evar = 1.0
lin_parameters = []
for _ in 1:num_lin # Generate random parameters for discontinuous linear segments

push!(lin_parameters, (x1 = round(rand() * L, digits=2), x2 = round(rand() * L, digits=2), E1␣
↪= randn() * Evar, E2 = randn() * Evar))
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end
xwmax = 1.0
wall_params = (xw = round(rand() * xwmax, digits=2), L = L) # Set a random wall width
function (x) # Return a method which evaluates a combination of all functions with the chosen␣

↪parameters above
result = 0.0
for sin_params in sin_parameters

result += Vext_sin(x; sin_params...)
end
for lin_params in lin_parameters

result += Vext_lin(x; lin_params...)
end
if wall

result += Vext_wall(x; wall_params...)
end
result

end
end

[8]: generate_Vext (generic function with 1 method)

To get an idea of the randomized inhomogeneous environments, let us generate and plot some 𝑉ext(𝑥) profiles.
Run the following code cell a few times:

[9]: L = 10.0
dx = 0.01
xs = dx/2:dx:L
Vext_generated = generate_Vext(L)
plot(xs, Vext_generated.(xs), label="Vext", xlims=(0, L), xlabel="x/σ")

[9]:

We can now proceed to generate reference data by running simulations with these randomized external potentials
and random values of the chemical potential as input. Of course, this requires spending some computational
resources. You can run the simulations yourself, but be aware that this does take a considerable amount of
compute time (~hours) if you want to get good data. For this, change use_prepared_simulations to false in the
following code cell and set an appropriate number of simulations and the time to spend for the equilibration and
production stage. Alternatively, you could “fake” the simulations by using the exact Percus DFT as illustrated in

9
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Part 2.

For readers without the required computational resources and/or patience, we have prepared a ready-to-use data
set for the following machine learning tasks, which is downloaded by default as follows:

[10]: using DelimitedFiles, Downloads

use_prepared_simulations = true # Choose if you want to use pregenerated simulations (true) or if␣
↪you want to generate a simulation data set from scratch (false)

if use_prepared_simulations
println("Downloading pregenerated simulation data set")

Downloads.download("https://www.staff.uni-bayreuth.de/~bt306964/neuraldft-tutorial/data.tar",␣
↪"data.tar")

run(`tar xf data.tar`) # You should now have a directory "data" with a bunch of simulation files
datadir = "data"

else
num_sim = 512
equilibration_time = Dates.Second(10)
production_time = Dates.Second(200)
nthreads = Threads.nthreads()
println("Generating simulation reference data from scratch. This will take approximately␣

↪$(canonicalize(num_sim * (equilibration_time + production_time) / nthreads)).")

L = 10
ϕ(r) = r < 1.0 ? Inf : 0 # Hard core repulsion
μmin, μmax = -7.0, 5.0
T = 1.0

datadir = mkdir("data_$(now())")
println("Saving results to $(datadir)")
Threads.@threads for i in 1:num_sim

μ = μmin + rand() * (μmax - μmin)
Vext_generated = generate_Vext(L)
println("Simulation $(i) running...")
xs, ρ = simulate(L, μ, T, Vext_generated, ϕ; equilibration_time, production_time)
μloc = μ .- Vext_generated.(xs)
writedlm("$(datadir)/$(i).dat", [xs μloc ρ])
println("Simulation $(i) done")

end
end

println("There are $(length(readdir(datadir))) result files in the directory $(datadir)")

Downloading pregenerated simulation data set
There are 512 result files in the directory data

If you have generated your own training set, the results are now located in the directory data_<timestamp> (use
the file explorer of JupyterLab on the left side). Otherwise, proceed with the pregenerated simulations which are
located in data after successful download and unpacking.

Let us first plot some of the data files to check if they are reasonable:
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[11]: datadir = "data" # ... or use your own simulation results from above

sim = rand(readdir(datadir, join=true)) # Select a random simulation within the data directory
xs, μloc, ρ = eachcol(readdlm(sim)) # Read the result file and split columns
display(plot(xs, μloc, label="μloc", xlims=(0, L), xlabel="x/σ"))
display(plot(xs, ρ, label="ρ", xlims=(0, L), xlabel="x/σ"))

Note that besides 𝜌(𝑥), we have saved the local chemical potential 𝜇loc(𝑥) = 𝜇−𝑉ext(𝑥) as a further one-body field.
This additional information suffices to calculate the one-body direct correlation function 𝑐1(𝑥) = ln 𝜌(𝑥)−𝛽𝜇loc(𝑥)
for each 𝑥 where 𝜌(𝑥) ≠ 0, which is the target of our following investigation.

In Part 2, we have shown that the one-body direct correlation function cannot only be obtained pointwise by
the above relation, but that it also constitutes a universal functional 𝑐1(𝑥; [𝜌]) of the density profile, without
having to invoke the local chemical potential 𝜇loc(𝑥) explicitly. In the following, we attempt to machine-learn this
functional relationship with a neural network. For constructing the specific input-output mapping, we appeal to
some physical background. Formally, the functional dependence on 𝜌(𝑥) is given with respect to the profile of
the whole system. However, for short-ranged pair interactions, the influence of the surrounding density profile
on the value of 𝑐1(𝑥; [𝜌]) at a certain position 𝑥 also remains very short-ranged. Therefore, we can adopt a local
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learning strategy: the density profile is taken only within a narrow window around a given position as input to
the neural network, which is trained to yield the scalar value of 𝑐1(𝑥; [𝜌]) at that position. The whole one-body
direct correlation profile can be recovered by evaluating the neural network at different positions across the system
domain. The following schematic illustrates this setup.

Due to this specific construction, the data has to be prepared accordingly prior to the training, i.e. the input-output
pairs of 𝜌-windows and 𝑐1-values have to be generated from the full profiles. For this, some utility functions are
given in the file neural.jl. Note that we choose a window width of 1𝜎 to each side. For the hard rod fluid, we
know that this choice suffices, as the exact analytic solution for 𝑐1(𝑥; [𝜌]) also has a convolutional range of 1𝜎. For
other fluid models, one would have to determine the window width heuristically, for which the neural functional
calculus (see below) could provide some guidance.

[12]: include("neural.jl")

ρ_profiles, c1_profiles = read_sim_data(datadir)
ρ_windows, c1_values = generate_inout(ρ_profiles, c1_profiles; window_width=1.0, dx=xs[2]-xs[1]) #␣

↪window width = 1σ suffices for hard rods

size(ρ_windows), size(c1_values)

[12]: ((201, 920866), (1, 920866))

The data is now ready to be given to a neural network for training. We choose a simple architecture with fully-
connected hidden layers and continuous activation functions (e.g. softplus). For the construction of the neural
network and the subsequent machine learning routines, the framework Flux.jl is used. We also specify a standard
optimizer and give the generated input-output pairs to a data loader, which automates shuffling and batching
during training. As this is a common regression task, we select the mean squared error as the loss function and the
mean absolute error as the metric. The learning rate is decreased exponentially after the first few epochs, which
improves the final training result.

You can choose in the following code cell via use_pretrained_model whether you want to download a ready-to-
use model or whether you want to do the training yourself. Running the training on a GPU is recommended.
Otherwise, the code runs as-is on the CPU, but training might be slow.

[13]: using BSON, Dates, Downloads, Flux, Printf
using CUDA # For Nvidia GPU support, defaults to CPU if no CUDA device is available. Switch out this␣

↪package if you have a different GPU manufacturer.
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use_pretrained_model = true # Choose if you want to use the pretrained model (true) or if you want␣
↪to do the training yourself (false)

if use_pretrained_model
println("Downloading pretrained model")

Downloads.download("https://www.staff.uni-bayreuth.de/~bt306964/neuraldft-tutorial/model.bson",␣
↪"model.bson")

BSON.@load "model.bson" model
else

println("Training model from scratch")
ρ_windows, c1_values = (ρ_windows, c1_values) |> gpu

model = Chain(
Dense(size(ρ_windows)[1] => 128, softplus),
Dense(128 => 64, softplus),
Dense(64 => 32, softplus),
Dense(32 => 1)

) |> gpu

display(model) # Show a summary of the model with the number of fittable parameters

opt = Flux.setup(Adam(), model) # Set up a standard Adam optimizer

loader = Flux.DataLoader((ρ_windows, c1_values), batchsize=256, shuffle=true) # Initialize the␣
↪DataLoader to yield shuffled batches

loss(m, x, y) = Flux.mse(m(x), y) # Use mean squared error as loss
metric(m, x, y) = Flux.mae(m(x), y) # Use mean absolute error as metric

get_learning_rate(epoch; initial=0.0001, rate=0.03, wait=5) = epoch < wait ? initial : initial *␣
↪(1 - rate)^(epoch - wait)

model_savefile = "model_$(now()).bson"
println("Saving model to $(model_savefile)")
for epoch in 1:250 # Do the training loop

learning_rate = get_learning_rate(epoch)
Flux.adjust!(opt, learning_rate)
@printf "Epoch: %3i (learning_rate: %.2e)..." epoch learning_rate; flush(stdout)
Flux.train!(loss, model, loader, opt)
@printf " loss: %.5f, metric: %.5f\n" loss(model, ρ_windows, c1_values) metric(model,␣

↪ρ_windows, c1_values); flush(stdout)
model = model |> cpu
BSON.@save model_savefile model
model = model |> gpu

end
end

model

Downloading pretrained model
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[13]: Chain(
Dense(201 => 128, softplus), # 25_856 parameters
Dense(128 => 64, softplus), # 8_256 parameters
Dense(64 => 32, softplus), # 2_080 parameters
Dense(32 => 1), # 33 parameters

) # Total: 8 arrays, 36_225 parameters, 142.004 KiB.

The model is now ready to be used for inference. For convenience, we write a method that lets us evaluate the
whole 𝑐1-profile via the trained model for a given density profile. This is necessary due to the local nature of the
mapping, which prevents 𝜌(𝑥) from being used directly as input. Instead, as shown above, the density profile must
be restructured into appropriate windows which are passed to the model.

[14]: function get_c1_neural(model, xs)
window_bins = length(model.layers[1].weight[1,:]) # Get the number of input bins from the shape␣

↪of the first layer
model = model |> gpu
function (ρ)

ρ_windows = generate_windows(ρ; window_bins) |> gpu # The helper function generate_windows␣
↪is defined in neural.jl

model(ρ_windows) |> cpu |> vec # Evaluate the model, make sure the result gets back to the␣
↪CPU, and transpose it to a vector

end
end

[14]: get_c1_neural (generic function with 1 method)

The central use of the neural functional is revealed by applying it for the self-consistent calculation of density
profiles. Just like we have used the analytic functional due to Percus in Part 2, we can now employ the neural
functional to obtain results for 𝑐1(𝑥; [𝜌]) within a DFT minimization. Importantly, the specific minimization
scheme to update and iterate 𝜌(𝑥) until convergence remains unchanged upon switching out the analytic one-
body direct correlation functional with its neural counterpart. Hence, this neural DFT is an effective means to
circumvent the cumbersome search for analytic functionals while retaining the merits of the DFT minimization
procedure.

We show in the following that neural DFT indeed yields accurate results for the considered hard rod fluid. Exact
reference data for comparison can be obtained immediately by the Percus theory (one would have to resort to
simulation results for other fluid models).

[15]: L = 10.0
μ, T = 2.0, 1.0
Vext(x) = x < 0.5 || x > L - 0.5 ? Inf : 0

xs, ρ_neural = minimize(L, μ, T, Vext, xs -> get_c1_neural(model, xs))
xs, ρ_Percus = minimize(L, μ, T, Vext, get_c1_Percus)

plot(xs, [ρ_neural ρ_Percus], label=["ρ (neural)" "ρ (Percus)"], linestyle=[:solid :dash], xlims=(0,␣
↪L), xlabel="x/σ")

Converged (step: 374, ‖Δρ‖ = 6.0796738e-5 < 6.103515625e-5 = tolerance)
Converged (step: 368, ‖Δρ‖ = 6.043911e-5 < 6.103515625e-5 = tolerance)

[15]:
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Although the box size has been kept constant during training and in the above example, we can immediately
apply the neural functional for different choices of 𝐿 due to its local nature. This also gives us the possibility to
run some rather demanding quality checks. For narrow confinement, which has clearly not been included in our
training data, the hard rod fluid yields very interesting density profiles. The following test reveals that the neural
functional is able to extrapolate to these unseen cases and that the results from neural DFT match the analytic
theory with surprising accuracy.

[16]: L = 3.0 # Try other values between 2.0 and 4.0, the density profiles will be interesting
μ, T = 2.0, 1.0
Vext(x) = x < 0.5 || x > L - 0.5 ? Inf : 0

xs, ρ_neural = minimize(L, μ, T, Vext, xs -> get_c1_neural(model, xs))
xs, ρ_Percus = minimize(L, μ, T, Vext, get_c1_Percus)

plot(xs, [ρ_neural ρ_Percus], label=["ρ (neural)" "ρ (Percus)"], linestyle=[:solid :dash], xlims=(0,␣
↪L), xlabel="x/σ")

Converged (step: 368, ‖Δρ‖ = 6.043911e-5 < 6.103515625e-5 = tolerance)
Converged (step: 359, ‖Δρ‖ = 6.055832e-5 < 6.103515625e-5 = tolerance)

[16]:
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We can also increase 𝐿 significantly compared to the previous cases. The ability of the neural functional to be used
straightforwardly in this manner creates the opportunity of efficient multiscale investigations. In the following,
this is illustrated by considering the sedimentation of the hard rod fluid in a column with hard walls at the top
and at the bottom. The external potential is chosen to slowly increase linearly with height 𝑥 in order to model the
effect of gravity. Within the sedimentation column, the density closely follows the equation of state of the hard
rod fluid.

[17]: L = 100.0 # You can try to increase L even further
μ, T = 2.0, 1.0
Vext(x) = x < 0.5 || x > L - 0.5 ? Inf : 0.05 * x # Hard walls at the boundaries and linearly␣

↪increasing within the sedimentation column

xs, ρ_neural = minimize(L, μ, T, Vext, xs -> get_c1_neural(model, xs))
xs, ρ_Percus = minimize(L, μ, T, Vext, get_c1_Percus)

plot(xs, [ρ_neural ρ_Percus], label=["ρ (neural)" "ρ (Percus)"], linestyle=[:solid :dash], xlims=(0,␣
↪L), xlabel="x/σ")

Converged (step: 370, ‖Δρ‖ = 5.9962273e-5 < 6.103515625e-5 = tolerance)
Converged (step: 364, ‖Δρ‖ = 6.067753e-5 < 6.103515625e-5 = tolerance)

[17]:

Besides using the trained model directly in DFT minimizations, we show in the following that one can extract much
more fundamental physical information from the neural functional. For this, we aim at implementing functional
calculus on the basis of the neural network. An important prerequisite for this is to understand the concept of
automatic differentiation. In fact, we have used autodifferentiation already above to realize the adaptation of
the neural network parameters during its training. This has been hidden within the Flux.train! method, which
evaluates for the given training data the output of the neural network as well as gradients of the loss function with
respect to all trainable parameters. These gradients are used to trace the error of the neural network predictions
back to the weights in order to nudge them in the “right direction”, i.e. to decrease the loss.

Reverse mode automatic differentiation computes derivatives by recording individual subexpressions of a given
composite function, e.g. of the neural network, during evaluation. The chain rule is then applied programmatically
to yield the derivative of the function in a second computational pass. As this mechanism is central to machine
learning, many frameworks come with ready-to-use implementations. For instance, Flux.jl provides the gradient
method, which can be used as follows for scalar-valued functions:
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[18]: f(x, y) = x^2 + sin(x * y) # Some arbitrary test function
df(x, y) = (2*x + y * cos(x * y), x * cos(x * y)) # Analytic derivative to test autodiff results

x, y = π, 2.0 # Values for which the derivative will be computed

println("analytic: ", df(x, y))
println("autodiff: ", Flux.gradient(f, x, y))

analytic: (8.283185307179586, 3.141592653589793)
autodiff: (8.283185307179586, 3.141592653589793)

Similarly, we can derive the output of the neural functional with respect to the input density via autodifferentiation.
But what do we get out of this?

In Part 2, we have seen that the one-body direct correlation functional is obtained from the functional derivative of
the excess free energy, 𝑐1(𝑥; [𝜌]) = −𝛿𝛽𝐹exc[𝜌]/𝛿𝜌(𝑥), and that it is a central object in DFT calculations. Applying
an additional functional derivative yields another important quantity, the two-body direct correlation function

𝑐2(𝑥, 𝑥′; [𝜌]) = 𝛿𝑐1(𝑥; [𝜌])
𝛿𝜌(𝑥′) .

In fact, a complete hierarchy of direct correlation functions 𝑐𝑛(𝑥, 𝑥′, ...; [𝜌]) is defined by iterating subsequent
functional derivatives.

From fundamental physical considerations, further relations can be obtained for these direct correlation functions.
In particular, by applying Noether’s theorem to statistical mechanical systems, one arrives at so-called sum rules,
which constrain the interrelation of different quantities of interest. One such sum rule which connects 𝑐1(𝑥),
𝑐2(𝑥, 𝑥′) and 𝜌(𝑥) reads as follows:

∇𝑐1(𝑥) = ∫ d𝑥′𝑐2(𝑥, 𝑥′)∇′𝜌(𝑥′).

As these identities emerge from fundamental invariances of equilibrium many-body systems, they can be used as
further valuable tests to check the consistency of the neural functional.

We implement in the following a method to calculate 𝑐2(𝑥, 𝑥′; [𝜌]) via autodifferentiation of a given function for
𝑐1(𝑥; [𝜌]). Note that autodifferentiation can be used very generically, which gives us a way to obtain 𝑐2(𝑥, 𝑥′; [𝜌])
also from the Percus 𝑐1(𝑥; [𝜌]) without having to derive and implement the analytic expression by hand.

[19]: function get_c2_autodiff(c1_function, xs)
dx = xs[2] - xs[1]
function (ρ)

Flux.jacobian(c1_function, ρ)[1] / dx
end

end

[19]: get_c2_autodiff (generic function with 1 method)

First, we run some quick tests to illustrate the usage of this method. As test density input, we take profiles
that follow from a randomized continuous external potential. Run the cell a few times to see different results
for 𝑐2(𝑥, 𝑥′; [𝜌]). Also try to switch out the neural correlation functional for the Percus expression, the use of
autodifferentiation remains straightforward.

[20]: L = 10.0
μ, T = 0.0, 1.0

xs, ρ = minimize(L, μ, T, generate_Vext(L; num_sin=5, num_lin=0, wall=false), get_c1_Percus)

c1_func = get_c1_neural(model, xs)
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# c1_func = get_c1_Percus(xs) # The Percus c1 can also be used in the following autodifferentiation,␣
↪no need for a pen-and-paper derivation :)

c2_func = get_c2_autodiff(c1_func, xs)

c1 = c1_func(ρ)
c2 = c2_func(ρ)

display(plot(xs, ρ, label="ρ", xlims=(0, L), xlabel="x/σ"))
display(plot(xs, c1, label="c1", xlims=(0, L), xlabel="x/σ"))
heatmap(xs, xs, c2, colorbar_title="c2", aspect_ratio=1, xlims=(0, L), ylims=(0, L), xlabel="x/σ",␣

↪ylabel="x'/σ")

Converged (step: 343, ‖Δρ‖ = 6.067753e-5 < 6.103515625e-5 = tolerance)

[20]:
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Now we can check the above Noether sum rule. The gradients are evaluated numerically on the spatial grid via
finite differences, for which we have supplied the function finite_diff in neural.jl. The following plot shows the
right and left hand side of the identity, which coincide when evaluating the quantities with a neural functional
that has been trained sufficiently well. Recall that we have neither specified 𝑐2(𝑥, 𝑥′; [𝜌]) nor the Noether identity
during training. The successful reproduction of such fundamental results implies that the neural functional does
not merely interpolate values of 𝑐1(𝑥; [𝜌]), but that it instead also captures the essential physics of the underlying
many-body problem.

[21]: dx = xs[2] - xs[1]
grad_c1 = finite_diff(c1; dx)
grad_ρ = finite_diff(ρ; dx)
lhs = grad_c1 # Left hand side of the Noether sum rule
rhs = c2 * grad_ρ * dx # Right hand side of the Noether sum rule
plot(xs, [lhs rhs], label=["∇c1(x)" "∫dx' c2(x,x') ∇'ρ(x')"], linestyle=[:solid :dash], xlims=(0, L),␣

↪xlabel="x/σ")

[21]:

To complete the functional calculus, we now consider the inverse operation of functional differentiation. This
gives us direct access to the excess free energy 𝐹exc[𝜌], as can be deduced from the definition of 𝑐1(𝑥; [𝜌]) via its
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functional derivative. Formally, functional line integration serves as such an inverse operation, and it amounts to
performing a line integral in function space. By choosing a linear parameterization 𝜌𝑎(𝑥) = 𝑎𝜌(𝑥), one can derive
the explicit result

𝛽𝐹exc[𝜌] = − ∫ d𝑥𝜌(𝑥) ∫
1

0
d𝑎𝑐1(𝑥; [𝜌𝑎]).

On the level of the neural functional (or, in fact, any representation of the one-body direct correlation functional),
this expression is easy to evaluate numerically by discretizing both integrals. We write a method for this in the
following.

[22]: function get_Fexc_funcintegral(c1_function, xs; num_a=100)
dx = xs[2] - xs[1]
da = 1 / num_a
as = da/2:da:1
function (ρ)

aintegral = zero(ρ)
for a in as

aintegral .+= c1_function(a .* ρ)
end
-sum(ρ .* aintegral) * dx * da

end
end

[22]: get_Fexc_funcintegral (generic function with 1 method)

In the following code cell, randomized inhomogeneous systems are considered as above to test the excess free
energy calculation via functional line integration. We additionally implement the exact analytic Percus expression
for 𝐹exc[𝜌] (see Part 2) in order to judge the results. The values of 𝐹exc[𝜌] as obtained by functional line integration
of the neural correlation functional show almost no discrepancy to the exact analytic theory.

[23]: L = 10.0
μ, T = 0.0, 1.0

xs, ρ = minimize(L, μ, T, generate_Vext(L), get_c1_Percus)

c1_func = get_c1_neural(model, xs)
# c1_func = get_c1_Percus(xs)

Fexc_func = get_Fexc_funcintegral(c1_func, xs)

function get_Fexc_Percus(xs)
dx = xs[2] - xs[1]
ω0, ω1 = get_weights_Percus(xs)
conv(f, g) = conv_fft(f, g; dx)
function (ρ)

n0, n1 = conv(ω0, ρ), conv(ω1, ρ)
ϕ = n0 .* log.(1 .- n1)
-sum(ϕ) * dx

end
end

Fexc_Percus = get_Fexc_Percus(xs)

println("Fexc from analytic expression (Percus): ", Fexc_Percus(ρ))
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println("Fexc from functional line integral (neural): ", Fexc_func(ρ))
plot(xs, ρ, label="ρ", xlims=(0, L), xlabel="x/σ")

Converged (step: 302, ‖Δρ‖ = 6.0528517e-5 < 6.103515625e-5 = tolerance)
Fexc from analytic expression (Percus): 1.5354127
Fexc from functional line integral (neural): 1.53711669921875

[23]:

Conclusions
In this tutorial, we have investigated various methods for the description of classical statistical many-body systems.
In particular, we have focused on developing a machine learning framework based on classical DFT and many-
body simulations, which combines the strengths of both methods and which facilitates to overcome their individual
limitations.

As preparation, the fundamentals of GCMC simulations were laid out in Part 1. We have shown that many-body
simulations are suitable to obtain equilibrium averages such as the density profile from the microscopic description
of a system. This was exemplified specifically for the hard rod fluid in inhomogeneous environments. However,
the computational demands of simulations often turn out to be too restrictive in concrete applications.

In Part 2, classical DFT was presented as a coarse-grained method that operates directly on the level of the
one-body density rather than on the full many-body picture, which greatly reduces the computational complexity
of the problem. For the case of the hard rod fluid, we have reproduced the exact analytic density functional
due to Percus and have shown its application in a standard DFT minimization for the self-consistent calculation
of density profiles. While DFT is formally exact for arbitrary fluid models, we have emphasized the difficulty
of finding analytic functionals and the exceptionality of the hard rod result. These considerations led us to the
application of machine learning with the goal of capturing functional maps from simulation data.

Part 3 gives a detailed account of our machine learning procedure, in which a neural network serves as the central
object for the representation of a functional relationship. Training data has been acquired with GCMC simulations,
and we have described in this regard how one can generate suitable external potentials randomly to cover diverse
inhomogeneous environments. The actual training procedure was based on the functional mapping from the density
profile 𝜌(𝑥) to the one-body direct correlation functional 𝑐1(𝑥; [𝜌]), which were hence taken respectively as input
and target output of the neural network. Crucially, however, we have adopted a local learning strategy. The neural
network was constructed to yield only the scalar value of 𝑐1(𝑥; [𝜌]) at a certain location 𝑥 when provided with
the surrounding density profile within a narrow window around 𝑥 as input. This setup imposes no substantial
restriction, as the whole profile of 𝑐1(𝑥; [𝜌]) can be recovered by evaluating the neural network (in parallel) at
multiple positions within the system domain. However, there are numerous benefits to considering the functional
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relationship locally, such as an improvement of training statistics, the prescription of the short-ranged nature of
𝑐1(𝑥; [𝜌]) and the applicability of the neural functional to multiscale problems.

We have then investigated applications of the trained neural correlation functional and its use in DFT minimiza-
tions. The results of this neural DFT were highly accurate even for unseen external environments, which could
be demonstrated for the hard rod fluid by comparison to the exact Percus solution. Further, we have shown
the implementation of functional calculus on the basis of the neural network, which enabled us to obtain related
quantities such as the two-body direct correlation functional 𝑐2(𝑥, 𝑥′; [𝜌]) or the excess free energy 𝐹exc[𝜌]. In this
regard, automatic differentiation was utilized for the evaluation of functional derivatives, and a functional line
integral served as the explicit inverse operation. The results of the neural functional calculus could be verified by
the exact Percus theory. A special case, which has not been covered in this tutorial, is the application of the neural
functional calculus to systems with spatially constant density, where important bulk properties such as the equa-
tion of state and the bulk pair structure can be determined. It is a valuable excercise to use the above tools for the
investigation of these bulk results. Further details are given in our research paper (doi:10.1073/pnas.2312484120,
arXiv:2307.04539).

As a further consistency check of the neural functional, we have shown the validity of a sum rule which arises from
the application of Noether’s theorem to statistical many-body systems, and which can hence be traced back to
a fundamental invariance property of phase space. It is therefore nontrivial that the neural network reproduces
the identity given that no such information was provided during training. There are many more sum rules which
result from thermal Noether invariance and which are described in more detail in the accompanying manuscript
(arXiv:2312.04681). We encourage the reader to implement and verify them; the above code provides the required
utilities and may serve as guidance.

Even though we have focused on the hard rod fluid, which is owed to the pedagogical purpose of this tutorial and to
the availability of exact theoretical results, the presented machine learning framework is generically applicable to
other fluid models with short-ranged interactions. You can try this yourself by modifying the above code examples.
Simulation data can be generated for a different type of fluid by simply changing the form of the pair potential
𝜙(𝑟) and by selecting appropriate parameters for the random generation of chemical and external potentials. The
training routine of the neural functional then proceeds identically, provided that the input range of the density
is chosen sufficiently large for the specific interaction type (this could be checked e.g. by evaluating 𝑐2(𝑥, 𝑥′; [𝜌])
via autodifferentiation). The trained neural functional can be applied as before in DFT minimizations and in the
functional calculus, which is particularly relevant for fluid models where no satisfactory analytic functionals exist.
One could even go beyond an isothermal setting and include variations of the temperature, which then serves as
a further input parameter to the neural correlation functional. In total, the neural functional theory leaves much
room for further research and we have demonstrated here that it serves as a promising hybrid approach to the
investigation of inhomogeneous fluids.
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Weiterhin erkläre ich, dass ich die Hilfe von gewerblichen Promotionsberatern bzw.
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